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ABSTRACT

Binary classifiers (dichotomizers) are combined for multi-class classification. Each region formed by the pairwise
decision boundaries is assigned to the class with the highest frequency of training samples in that region. With
more samples and classifiers, the frequencies converge to increasingly accurate non-parametric estimates of the
posterior class probabilities in the vicinity of the decision boundaries. The method is applicable to non-parametric
discrete or continuous class distributions dichotomized by either linear or non-linear classifiers (like support vector
machines). We present a formal description of the method and place it in context with related methods. We
present experimental results on machine-printed digits that demonstrate the viability of frequency coding in a
classification task.
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1. INTRODUCTION

Discriminative classifiers like support vector machines1 and boosting algorithms2 are most readily formulated
for two-class problems. Any multiclass problem with Nc classes can be decomposed in many ways, including Nc

one-class-versus-the-rest binary classifiers, and Nc(Nc−1)/2 dichotomies. We concentrate here on dichotomizers,
which are generally simpler and easier to train. For instance, even if every pair of classes is linearly separable,
one or more of the classes may not be linearly separable from all of the others.

The conventional methods of combining maximum-margin classifiers (e.g., SVM and Boosting) include major-
ity voting, and computing the posterior class-conditional probabilities according to the distance of the unknown
pattern from the separating boundaries.3–5 The former suffers from the occurrence of tied votes, and the latter
from the difficulty of estimating the tails of probability distributions near the decision boundaries. Frequency
coding is an alternative method for combining dichotomizers that significantly reduces both problems by means
of direct estimates of the class probabilities corresponding to every possible output of the dichotomizers.

This classifier is based on labeling the regions of feature space formed by the decision boundaries of the
dichotomizers. The maximum number M of convex regions that can be formed by K hyperplanes grows super-
linearly with n, the number of features (i.e., the dimensionality of the feature space), and with K, the number
of hyperplanes. With nonlinear boundaries, the maximum number of regions grows much faster. For the linear
case (hyperplanes), it can be shown, using Zaslavsky’s Theorem,6 that
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Figure 1. Some region indices for 4 classes.

2. FREQUENCY CODING

The training set has Nt patterns. Each training pattern is labeled with one of Nc class labels {C1, C2, . . . , CNc},
and one of Ns style labels {S1, S2, . . . , SNs}.∗ The training patterns are classified by K dichotomizers, where the
output of dichotomizer Yk on training pattern xi is Yk(xi) = 1 or Yk(xi) = 0 : Y = Y(xi) = (Y1(xi), Y2(xi), . . . , YK(xi)).

The dichotomizers together assign pattern xi to a region in the feature space. A region can be described either
by its K-element binary region vector Y or by its scalar region index m, m = 1, . . . , M, M = 2K . The index m can
be the value of the binary integer formed by concatenating the elements Yk of Y in any fixed order. The result of
assigning all the training patterns xi is a set of region assignment matrices {Bm, m = 1, 2, . . . , M} corresponding
to the M possible regions. Each matrix Bm has elements bm

ij , where bm
ij is the number of training patterns of

class Ci and style Sj assigned to region m by the dichotomizers. For the case of linear dichotomizers, we can see
from (1) that there are far fewer than 2K regions. In Fig. 1 we show a possible configuration for 4 classes and
2 features. The 6 dichotomizers, determined by pairwise training on a training set, are A/B, A/C, A/D, B/C,
B/D, C/D. There are at most 22 rather than 26 = 64 regions, but the region index is shown for only 3 of the
regions. Under the assumption that the joint class-and-style posterior probabilities (in case of style-unlabeled
training patterns, class posterior probabilities) are uniform in each region, these probabilities are estimated from
the frequencies of the training samples contained in the region assignment matrices {Bm, m = 1, 2, . . . , M} as
follows:

P (C = Ci,S = Sj |x) = P (C = Ci, S = Sj |m) =
bm
ij

Nc∑
i=1

Ns∑
j=1

bm
ij

, (2)

where the joint class-and-style posterior probability at x is equal to the joint class-and-style posterior probability
in the region m assigned to x. For singlet classification (i.e., classification of individual patterns under the
assumption of class-conditional independence), we need only class posterior probability:

P (C = Ci|x) = P (C = Ci|m) =

Ns∑
j=1

bm
ij

Nc∑
i=1

Ns∑
j=1

bm
ij

∝
Ns∑

j=1

bm
ij . (3)

∗In multifont or multi-writer classification, the class-conditional feature distributions are mixture densities. The style
label of each training pattern identifies its style (component density, font or writer). Although we consider the general
case of class-and-style-labeled training patterns, frequency coding may be used without style labels.



