
Document Representations

Dorothea Blostein, Richard Zanibbi
School of Computing

Queen's University

Kingston, Ontario, Canada

{blostein, zanibbi}@cs.queensu.ca

George Nagy
Electrical, Computer, Systems Eng.

Rensselaer Polytechnic Institute

Troy, New York, USA

nagy@ecse.rpi.edu

Rob Harrap
Department of Geology

Queen's University

Kingston, Ontario, Canada

harrap@geol.queensu.ca

Abstract

Many document representations are in use. Each representation explicitly encodes different aspects of a

document. External document representations, using standard file formats (such as JPEG, postscript, HTML,

LaTeX), are used to communicate document-data between programs. Internal document representations are used

within document analysis or document production software, to store intermediate results in the transformation from

the input to output document representation. These document representations are central to defining and solving

document analysis problems. Issues that can be investigated include defining equivalence of documents and distance

between documents, mathematically characterizing the mapping between document representations, characterizing the

external information needed to carry out these mappings, and characterizing the differences between the forward and

inverse mappings that occur during document analysis and document production. From our ongoing investigation of

these issues, we present a summary of internal document representations used in the table-recognition literature, and

case studies of external document representations in the domains of circuit diagrams and text documents.

1. Introduction

Document processing systems use a variety of document representations. This is true both for systems that

analyze documents and systems that produce documents. The input to a document analysis system is an appearance-

oriented representation (typically a bitmap), and the output is a more explicit representation of the information that

is supposed to be conveyed by the document (using a domain-specific file format such as LaTeX for mathematics or

PSpice schematics for circuits). Document production systems perform a translation in the other direction. In

addition to these external document representations, which are stored in files, document-processing software

commonly uses additional, intermediate document representations to bridge the gap between the input and output

representations. We call these internal document representations.

1.1 Issues

An understanding of document representations is fundamental to document image analysis. Issues that can be

investigated include the following.

• Define equivalence of documents, and distance between documents, for a variety of document representations.

This allows a formal problem statement for document analysis and document production: the input is a

document in one representation, and the output is an equivalent document in a different representation. An

error metric is provided by the distance between the ideal and actual output files. As discussed below,

similarity measures are difficult to define. The worth of a similarity metric can be assessed based on its

utility for a given task, or by measuring its fidelity to human behavior [Resn99].

• Mathematically characterize the mappings between document representations. Are the mappings one-to-one or

one-to-many? Are they invertible? If the mappings are not invertible, characterize the information that is lost.

We are considering two approaches to mathematically characterize representations: (1) a communications

perspective, using an information-theoretic characterization, and (2) a compiler perspective, using grammatical

techniques.

• Characterize the amount and type of external information that is needed in order to transform from one

document representation to another. This provides one measure of the complexity of the mapping.

• Characterize the differences between the forward and inverse mappings that occur during document analysis and

document production. Document analysis must address issues of noise and uncertainty, but these issues are of

little concern during document production. On the other hand, document production must address issues of

readability and aesthetics, and these issues are of little concern during document analysis. Thus, there are

significant differences between the external information (the domain model) that is used in document analysis

software compared to document production software. As a result, there can be significant differences in the

internal document representations that are used.

• Characterize the generality versus domain-specificity of a document representation. A bitmap is very general:

the same file type can represent images from any document domain. Representations such as LaTeX or Spice

are more domain-specific.

A variety of factors make these issues difficult to investigate. One problem is that document analysis always

involves interpretation. The human reader (or computer software) interprets the document in light of his/her/its

goals, beliefs, and judgment. Variations in terminology also cause difficulty. Terms such as layout, context,

abstraction, syntax and semantics are widely used, but the meaning of these terms is not standardized, so their use

easily leads to disagreements and confusion. The great variety of documents and document notations further

complicates the investigation.

Complex problems arise in attempting to define document equivalence. Incompatibilities can result from

subtle differences in assumptions that underlie the data representation. For example, the Geographic Information

Systems ARC/INFO and MapInfo differ in their definition of a region (polygon) object [Gahe99]. A polygon in

ARC/INFO is defined as part of a coverage (assuring topological closure, boundary-coincidence between neighboring

objects, and absence of overlap of object interiors), whereas a polygon in MapInfo has no such constraints (objects

may overlap, and common boundaries are not recognized). Gahegan concludes that an exchange format based around

geometry and associated attributes is not sufficiently rich to support informed use of data. The geographic model

must be included because of subtle differences in the meaning of data that are not apparent when considering their

geometry alone. In moving data from one GIS to another, mismatches in the underlying data models could be

reported as warnings to the user.

