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and V, with value in (1;. ., M}. The local performance of S,, is 
measuredby&, = P{a,,(X) # YlV,, X= x},whiletheglobal 
performance by L,, = E( L,( X) IV,). L*(x) and L* denote the 
local Bayes’ probability of error at xRd and the Bayes’ probabil- 
ity of error, respectively. 

Letp,(x) = E(I(,=,)IX= x) and letp,,(x) be its estimate on 
the data (X1, Zlr,f,,>,.. .,(X,, I y =,,) derived from m,. The 
recursive computation of pin may iti e  carried out by 

P,o(X) = I,o(x) = 0 

r,,,(x) = I;,-I(x) + K 

.(+,=il -pi,,(x))K( 3). 
Using q,,, we obtain a classification rule which classifies every X 
as commg from any class which maximizes p,,(X). Reasoning 
similarly as in [7] we conclude from Theorem 1 and 2 the next 
two theorems concerning asymptotic optimality of the rule. 

Theorem 3: If (l), (2), (3) are satisfied then 

L,,(x) -+ L*(x) in probability as n + CO 

for almost all x(p). 

If in addition (4), (5) hold then 

L,,(x) -+ L*(x) almost surely as n -+ 00 

foralmostallx(p). 

Theorem 4: Under the same assumptions as in Theorem 3 we 
obtain, respectively, 

L,, + L* in probability 

and 

L, -+ L* almost surely as n + cc. 

APPENDIX 

Proof of Lemma 2: Let us consider the quotient 

G P-ll~~~n(hd(i)/a(s,.rh(i))). . . 
This lemma follows from (2) and the fact that hd/p(Sx,rh) 
possesses a finite limit as h -+ 0 for almost all x(p) (see Devroye 
[3, lemma 2.21). 0  

Proof of Lemma 3: Let us transform expression (7) as fol- 
lows: 

c2H(0) F  yn( i hd(i),/ i h”(i)) ml 
n=l r=l i=l 

. (h”(n)/( ilhd(i))2) j (10) 
where 

y,, =  h-d(n)EK +j$ 
i 1  

If p  is absolutely continuous with density g then yli + g(x) as 

n --f cc for almost all x(p) (see Wheeden and Zygmund [9, th. 
9.131). By Kronecker’s lemma and by (9) the series in (10) is 
convergent for almost all x(p). Thus Theorem 2 follows. 

Next, reasoning similarly as in the proof of Theorem 2, (7) may 
be transformed for almost all x(p) to the form 

where c(x) is a  positive constant independent of n, because by 
(3) there exist positive numbers c3, cd, rl, r, such that 

If p  is purely atomic the by assumption (1) the first term in 
brackets converges to 1 for every x E {x: p({ x}) > 0) as n 4 00. 
By successive application of (8) and (9) Theorem 2 follows. 0 
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Decision Tree Design Using a  Probabilistic Mode l 
RICHARD G. CASEY AND GEORGE NAGY, SENIOR MEMBER,  IEEE 

Ahstruct-A sequential optical characier recognit ion algorithm, ideally 
suiied for implementation by  means  of microprocessors with limited stor- 
age  capabilities, is formulated in terms of a  binary decision tree. Upper  
bounds  on  the recognit ion performance are der ived in terms of the stability 
of the digitized picture elements. The  design process is descr ibed in detail. 
The  algorithm is tested on  single-font typewlitten characters and  the 
experimental and  theoretical results are compared.  

I. INTRODUCTION 

When first introduced in the 1960’s, optical character recogni- 
tion (OCR) was pursued primarily as a high-throughput means of 
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data entry using costly, special purpose hardware. Speeds on the 
order of thousands of characters per second were needed in order 
to justify the expense of an OCR system. Indeed, a rule of thumb 
[l] was that an automatic entry device had to displace five to ten 
key-punches to be economically favorable. 