Each class is thus assigned to the corresponding estimate of its posterior probability in the whole region, and
the region is then assigned the class label of the dominant class. The posterior probabilities can also be used to
compute a confidence measure.

Ties can be broken according to the frequencies of the tied classes in the adjacent regions. The number of
tied region frequencies resulting in ambiguous regions decreases with increasing training set size, in contrast to
conventional voting, where the number of ambiguous regions remains constant. A special case of ties occurs
with empty regions. If a test pattern falls into an empty region m, i.e., if no training patterns were assigned to
it, then its bm

ij are set to bm′
ij , corresponding to the frequencies of the nearest non-empty region m′ as measured

by the Hamming distance between the region vectors Y. Ties between equally-near regions are broken first
by dominant class among all these regions, second by testing the next-nearest regions. Alternatively, regions
without a dominant class may be assigned to a REJECT category.

New samples are classified by every dichotomizer. Then the class label assigned to the resulting region index
is retrieved from the region table, i.e., the set of region assignment matrices.

3. RELATION TO OTHER CLASSIFIERS

Frequency coding is related to stacking7 and, in particular, stacking pairwise classifiers or simply pairwise stack-
ing .8 Like the latter method, frequency coding uses the binary outputs of the pairwise classifiers as an inter-
mediate step in the final classification decision. Pairwise stacking classifies patterns in the space of dichotomizer
binary outputs (level-1 space - binary feature space) using any arbitrary classifier. However, frequency coding
classifies patterns in the input space (level-0 space) by estimating the candidate class posterior probabilities.
Each dichotomizer’s 0/1 output defines a (linear or nonlinear) half-space in level-0 space. Their intersections
form regions that constitute the frequency coding interpretation. The alternative interpretation, in terms of
pairwise stacking, is that the dichotmizer outputs together form a binary feature vector in level-1 space.

The confidence scores of dichotomizers may be used instead of their binary outputs. For instance, the
confidence scores may be converted into calibrated (pairwise) posterior probabilities using the Platt’s method,3

and combined for multiclass classification by pairwise coupling and related schemes.4, 5 In this case, the similarity
to frequency coding disappears entirely. An alternative stacking scheme could use the pairwise probabilities as
level-1 features for classification by a level-1 classifier, instead of combining them by pairwise coupling.

Pairwise stacking with a nearest neighbor classifier as the level-1 classifier and frequency coding produce
identical results when a test pattern falls in a region already populated by the training patterns. When the
region is empty, however, frequency coding may assign a different label than pairwise stacking, depending on the
populations of the adjacent regions.

Most importantly, the probabilistic formulation of frequency coding enables style-constrained classifica-
tion.9, 10 While some stacking methods attempt to minimize the impact of irrelevant dichotomizers (dichotomiz-
ers classifying test patterns belonging to untrained classes), style-constrained classification benefits from the
view that the output of such a dichotomizer may be very relevant. For instance, it is likely that a 5/9 digit
dichotomizer for hand-printed digits will almost always opt for 5 on 6’s, and for 9 on 8’s, even though it was
never trained on either 6’s or 8’s.

The region class frequencies yield a piecewise uniform approximation to the posterior class probabilities.
Unlike Parzen Windows,11 the “windows” do not shrink with increasing sample size. As in k-Nearest Neighbors,12

only nearby samples within a convex region participate in each decision, but the number of participating neighbors
varies from region to region instead of being set in advance. The windows tend to cluster around the decision
boundaries, providing finer resolution of the posterior class probabilities just where it matters.

Both the frequency coding scheme and the error-correcting output coding (ECOC) scheme13, 14 combine
margin-based dichotomizers for multi-class classification. The ECOC scheme combines binary classifiers (di-
chotomizers) trained on subsets of classes for multiclass classification. The decisions of K binary classifiers are
combined into codewords to uniquely represent each of Nc classes. An Nc ×K coding matrix Ξ ∈ {0, 1}Nc×K

defines the relation between Nc classes and K dichotomizers: each row gives the codeword for a class. On a test
pattern, the outputs of the dichotomizers (either binary decisions or margin values) form a prediction vector. The



test pattern is then assigned the class whose codeword is closest to the prediction vector in some sense (Hamming
distance or loss-based distance). Alternatively, the margins are transformed into two-class probabilities, which
are then combined into multi-class probabilities. The error rate of ECOC scheme depends on the chosen distance
metric or the probability estimation technique.