Distance between documents is at least as difficult to define as equivalence of documents. Distance measures

used in document image analysis include edit distance [KNRN95, PhCh99], Hamming distance, and Hausdorff

metric. These distance measures are primarily aimed at characterizing the amount of noise or recognition error. For

evaluation of document production systems, distance measures must reflect aesthetic issues as well. For example, a

circuit diagram can be transformed to two document images, one with a readable layout and the other with a

spaghetti-like layout. These two document images both correctly depict the structure of the circuit diagram, but they

differ markedly in their "aesthetic appeal". Aesthetic criteria used for graph layout could provide a starting point.

These include minimizing edge crossings, minimizing drawing area or aspect ratio of the drawing, minimizing total

edge length or maximum edge length or variance of edge length, minimizing the number of edge bends, maximizing

the smallest angle between two edges incident on the same vertex, and displaying symmetry [DETT99].

1.2 Levels of Representation

Many publications about Document Image Analysis describe levels of document representation. Here are a few

examples. Srihari represents postal addresses at the image level, feature level, character level, word level, phrase

level, sentence level, paragraph level, and document level [Srih93]. Sennhauser's blackboard system for text analysis

contains hypotheses at the page, block, chunk, and symbol level [Senn94]. Vaxivière and Tombre use one level for

each phase in engineering drawing analysis: lines and blocks, shafts, symmetric entities, functional setups [VaTo94].

Maderlechner and Mayer define a four-level model for maps, consisting of levels for image, image graph, graphics

and text, and semantic objects [MaMa94]. Du et al. discuss a contextual architecture, for handling contextual

constraints in a uniform way while performing pattern recognition tasks that require intermediate levels of

abstraction [DDLA97].

Many authors (including ourselves) have used the phrase levels of abstraction to refer to these internal

document representations. However, it is difficult to define what abstraction means in the context of document

representations. One of the traditional definitions of abstraction is as follows.

Abstraction (from ab: away from, and trahere: to pull) withdrawing or removing some aspect of an

object or exemplar, to focus on the rest.

Using this definition, a bitmap image of mathematical notation is not “less abstract” than the corresponding LaTeX

file. Each of these representations contains information that is not present in the other. Both can be thought of as

abstractions of a Parent Document, which contains complete information about the document, including appearance,

structure, and interpretation. (Unambiguously defining the Parent Document is difficult because the mapping

between bitmap and LaTeX is not one to one. A given bitmap corresponds to many LaTeX files, and a given LaTeX

file corresponds to many bitmap files.) We avoid the term abstraction in the rest of this document, since we are not

able to define it satisfactorily. For the future, examination of the well-established term abstract data type may help

establish a definition. The definition should provide a clear basis for testing the relative abstraction levels of two

document representations, with the answer that both are at the same level, or that one is at a lower level than the

other, or that the ranking is undefined.

The use of intermediate levels of representation is widespread in all types of image analysis, not just document

image analysis. For example, satellite images are treated at the raw pixel level, two feature levels (segmentation, and

clustering/classification), and semantic level, in [BeCL97]. Truvé describes an approach to computational vision

which is based on multiple levels of interpretation. Transitions from one level to another use three stages: parsing

(which assigns labels to features and groups of features), interpreting, and pruning [Truv90]. Levels of

representation are also used in document production systems. For example, eleven passes for producing music

notation are described in [BlHa94]; each of these passes produces an intermediate representation.

In studying document representations, we can focus on internal representations (Section 2) or external

representations (Section 3). Internal document representations are described in publications, but it is difficult to

collect sample documents that use these representations. In the case of external document representations, sample

documents are readily available. However, data must be interpreted cautiously, because a given file format may

allow a variety of data to be stored. For example, a postscript file typically contains symbol information such as

“character ‘A’ at (x, y)” and “line of thickness B with endpoints (x1, y1) and (x2, y2)”. However, a postscript file can

also directly include bitmap images. Section 3 has further discussion of the study of files in an effort to characterize

external document representations.

