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Abstract 
 

A new method for combining dichotomizers like 
SVMs is proposed for classifying multi-class pattern 
fields. The novelty lies in the estimation of the style-
constrained posterior field class probabilities from the 
frequencies of the training patterns in the regions of 
the feature space engendered by the pairwise decision 
boundaries of the dichotomizers. We show that on 
simulated data, this non-parametric field classifier is 
nearly optimal. On scanned printed digits, its accuracy 
is comparable to that of state-of-the-art style 
classifiers. 
 
1. Introduction 
 

Style context was defined and formalized as the 
statistical dependence between patterns generated by 
the same source [1]. Style context, unlike language 
context, is independent of the order of the patterns in 
the field. Previous style-classifiers were based on 
Gaussian mixture densities [1, 2]. In contrast, the 
proposed method, like Parzen Windows and k-Nearest 
Neighbors classifiers, is a non-parametric MAP 
classifier [3, 4]. Like all style-constrained classifiers, 
the style-code field classifier described herein exploits 
the constraint that each pattern in a test field, 
regardless of its class, has the same style. Our 
underlying premise is that the dichotomizer (binary 
classifier) for each class pair also provides some style 
information about the other classes.  

Each pattern is represented in some (arbitrary) 
feature space. The training patterns are labeled by class 
and style, and the test patterns are unlabeled. A set of 
dichotomizers assigns each training pattern to one of a 
set of regions indexed by the outputs of the 
dichotomizers. Therefore the output for each   pattern 
is a binary vector of length equal to the number of 
dichotomizers. We use either class-pair or class-and-
style-pair Support Vector Machines (SVMs) as 
dichotomizers [5], but the method is applicable to any 

linear or non-linear set of dichotomizers, to any 
number of classes and styles, and to any field length. 

The patterns of each class and style in each region 
are counted. These pattern frequencies are estimates of 
the joint class-and-style posterior probabilities of each 
region. Each pattern can then be classified by 
frequency coding [6]. This is closely related to 
stacking pairwise classifiers [7], but formulated 
probabilistically to enable style-constrained field 
classification. As the number of training samples 
grows to infinity, the estimates will converge 
uniformly to the actual (unknown) posterior 
probabilities [6]. The field classifier is constructed by 
computing the field-class-and-style posterior 
probabilities from the corresponding singlet 
probabilities under certain class-and-style conditional 
independence assumptions. Combining diverse and 
moderately accurate classifiers −  so called ensemble 
methods − to yield a highly accurate classifier is an 
active area of research [8, 9]. Ensemble methods can 
be applied to character recognition tasks as well [10, 
11]. However, all these methods consider either singlet 
classification [10] or order-dependent field 
classification [11] and none incorporate style context. 

 We first present a formal description of the style-
code classifier. Following this, we present a simulation 
with three classes A, B and C and two styles S1 and S2 
that illustrates our method, and some experimental 
results on printed digits.  

 
2. The style-code classifier 
 

Each training pattern is labeled with one of Nc class 
labels {C1, C2, …, CNc}, and one of Ns style labels  
{S1, S2, …, SNs}. The output of dichotomizer Yk on 
training pattern xi is Yk(xi) = 1 or Yk(xi) = 0:  
Y =  Y(xi)  =  (Y1(xi), Y2(xi), …, YK(xi)).  

The dichotomizers together assign pattern xi to a 
region in the feature space. A region can be described 
either by its K-element binary region vector Y or by its 
scalar region index m, m = 1, …, M, M = 2K.  With 
linear dichotomizers (i.e., hyperplanes) in a d-



dimensional space, the maximum number of (convex) 
regions is only [12]: 
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The index m can be the value of the binary integer 
formed by concatenating the elements Yk of Y in any 
fixed order. The result of assigning all the training 
patterns xi is a set of region assignment matrices {Bm, 
m = 1,2, …, M} corresponding to the M possible 
regions. Each matrix Bm  has elements bm

i,j, where bm
i,j 

is the number of training patterns of class Ci and style 
Sj assigned to region m by the dichotomizers. 

A field is a sequence of L patterns x = (x1, …, xl, 
…, xL) of the same style. Its field label is: C(x) = (C1, 
…, Cl, …, CL), where Cl ∈ {C1, C2, …, CNc}. C has 
(Nc)L possible values. With any set of dichotomizers, 
we can build a style-code field classifier. The output of 
the field classifier is a field assignment. For a test field 
x, the candidate field assignment of class labels E(x) = 
(E1, …, El,…, EL), where El ∈ {C1, C2, …, CNc}, is a 
sequence of class labels selected by the field classifier 
according to the output of the dichotomizers on the test 
field x and on all the training patterns xi (represented 
by the Bm matrices).1  

Following [1] and [2], we assume that there is no 
linguistic context  and 
field class is independent of style  

Also that patterns are class-and-style-conditionally 
independent:  