4. EXPERIMENTAL RESULTS

4.1. Machine-printed Digits

The data consisted of 24,000 6-pt printed digits scanned at 200 dpi. The printed digits were evenly distributed
among five different fonts viz., Avant Garde (A), Bookman Old Style (B), Helvetica (H), Times New Roman
(T), and Verdana (V). The five fonts were divided into two styles: Style 1 (A, B, H) and Style 2 (T, V). This
division maximized the inter-style confusion between Style 1 and Style 2 as observed from the experiments. A
few representative samples are shown in Figure 2.

Avant Garde
Bookman Old Style

Helvetica
Times New Roman

Verdana

Figure 2. Samples of the machine-printed digits, reproduced at approximately actual size.

We used the top 5 principal components of the 64-dimensional directional edge features as classification
features. The features were normalized using max-min normalization scheme. Each feature (attribute) in the
training set is normalized as follows:

x′ =
x− xmin

xmax − xmin
(4)

where xmax and xmin are the maximum and minimum values of feature x across all the training samples. This
results in each feature value in the training set being in the range [0, 1]. The test set is normalized using the
xmax and xmin values obtained from the training set.

We constructed two region-frequency classifiers based on frequency coding: (i) class-pair region-frequency
classifier – uses 45 class-pair dichotomizers, and (ii) class-and-style-pair region-frequency classifier – uses both
class-pair and class-and-style-pair dichotomizers, a total of 135 dichotomizers (45 + 2 × 45) including the 45
class-and-style-pair dichotmomizers from each style. All the 135 dichotomizers were SVMs with a linear kernel
and a capacity constant of C = 1. The error rates of the two region-frequency classifiers are compared with
class-pair majority vote, unimodal Gaussian (one Gaussian per class) and bimodal Gaussian (one Gaussian per
class-and-style) classifiers.

We present some statistics for the class-pair region-frequency classifier. Detailed statistics for both region-
frequency classifiers may be found in .15 The training set of 12,000 digits populated 1926 regions. (A larger
training set could conceivably populate all of the maximum number of 1,385,980 regions formed in 5-D by 45
hyperplanes in general positions.) The test set, also of 12,000 digits, fell into 1906 regions, with 601 of these
regions corresponding to empty regions in the training set. The fraction of errors was almost twice as high in the
regions to which no training sample was assigned, but the number of such regions decreases with the size of the
training set. Of the 1926 regions populated by the training set, there are 66 regions of disagreement between the
class-pair region-frequency classifier and the class-pair majority vote classifier. Most of these regions are nearly
empty with only one training sample falling in 41 of them. Table 1 shows a few rows of the 1926-row region
table, including the region labels assigned by the class-pair region frequency classifier and the class-pair majority
vote classifier.

The error rates of the five classifiers are shown in Table 2. The region-frequency classifiers compare favorably
to the other classifiers. Both region-frequency classifiers yield lower error rates than the conventional vote
classifier. The class-and-style-pair region frequency classifier yields the best accuracy of all classifiers due to the



Table 1. Part of the region table for the class-pair region-frequency classifier (45 dichotomizers) in a five-dimensional
feature space.  

               Classes 
Octal  
Codes 

0 1 2 3 4 5 6 7 8 9 
Region 
frequency 
label 

Majority 
vote 
label 

000001777760000 0 0 34 0 0 0 0 0 0 0 2 2 
000367732160026 0 0 0 0 0 0 0 84 0 0 7 7 
404010657570441 0 0 0 8 0 0 0 0 0 0 3 8 
444010647711441 0 0 0 11 0 0 0 0 3 2 3 3 
444110747711440 0 0 0 4 0 0 0 0 0 8 9 3 
464010647410441 0 0 0 3 0 0 0 0 34 4 8 8 
644010044510771 0 0 0 0 0 13 38 0 0 0 6 6 
744010004510771 0 0 0 0 0 11 6 0 0 0 5 6 
777010646410440 345 0 0 0 0 0 0 0 0 0 0 0 
 

fine division of the feature space into a large number of regions (the training patterns fell into 6616 regions).
The experiments were repeated with interchanged training and test sets (as shown in the right sub-columns of
Table 2) without significant difference. The difference between the training and test error rates indicates that
the region-frequency classifiers would benefit from more training samples. Unequal class priors, which are not
taken into account in conventional voting, would favor the proposed method even more.