2. Internal Document Representations

As described in the literature, existing systems for document recognition and document production use a great

variety of data structures and computational techniques. In many cases, the control structure of a document analysis

system does not provide a clear reflection of the level-oriented language definition that is guiding analysis. Rather,

the control structure reflects the fact that document analysis involves many shifts of attention from one level of

representation to another. For example, contextual information at one level may guide analysis decisions at another

level. Or, the presence of certain configurations at one level may cause the formation of analysis hypotheses at

another level. Parts of the document may be fully recognized at a time when other parts have been only partially

recognized. Our goal is to characterize the levels of representation used in a variety of document domains, with

minimal dependence on the details of particular systems for recognizing or producing documents. We begin with

tables and table-recognition systems.

Table 1 introduces a model of document structure [ZaBC03]. This model has been useful in analyzing the

table-recognition literature, and can perhaps be adapted to other document-recognition or document-production

domains. In Table 1, each level in the document structure is characterized by a set of objects, where each object has

four inter-related types of content, which describe the logical structure and physical structure of a document.

Logical Structure

• Object Type: type of data represented by the object, references between objects

• Object Syntax: composition of objects to form this object; spatial relations among objects.

Physical Structure

• Object Geometry: location of objects

• Object Formatting: formatting attributes and spacing of objects.

For a related discussion, see [Hand99]. In using Table 1 for describing the table-recognition literature, the Primitive

Region level consists of four types of objects: Table, Block, Cell and Cell Content. Columns and rows are

considered to be different types of Block object [ZaBC03].

A goal of the model in Table 1 is to characterize levels of representation, independently of the control flow of a

particular document processing system. If levels of representation can be characterized independently of control flow,

then levels can be used to precisely define the task that should be accomplished by document processing software.

There already are various models of levels which integrate control flow into the model. For example, Maderlechner

and Mayer uses four levels in a model of large-scale maps [MaMa94]. The four levels are image, image graph,

graphics and text, and semantic objects. Each level consists of objects, operations to be performed on the objects,

and relations between the objects. In addition, some operations and relations cross between levels. The control

strategy contains a mixture of top-down and bottom-up operations.

Table 1 Levels of Representation in Documents

Object type Object Syntax Object Geometry Object Formatting

Data Array level
Pixel map or Character Map
(e.g. Character Maps are used for
email documents)

Matrix of pixel or character values.
A pixel-map object is composed of
pixel sub-objects.

Polygon describing
shape of the pixel-
map or character-
map object.

None.

Primitive level
Connected component, labeled with
character or symbol class

Set of adjacent data array cells. E.g.
a connected component of pixels, or
a connected set of delimiter
characters in an email document.

Polygon (possibly
with holes)
describing shape of
object.

Font and symbol
attributes (e.g. font
family, font size,
style, colour; line
thickness)

Lexical level
Lexical object types include
number, right-arrow, dotted line

The lexical object is a composition
of one or more primitives (.e.g ≤, '-
>', dotted lines)

Polygon or
parametric shape.

Spacing of primitives.
Font and symbol
attributes (e.g. family,
size, style, colour)

Primitive Region level
Primitive Region types include
line, paragraph, block of text,
table, math expression, image,
chart, vector drawing.

References within, outside region.

Composition of lexical objects and
primitive regions into a primitive
region (such as a paragraph of text,
or a table).
Spatial relations on lexical objects
and primitive regions.

Polygon or
parametric shape.

Spacing of lexical
objects and primitive
regions.

Functional Region level
Functional Region types include
figure, table and associated text,
section heading, section, offset
image.

References between primitive
regions.

Composition of functional and
primitive regions into a functional
region (defining the reading order of
these regions).

Spatial relations on primitive and
functional regions.

Polygon or
parametric shape.

Spacing of primitive
and functional
regions.

Page level
Page types include title page, body
page.

References between functional
regions.

Composition of functional regions
into a page (defining the reading
order of functional regions).

Spatial relations on functional
regions.

Polygon or
parametric shape.

Spacing of functional
regions.

Document level
Document types include technical
article, book.

References between pages

Set of pages.

Page ordering.

None None

Corpus level
Corpus type (e.g. table recognition
literature).