1 2(i) [ ] [ ] [ ] [ ]LP E P E P E P E= "
(ii) [ | ] [ ].jP E S P E=

1 1 2 2(iii) [ | , ] [ | , ] [ | , ] [ | , ].L L
j j j jP E S P E S P E S P E S=x x x x"

 Then the style-constrained posterior probability of a 
candidate field assignment E is 
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1 If a test pattern falls into an empty region m, i.e., if no training 
patterns were assigned to it, then its bm

i,j are set to bm’
i,j, 

corresponding to the frequencies of the nearest non-empty region m’ 
as measured by the Hamming distance between the region vectors Y. 
Ties between equally-near regions are broken first by dominant class 
among all these regions, second by testing the next-nearest regions.  
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where m(l) is the region to which the lth pattern xl of a 
test field x is assigned, and β is a constant of 
proportionality. The final field assignment consists of 
field class E*(x) , where  1( ...,, ,..., Li iiC C C= A
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3. Simulation 

 
The centroids of the six class-and-style 

distributions are shown in Fig. 1. The two styles of 
each class (S1 and S2) are widely separated. The 
centroids of S1 are shown by disks, of S2 by squares. 
We generated 2-D data according   to  this  
configuration. The inter-style distance (distance 
between a square and a disk of the same color) is ds. 
The class-and-style distributions are identical 
Gaussians with covariance matrix ∑ = σ2I. Under this 
assumption, the linear class-pair dichotomizers, shown 
as thick lines in Fig. 1, yield the optimal singlet 
classification rule. 
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Figure 1. Centroids of class-and-style distrib-
utions. A centroid of class B and style S1 is 
denoted by B1. 
Table 1. Region occupancy by class and style 
(ds = 0.6) 

x1

x3

x2

i = 1 (A) i = 2 (B) i = 3 (C) Regions 
m j = 1 j = 2 j = 1 j = 2 j = 1 j = 2 

110 346 13 1 0 1 122 
111 11 338 123 0 0 0 
011 1 144 364 12 2 0 
001 0 2 11 363 119 0 
000 1 1 1 125 370 11 
100 141 2 0 0 8 367 

 
We generated two training sets of 3000 samples 

each (500 samples drawn from each class-and-style 
distribution), with σ = 0.15, ds = 0.6 and σ = 0.15, ds = 
0.8. An SVM with a linear kernel and capacity 
constant  was used for class-pair 
dichotomization. The distribution of training patterns 
in the regions (b

1C =

m
i,j) is shown in Table 1 for ds = 0.6. 

We consider an example with the locations in 
feature  space  of  three  patterns x1, x2, and x3 of a 
field  
x = (x1, x2, x3) as  shown in Fig. 2. Its field label  must 
assume one of the  33 = 27 field labels AAA, AAB, 
AAC,  
…., CCB, CCC. The relative values of the posterior 
probabilities of the field classes can be calculated from 
Equation (1). One relative posterior probability is  

P[ACB | x] = β (1/1500)2 (141 x 370 x 364 + 2 x 11 x 12) 
     = 8.44β, and another is  

  P[CBA | x] = β (1/1500)2 (8 x 1 x 1 + 367 x 125 x 144)  
     = 2.93β 

In fact, if all three patterns have the same style, then 
these are the two highest among the 27 calculated 
values. Therefore the style-constrained field classifier 
will assign the label ACB to this field, whereas a 
singlet classifier would call it CCB, because C is the 
most probable label for x1 considered in isolation. The 
style constraint on the posterior probability 
computations accounts for the superiority of the field 
classifier over a 
 

 
Figure 2. Example of a field x1x2x3 (i.e., a triplet 
of patterns), showing in which region of the 
feature space each of the patterns x1, x2, and x3  

fell. 
style-unaware singlet classifier operating on the same 
dichotomizer outputs. Longer fields, more classes, and 
more dichotomizers favor the style-constrained 
classifier, because they yield more regions near the 
optimal decision boundaries, and therefore finer 
quantization of the underlying distributions.  

We constructed two different style-code classifiers. 
(i) The simple style-code classifier uses only 3 class-
pair dichotomizers (solid lines in Fig. 3), and (ii) the 
extended style-code classifier uses both class-pair and 
class-and-style-pair dichotomizers (both solid and 
dashed lines, altogether 3 + 2 x 3 = 9 dichotomizers, in 
Fig. 3). The simple style-code classifier and extended 
style-code classifier are identical at field length L = 1 
to the class-pair region-frequency classifier and class-
and-style-pair region frequency classifier described in 
[6].  

The distance between the most confused class 
centroids (A1 & C2, BB1 & A2, and C1 & B2B ) is (1 – ds)/2. 
This is within 0.67σ for ds= 0.8 and 1.33σ for ds = 0.6 
respectively, therefore, high error rates are expected. 
The test sets, like the training sets, consisted of 3000 
samples, with 500 samples drawn from each class-and-
style distribution. An SVM with a linear kernel and 
capacity constant 1C =  was used for class-and-style-
pair dichotomization as well.  