The economic criteria have changed with the marked reduction 
in the costs of electronic technology. Documents can now be 
scanned by a solid-state sensor priced several orders of magni- 
tude below a CRT-based transducer. Inexpensive logic chips can 
perform the necessary image-processing functions. The theme of 
simplicity and low cost can be maintained throughout the device 
if the classification algorithms are implemented in a micro- 
processor. These elements are realized in several hand-held char- 
acter recognition units for restricted symbol sets that have ap- 
peared on the market bearing price tags in the low thousands of 
dollars. OCR, it seems, may become an interactive tool, perhaps 
finding its way even into the home terminal environment. 

The most frequently used commercial recognition techniques 
do not seem readily adaptable to the construction of a CPU-based 
OCR device. Template comparison [2] or feature detection [3] 
schemes require numerous special logic circuits operating in 
parallel in order to achieve even moderate speeds. In a high-speed 
data entry system the expense of this parallelism can be justified, 
and indeed it does not constitute a disproportionate part of the 
total cost of such a machine. In a low-cost device, particularly if a 
serial processor is to implement the logic functions, less complex 
recognition techniques are called for. 

A classification method that is well suited to serial implemen- 
tation is the decision tree. Usually based on pattern features, it 
was one of the earliest techniques used for the assignment of 
identities in a recognition system [4] and remains a subject of 
continuing interest [5]. 

In the following sections, the application of decision trees to 
character recognition will be explored. The discussion will be 
restricted to the use of trees operating directly on the individual 
picture elements (or pixels) of a scanned character, rather than on 
feature inputs defined on combinations of pixels. However, the 
methods developed are also applicable to the latter case. 

The plan of exposition is as follows. The principles and imple- 
mentation of a decision tree are presented. The automatic design 
of decision tree logic from sample scanned characters is then 
described. A design technique based on a probability model for 
the frequency of black occurrences in the various pixel positions 
is developed. An analytical model is developed in order to obtain 
bounds on the performance of a tree as a function of its size and 
the reliability of the character pixels. Such a model indicates the 
nature of the data environment in which decision trees can be 
expected to yield low error rates. Recognition experiments with 
single-font typewritten characters serve to validate the design 
scheme. 

II. A DECISION TREE USING INDIVIDUALPIXELVALUES 

The techniques for scanning a line of text into a binary image, 
for segmenting it into individual character frames, and for reg- 
istering the character patterns in standardized positions in pre- 
paration for a classification decision, have been implemented in 
the course of the present investigation, but will not be elaborated 
here. The reader is referred to the literature [6], [7], [S] for a 
general understanding of the OCR process. 

It is presumed, then, that a succession of two-dimensional 
binary patterns each representing a single registered character, is 
presented to the OCR decision logic for identification, The 
procedure for classifying a pattern may be represented by a tree 
graph, as in the example of Fig. 1. 

The decision tree calls for determination of the values of a 
sequence of picture elements in the scanned character array. The 
first pixel to be tested is predetermined. It corresponds to the 
roqt node of Fig. 1. After the first pixel and in all succeeding 
steps, the next pixel to be examined depends on the values of the 

Fig. 1. Decision tree. Interior nodes, shown as circles, indicate which pixel is 
being tested. Leaves are shown as squares, with the asterisk indicating no 
decision (reject). 

TABLE1 
TREEOFFIG.~ REPRESENTEDASATABLE'  

Addrnr PSI No. Brand? on 'w' Branch on 'B 

1 89 2 3 
2 37 4 6 
3 24 -3 8 
4 12 7 -1 
8 92 0 8 
8 71 -2 9 
7 30 -3 0 
8 24 -3 0 
9 29 -2 lo- 

10 48 -1 0 

‘Negative integers indicate leaves: for instance, -2 in the sixth row 
means that if pixel 71 is white, the character is classified as “B”. Zeros 
stand for reject nodes. 

pixels previously queried. Thus, in Fig. 1, each node represents a 
pixel test, and from any node one of two branches may be taken, 
depending on whether the pixel is observed to be white or black. 
(In this correspondence pixel values may also be indicated by “w” or “,,,$ 

The branch from a node may also lead to a “leaf,” or decision 
node. When a leaf node is reached the pixel tests cease and the 
input pattern is given the label associated with the leaf. Permissi- 
ble labels include not only the symbols in the alphabet to be read, 
but also a special “reject” code indicating that the pattern did 
not appear to fit any category well enough to be identified. 
Rejects will ordinarily be recognized either visually, or else by a 
more complex default decision procedure. 