References between documents.

Set of documents.

Document ordering (e.g.
alphabetical by title)

None None

Criteria are needed for evaluating a proposed characterization of levels. The model in Table 1 has proven useful

in summarizing the table-recognition literature, but it is difficult to formally justify the correctness or effectiveness

of a model such as this. An open question is whether the levels defined in Table 1 (or some other set of levels)

could be used to describe both document analysis and document production. For example, a system for producing

music notation [BlHa94] uses internal document representations that do not correspond well to the levels in Table 1.

Perhaps new, better software for producing music notation could be written, using levels such as those in Table 1.

However, production of music notation involves complex decisions (choose stem directions, choose beaming

boundaries, determine note spacing) that do not arise in analysis of music notation. Conversely, analysis of music

notation involves complex issues (dealing with noise, segmenting overlapping symbols) which do not arise in

production of music notation. Therefore, it is an open question whether the same levels of representation can or

should be used for both document analysis and document production.

3. External Document Representations

External document representations use standardized file formats such as JPEG, postscript, HTML, LaTeX, and

PSpice schematic. Files are readily-available artifacts, which can be used to study document representations. The

existence of different kinds of files to represent essentially the same information in different forms is a visible

manifestation of “levels of representation”. One of our goals is to characterize or define the differences between these

levels. Meaning is not an intrinsic property of a document, but something that depends on the program or human

reading the document. Thus, a LaTeX file does not intrinsically have more meaning than the postscript file derived

from it, but it is obvious that different tools are required to extract that meaning from the two files.

We propose to study the use of external document representations in practical situations, characterizing the

quantity and type of data that is stored. Care must be taken to allow for the variety of data that can be stored using a

given file format. For example, a postscript file can include bitmap images within it. Thus, a program that

translates from JPEG to postscript could be merely repackaging the same pixel data, or it could be performing

character and line recognition.

3.1 Units of Information

We propose to gather statistics about files used to store sample documents. For a math document, these files

might include a bitmap file, a postscript file, a LaTeX file and a Maple file. Each file contains units of information,

where a unit can be an object, a relationship between other units, or a parameter (with a scope indicating which other

units are affected). Each unit is explicitly represented by some bits in the file. Implicit relationships do not count

as units. For example, a bitmap file could be characterized as containing units that are objects (pixels) and units that

are parameters ("number of rows", "number of columns", "number of bits of colour"). Implicit relations between

pixels ("this pixel is a neighbor of that pixel") do not count as units. Clearly, a lot of variability will occur in these

measurements. For example, the number of pixels in a bitmap depends greatly on the spatial resolution. Much work

will be required to define and measure the units of information for a real document. Spice Schematics, for instance,

generate about half a dozen files, some ASCII and some binary, for even the simplest circuit. Preliminary

measurements are discussed in the case studies below.

3.2 Obtaining Files Representing a Document

The first step in studying a sample document is to collect files that contain different representations of the

document. At least two methods can be used. The first method begins with a scanned document image, and applies

document image analysis software to produce files that more explicitly encode the information content of the

document. The second method begins with manual entry of the information content of a document; document

production software is used to produce files that explicitly encode document appearance (e.g. postscript and bitmap

files). We plan to use sample documents from a variety of domains, including formatted text, math notation, music

notation, maps, and engineering drawings. For example, a sample document in the music domain is Beethoven's

Harp String Quartet. Method one generates a set of files for this sample document, by scanning a published edition

of the string quartet. These scanned images are processed by music-notation analysis software (e.g. SmartScore

[SS]), to produce other document representations, such as MIDI or NIFF (Notation Interchange File Format) or

other formats discussed in [Self97]. Method two generates a set of files for this sample document by using software

for producing music notation. Many software packages are on the market. If Lime is used [BlHa94], the user enters

the notes for the String Quartet by playing on a MIDI keyboard. This information (sequences of notes, with pitch

and duration) is stored in a Tilia [HaBl93] file. Other document representations (NIFF, postscript, bitmap) are

produced automatically. Method two could be applied again, this time using software such as MusicTeX. In this

case, the user types the MusicTeX source file for the string quartet. Then other document representations (postscript,

bitmap) are produced automatically. In this manner, a variety of files, all representing the Harp String Quartet, are

produced. We have not yet undertaken this study, but we believe that it will be interesting to compare the

characteristics of files produced by document-analysis software to files produced by document-production software.