The singlet error rates of the two style-code 
classifiers are compared with discrete style classifier 
[1], and the SQDF classifier [2] in Table 2. When 
parametric forms of the underlying class-and-style-
conditional distributions are known, as in this example, 
the optimal discrete style field classifier gives the 
lowest field error rates and, usually, low singlet error 
rates. The benefits of style-code classifiers are greater 
for ds = 0.8, because there are more inter-style 
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Figure 3. Class-pair decision boundaries 
(solid lines) and class-and-style-pair 
boundaries (dashed lines) for simulated 
Gaussian mixtures. 
Table 2: Singlet error rates (%) of four field 
classifiers on simulated data 
                Field 
Length 
Classifier 

L=1 L=2 L=3 L=4 

ds = 0.6  
Discrete style 25.4 18.9 15.0 12.0 
SQDF 26.3 20.3 15.9 12.7 
Simple style-code 25.3 26.4 18.8 18.9 
Extended style-code 25.3 21.4 17.0 14.3 
ds = 0.8  
Discrete style 36.7 32.0 29.0 25.8 
SQDF 40.2 36.7 33.4 30.4 
Simple style-code 36.6 37.3 30.8 31.4 
Extended style-code 37.0 34.3 30.4 28.5 

 
confusions. At ds = 0.8, the extended style-code 
classifier yields lower error rates than the SQDF 
classifier. This is due to the SQDF classifier’s poor 
unimodal approximation of the bimodal class 
distributions. 

A surprising result is that there is no reduction in 
the error rate of the simple style-code classifier as the 
field length is increased from L=1 to L=2, and, from 
L=3 to L=4 (the error rate, in fact, increases). This 
result is due to the symmetrical arrangement of class-
and-style distributions of the simulated data. Fields of 
length L=2 are classified either accurately or both 
singlets are misclassified, whereas the singlet classifier 
misclassifies one singlet in each field. Therefore, there 
is no reduction in the singlet error rate of a simple 
style-code classifier. Such symmetry does not arise 
with odd field lengths as is evident from the reduction 
in the error rates. The extended style-code classifier 
does not suffer from the cancellation effect because of 
finer resolution in the MAP assignments to regions.  

It is worthwhile to note that the training patterns 
did not leave any empty regions in the feature space, 
obviating the need for nearest-neighbor calculations 
during the test phase. Such an idealized scenario is 
unique to the simulated data. For a detailed description 
and results with other parameter settings and nonlinear 
dichotomizers, see [6].  
 
4. Experiments on printed digits 
 
The data consisted of 24,000 6-pt printed digits 
scanned at 200 dpi. Only 5 directional edge features 
were used. The printed digits were evenly distributed 
among five different fonts divided into two styles (serif 
and sans-serif). Therefore, the simple style-code 
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Table 3: Singlet error rates (%) of four field 
classifiers on printed data 

                Field 
Length 
Classifier 

L=1 L=2 L=3 

Discrete style 2.4 1.9 1.5 
SQDF 2.9 2.2 2.0 
Simple style-code 3.0 2.3 2.0 
Extended style-code 2.2 1.6 1.4 

 
classifier required 45 dichotomizers and the extended 
style-code classifier required 135 (45+2×45) 
dichotomizers. The training and test sets consisted of 
12,000 digits each. The dichotomizers were again 
SVMs with a linear kernel and a capacity constant of   
C = 1. 

The error rates of the two style-code classifiers are 
compared with the discrete style and SQDF classifiers 
in Table 3.  The extended style-code classifier yields 
the lowest error rate, with the discrete style classifier a 
close second. The simple style-code classifier performs 
comparably to the SQDF classifier. The classifiers 
assuming the presence of a discrete number of styles in 
the data perform better than the SQDF classifier, even 
though the data may have more than two styles. The 
higher error rates of the simple style-code classifier 
can be attributed to coarser approximation of the 
posterior probabilities.  

The simple style-code classifier does not use style-
specific dichotomizers, but yields considerable 
reduction in the error rate with increase in field length 
on  both  simulated  (only  for  odd  field  lengths)   
and  
printed data. It is easier to understand this phenomenon 
for simulated data. For each one of the three classes, 
only two dichotomizers are needed to uniquely identify 
the class of a test pattern. E.g., to identify a pattern of 
class A, only the decisions of A/B and A/C need be 
known for either majority-voting or frequency-coding 
based classification. However, the additional 
dichotomizer provides the necessary style 
discrimination for style-constrained classification.  

The splitting of classes into style components by 
“third-party” dichotomizers is a corollary of the 
tetrahedral class-and-style arrangement postulated in 
[13]. The reductions in the error rates on printed digits 
render credence to this hypothesis. The datasets 
considered in this paper exhibit style, which is critical 
to the success of any style-constrained classifier.  The 
amount of style in a dataset can be quantified to 
ascertain the suitability of style-constrained 
classification in a given application [14, 15].  
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