Table 2. Comparison of five classifiers on 12,000 digits

Original training 
and test sets 

Interchanged training 
and test sets  

Classifier 
Training 
error % 

Test 
error % 

Training 
error % 

Test  
error % 

Class-pair majority vote  
classifier 
 

3.2 3.3 3.2 3.2 

Class-pair region-frequency  
classifier 
 

2.4 3.0 2.2 2.8 

Class-and-style-pair region-frequency 
classifier 
 

0.7 2.2 0.9 2.3 

Unimodal Gaussian classifier 
 

2.9 2.9 2.8 2.9 

Bimodal Gaussian classifier 
 

2.3 2.4 2.3 2.4 

 

4.2. Handwritten digits

We conducted experiments on handwritten digits to assess the suitability of frequency coding in real-world
applications. The dataset SD7, which is contained in the NIST special database SD19, was used for these
experiments.16 The writers of SD7 were high school students. The dataset is considered difficult to recognize.
A few samples are shown in Figure 3.

The SD7 dataset was divided into training and test sets with 100 writers in each set. The training set
comprised the writers (2100–2199), whereas the test set the writers (2200–2299). Due to the limitations of
our current implementation of frequency coding scheme, experiments were conducted only on a subset of five
digits (3, 5, 6, 8, 9). The training and test sets consisted of 5689 and 5722 samples respectively. The top 50
principal components of the 100-dimensional directional edge features were used as classification features. The



 

Figure 3. Handwritten samples from NIST SD7 dataset.16

features were normalized using max-min normalization scheme as described in Section 4.1. The large number of
writers in the training or test set precluded experiments with class-and-style-pair region-frequency classifier and
multimodal Gaussian classifier (for the case of machine-printed digits with two broad styles, bimodal Gaussian
classifier was a natural choice).

Table 3. Comparison of five classifiers on 12,000 digits

Original training 
and test sets 

Interchanged training 
and test sets  

Classifier 
Training 
error % 

Test 
error % 

Training 
error % 

Test  
error % 

Class-pair majority vote  
classifier 
 

0.0 1.2 0.0 1.6 

Class-pair region-frequency  
classifier 
 

0.0 1.3 0.0 1.6 

Unimodal Gaussian classifier 
 

1.1 2.5 1.2 2.7 

 
The SVM dichotomizers in both region-frequency and majority vote classifiers used an RBF kernel with

parameters (C, γ) = (5, 2) obtained by 2-fold cross-validation. The error rates of the three classifiers are shown
in Table 3. The region-frequency classifier yields similar error rates as the majority vote classifier, but the
unimodal Gaussian classifier yields relatively higher error rates. The training set populated 136 regions. It is
noteworthy that perfect accuracy could be achieved on the training set with both majority vote and region-
frequency classifiers. The difference between the training and test error rates of all classifiers points towards the
poor generalization accuracies with the SD7 dataset.

We encountered the following problems in our experiments with the full SD7 dataset with all the ten digits.
The training and test sets of the full SD7 dataset have 11585 and 11660 samples respectively. We observed that
the training set populated nearly as many regions as the number of samples. Since these regions are nonempty,
most of the regions therefore have only one sample in them. Two problems arise as a consequence. On the
experimental front, assigning test patterns to feature space regions requires computation of a distance matrix
with more than 100 million entries. In our current implementation, this causes MATLAB to throw the out of
memory error. This problem however can be resolved with an efficient implementation.

The second problem concerns with the nature of posterior probability assignment to the regions. This is a
major problem because, with only one sample per region, there is hardly any gradation in the posterior probability
assignment. In this case, frequency coding is similar to a nearest neighbor classifier, albeit with different decision
boundaries. Our future work will focus on developing algorithms and strategies to address this problem.



5. EXTENSIONS

The proposed decision scheme can be applied to combine any arbitrary set of dichotomizers. This is similar to
ECOC scheme, but the method of combination is different. As is the case with ECOC, the design of a set of
effective dichotomizers would be an issue. The dichotomizers may be chosen so as to achieve consistent classifica-
tion of irrelevant classes, as mentioned in Section 3. Use of nonlinear SVMs (i.e., SVMs with nonlinear kernels)
as dichotomizers allows us to consider more complex regions in the feature space, which we have investigated.15

Binary style dichotomizers can also be used for field classification.15, 17 For field recognition, we concatenate
the feature vectors of all the patterns in the field, and treat the entire field as a single pattern. It is not, however,
necessary to train the dichotomizers on pattern fields (this would require an inordinate number of patterns
because the number of field classes increases exponentially with field length). Instead, the region indices of
singlet patterns are concatenated to form region indices for virtual field patterns. Hence training does not take
any longer for field classification than for singlet classification.

During classification, the field label of the nearest field region index is assigned to an unknown pattern
field. The field region indices need not be stored because the required field indices can be quickly computed at
classification time from the singlet region indices. The computation ensures that each field index is based only on
same-style patterns. As with other style-constrained classification methods,9, 10 increase in field length reduces
inter-style confusions, possibly at the cost of some additional intra-style confusions.18
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