3.3 Case Study: Unformatted and Formatted Text Files

We study the representation of natural language text documents, such as novels or business letters. Although

some of the representations for text can also accommodate tables, mathematical notation, line drawings, and even

photographic images, here we restrict ourselves to plain text. We have not yet attempted to measure units of

information, but begin with file sizes.

We consider specifically the representation of a 45-line page of text, with each line containing 60 characters

(including blanks). A compact representation (which, however, could be compressed further due to the repetitive

nature of the text) is a plain ASCII (.txt, .asc, .ans) file of 2,462 eight-bit bytes. At the other end, a direct bilevel

300 dpi representation, with eight bits packed to a byte, requires 1,051,875 bytes. The “300 mono” bmp file

produced by GhostView is 4,224,062 bytes. Bitmaps can, of course, be compressed: for example, a CCITT G4

(digital fax) Tagged Image Format (tif) file is 130,00 bytes, and a “300 mono” GhostView PNG file is only 51,775

bytes.

PostScript can make use of standard font description files, but it can also encode the bitmaps directly. For the

page above, the former requires 30,000 bytes, the latter 1.2 million bytes. The character-coded version, using

standard font description files, provides better support for searchable text.

Adobe PDF and PostScript are essentially equivalent representations, and are inter-convertible. The major

difference is that PDF files are encoded with a lossless compression algorithm. The size of the PDF file depends on

the algorithm: here PDFWriter in MS-Word produced a 1600 byte file, while the Adobe PDF-Writer for Windows

yielded 3200 bytes. Adobe Distiller, which is generally believed to preserve typeface fidelity, produced 9000 bytes.

Because compression increases with the length of the text, the size of PDF files increases only sublinearly with the

number of characters. There is, however, a fixed overhead of a few thousand bytes. Differences between the 600dpi

printed versions of the various PDF files are small but noticeable. Character-encoded PDF files are searchable and

annotatable. We did not consider annotations.

PostScript and PDF preserve format, but not explicitly. It is not, for instance, possible to search them for a

specific format, or to copy a format to other files. MS-Word files maintain formats explicitly, are backward

compatible with earlier versions of MS-Word, and also preserve some author preferences. They are therefore much

larger. The .doc version of the above file was 24,000 bytes. Most of the essential information was also preserved in

a 6700 byte Rich Text Format (.rtf) file, which was originally designed to be the lingua franca of word processors.

Tex and DVI depend, like PS and PDF, on externally stored typeface files. The file sizes are comparable to

PDF. The portability engendered by ASCII encoding does not affect their level of representation, which is the same

as that of other searchable and modifiable text representations.

The Parent Document, a complete, ideal representation of such a text document might consist of:

1. sentence and higher-level relations

2. interword syntax

3. lexicon of valid words

4. string of words

5. layout (formatting)

6. font libraries

The document representations described above contain various subsets of the information in the Parent Document.

For example, postscript and PDF files contain items 4, 5, and 6, whereas a plain ASCII representation contains only

item 4. The plain ASCII representation efficiently serves the needs of programs that do not make use of formatting

information. These include most programs for automated information retrieval, text categorization, summarization

and statistical text analysis.

3.4 Case Study: Circuit Files

We show several different representations of a simple, two-resistor circuit. Figure 1 shows the textual

description of the connectivity, called a netlist. A circuit analysis program can check this file and, if no errors are

found, produce a file that describes the behavior of the circuit, i.e., current and voltages at various points. The circuit

file can include additional directives, such as calls for transient analysis, thermal analysis, or parametric plots. But

the basic units of the netlist document are clearly element type, element connectivity, and element value. The netlist

provides only circuit topology. The geometric properties of a circuit diagram are preserved in a textual schematics

file, parts of which are shown in Figure 2. This schematics file can be used to generate the diagram shown in Figure

3. The schematics file contains the coordinates of every vertex of the circuit graph and has provisions for the

footprints of component packages, pointers to other files with detailed behavioral component models, both lateral

and hierarchical relationships (ports, buses) with other functional circuits-blocks described in other files, as well as

numerous presentation layer details. Our example targets discrete components on a printed circuit board only because

we are less familiar with integrated circuit specifications.

The schematics file (Figure 2) can be used to generate a netlist. The netlist generated from the schematics

(Figure 1b) is equivalent, but not identical, to one created from scratch (Figure 1a), and either suffices for

approximate electrical analysis of the circuit. Combined with component packaging information from other files, the

netlist also allows downstream programs to configure a circuit board for physical realization. The output of the board

layout program can then be analyzed for stray capacitances and inductive couplings, which depend on the actual

geometry rather than the layout used in the circuit diagram of Figure 3. In actual practice, the analysis of even a

simple physical circuit requires a dozen different types of files.

Example of a PSpice circuit file
V 0 2 dc 12
R1 0 1 10
R2 1 2 20
.end

(a)

Schematics Netlist
R_R1 $N_0002 $N_0001 10
R_R2 $N_0001 0 20
V_V1 $N_0002 0 12V

(b)

Figure 1 A PSpice circuit (.cir) file with three elements: a 12V voltage source, a 10ohm resistor,

and a 20ohm resistor. (a) Manually entered circuit file. (b) Netlist created by the Schematics program.

*version 9.1 671166557
u 8
R? 3
V? 2
@libraries
@analysis
@targets
@attributes
@translators
a 0 u 13 0 0 0 hln 100 PCBOARDS=PCB
a 0 u 13 0 0 0 hln 100 PSPICE=PSPICE
a 0 u 13 0 0 0 hln 100 XILINX=XILINX
@setup
unconnectedPins 0
connectViaLabel 0
connectViaLocalLabels 0
NoStim4ExtIFPortsWarnings 1
AutoGenStim4ExtIFPorts 1
@index
pageloc 1 0 1184
@status
c 103:04:28:19:20:11;1054164011
*page 1 0 970 720 iA
@ports
port 7 GND_EARTH 320 215 h

@parts
part 2 r 320 175 h
a 0 sp 0 0 0 10 hlb 100 PART=r
a 0 s 0:13 0 0 0 hln 100 PKGTYPE=RC05

a 0 s 0:13 0 0 0 hln 100 GATE=
a 0 a 0:13 0 0 0 hln 100 PKGREF=R1
a 0 ap 9 0 9 4 hln 100 REFDES=R1
a 0 u 13 0 21 3 hln 100 VALUE=10ÉÉÉÉÉÉ.

part 3 r 360 175 d

part 1 titleblk 970 720 h
a 1 s 13 0 350 10 hcn 100 PAGESIZE=A
a 1 s 13 0 180 60 hcn 100 PAGETITLE=
a 1 s 13 0 300 95 hrn 100 PAGENO=1
a 1 s 13 0 340 95 hrn 100 PAGECOUNT=1

@conn
w 6
s 360 215 320 215 5
@junction
j 360 175
+ p 3 1
+ p 2 2 ÉÉÉÉÉÉ..
+ s 7
+ w 6

@attributes
a 0 s 0:13 0 0 0 hln 100 PAGETITLE=
a 0 s 0:13 0 0 0 hln 100 PAGENO=1
a 0 s 0:13 0 0 0 hln 100 PAGESIZE=A
a 0 s 0:13 0 0 0 hln 100 PAGECOUNT=1

@graphics

Figure 2 A portion of the PSpice schematics file. A circuit drawing created from this file is shown in Figure 3.

Figure 3 Display created from the PSpice schematics (.sch) file in Figure 2.

The Parent Document, a complete, ideal representation of a circuit, might consist of:

1. circuit topology

2. models of discrete components (voltage sources, resistors, transistors)

3. models of distributed components (physical and electrical properties of "wiring")

4. manipulable (vector-graphics) representation of the circuit diagram

5. symbol library

A netlist file contains items 1 and 2. A postscript or PDF file contains items 4 and 5. The transformation from

bitmap to netlist is considered Document Image Analysis. The (interactive) transformation from netlist to bitmap is

Document Production. Both transformations can use internal document representations, and the transformations can

be carried out without constructing the entire Parent Document.

4. Summary and Conclusion

Document representations are central to defining and solving document analysis problems. Issues that can be

investigated include defining equivalence of documents and distance between documents, mathematically

characterizing the mapping between document representations, characterizing the external information needed to carry

out these mappings, and characterizing the differences between the forward and inverse mappings that occur during

document analysis and document production.

We have presented a summary of internal representations, useful for describing the literature in table

recognition, as well as case studies of external document representations used for circuit-diagram documents and text

documents. This is ongoing work.

References

[BeCL97] L. Bergman, V. Castelli, C.-S. Li, “Progressive Content-Based Retrieval from Satellite Image Archives,” D-Lib
Magazine, October 1997, www.dlib.org/dlib/october97/ibm/10li.html

[BlHa94] D. Blostein, L. Haken, “The Lime Music Editor: A Diagram Editor Involving Complex Translations,” Software
– Practice and Experience, Vol. 24, No. 3, March 1994, pp. 289–306.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, I. Tollis, Graph Drawing: Algorithms for the Visualization of Graphs,
Prentice Hall, 1999.

[DDLA97] L. Du, A. Downton, S. Luca, B. Al-Badr, “Generalized Contextual Recognition of Hand-Printed Documents Using
Semantic Trees with Lazy Evaluation,” Fourth International Conf. on Document Analysis and Recognition,
Ulm, Germany, August, 1997, pp. 238–242.

[Gahe99] M. Gahegan, “Characterizing the Semantic Content of Geographic Data, Models, and Systems,” Chapter 6 in
Interoperating Geographic Information Systems, Goodchild, Egenhofer, Fegeas, Kottman, Eds., Kluwer, 1999,
pp. 71-83.

[HaBl93] L. Haken, D. Blostein, “The Tilia Music Representation: Extensibility, Abstraction, and Notation Contexts for
the Lime Music Editor,” Computer Music Journal, Vol. 17, No. 3, 1993, pp. 43–58.

[Hand99] J. Handley, Electronic Imaging Technology, Chapter 8, SPIE Optical engineering Press, Bellingham
Washington, 1999, pp. 289-316.

[KNRN95] J. Kanai, G. Nagy, S.V. Rice, T.A. Nartker, Automated Evaluation of OCR Zoning, IEEE Trans. Pattern Analysis
and Machine Intelligence, Vol.17, No. 1, Jan. 1995, pp. 86-90.

[MaMa94] G. Maderlechner, H. Mayer, “Automated Acquisition of Geographic Information from Scanned Maps for GIS
using Frames and Semantic Networks,” 12th Int’l Conf. on Pattern Recognition, Vol. 2, Jerusalem, Oct. 1994,
pp. 361–363.

[PhCh99] I. Phillips, A. Chhabra, “Empirical Performance Evaluation of Graphics Recognition Systems,” IEEE Trans.
Pattern Analysis and Machine Intelligence, Vol. 21, No. 9, Sept. 1999, pp. 849-870.

[Resn99] P. Resnik, “Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to
Problems of Ambiguity in Natural Language,” J. Artificial Intelligence Research, Vol. 1, July 1999, pp.
95–130.

[Self97] E. Selfridge-Field, Beyond MIDI – The Handbook of Musical Codes, MIT Press, 1997.

[Senn94] R. Sennhauser, “Integration of Contextual Knowledge Sources Into a Blackboard-based Text Recognition
System,” IAPR Workshop on Document Analysis Systems, Kaiserslautern, Germany, Oct. 1994, pp. 211-228.

[SS] SmartScore software, at http://news.harmony-central.com/Newp/1999/SmartScore.html

[Srih93] S. Srihari, “From Pixels to Paragraphs: the Use of Contextual Models in Text Recognition,” Proc. Second Intl.
Conf. Document Analysis and Recognition, Tsukuba, Japan, Oct. 1993, pp. 416-423.

 [Truv90] S. Truvé, “Image Interpretation Using Multi-Relational Grammars,” Proc. Third International Conference on
Computer Vision, Dec. 1990, pp. 146–155.

[VaTo94] P. Vaxivière, K. Tombre, “Knowledge Organization and Interpretation Process in Engineering Drawing
Interpretation,” Proc. IAPR Workshop on Document Analysis Systems, Kaiserslautern, Germany, Oct. 1994,
pp. 313-321.

[ZaBC03] R. Zanibbi, D. Blostein, J. R. Cordy, “Recognizing Tables in Documents,” submitted for publication, May
2003.