The classification of a pattern by a decision tree thus consists 
of following a path through the tree from the root to a leaf. A 
given pixel may appear more than once in the tree, but logically 
should occur at most once along any path. The tree is not 
necessarily balanced, and indeed will ordinarily be highly unbal- 
anced, as will be seen. This is because a short path may permit 
the reliable identification of certain patterns, whereas with other 
patterns a much greater number of pixels must be examined in 
order to classify them with the same expected accuracy. In 
general, however, a decision will be made after testing only a 
small fraction of the total number of pixels in a character. 

The implementation of a decision tree in a general purpose 
processor may be achieved by means of a table (Table I) contain- 
ing three columns. Each row of Table I corresponds to a node of 
the decision tree. The first row defines the root node. Column 
number 1 contains the position (converted to a single integer) of 
the pixel to be examined at the associated node. Columns 2 and 3 
contain the branch addresses to other rows in the event that the 
pixel tested is black or white, respectively. A leaf, or decision, 
node is denoted by a special convention, such as the negative of 
the class number (e.g., Table I). 

The algorithm for recognizing a pattern by means of a decision 
tree has a simple iterative structure, as the preceding description 
indicates. If the table is located in main storage, and if the 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT 30, NO. 1, JANUARY 1984  95  

processor has the appropriate indexing capability and instruction 
set, then very few processor cycles will be needed in order to 
implement the inner loop. Since only a small subset of the 
pattern field is examined prior to a decision, the tree method is 
ordinarily much faster than, say, a  template matching algorithm 
against idealized reference patterns, in which euev pixel of a  
scanned character would be compared to the corresponding pixel 
of each stored template. 

Background- Decision Tree Design 
There are two schools of thought on what may perhaps be 

called the “philosophy” of designing OCR decision logic. Propo- 
nents of interactive design hold that it is the human who knows 
the features and rules that identify character classes, and that a  
means must be provided to express and make use of this under- 
standing. Typically, interactive specification is carried out by 
successive modification of an initial design and optimization of 
performance on a large collection of sample characters. The 
designer attempts to understand and correct the causes of error 
while maintaining accuracy on correctly identified inputs [9]. 

Other researchers have maintained that recognition is a statisti- 
cal matter to be solved by abstracting information from sample 
patterns. Visual analysis of the data base is deemed inefficient 
and unappetizing; the task of the designer is to specify the 
information to be collected. A computer is programmed to pro- 
cess the sample patterns and is further instructed how to use the 
data obtained in order to construct an appropriate classification 
scheme. An analytical model often governs the design process 
~W, W I. 

In this correspondence the automatic construction of decision 
trees is described. Since a decision tree is an example of a  
sequential process, a book by Fu [12] is pertinent to the general 
problem area. The presentation here, however, is intended to be 
self-contained and particular to the OCR application. 

The automatic design technique is based upon a probabilistic 
model of pattern variation. The statistical parameters of the 
model are estimated from observations on identified sample 
characters. Using these parameters, the variables of the decision 
logic are specified so as to minimize an analytical expression for 
the uncertainty in the recognition process. 

The risk in reliance on a probabilistic model is that it often 
requires simplifying assumptions that can fail to hold in practice. 
In the model developed here, for example, error rate is calculated 
on the supposition that pixel values observed while recognizing a 
sample character are mutually independent. 

An alternative, deterministic approach to design consists of 
operating on a set of scanned patterns in order to produce a 
system that recognizes them with minimal error rate. Such an 
approach has also been investigated but appears to lack the 
flexibility of the probabilistic method. 

III. AN ALGORITHM FOR DECISION TREE DESIGN 

Since a decision tree defines a sequential classification process, 
the technique for specifying a tree will be sequential also: at any 
level of the tree the pixels selected for observation depend on 
those selected at higher levels of the tree. Thus, following the 
estimation of statistical parameters from sample character pat- 
terns, the actual tree construction is begun with the specification 
of the root node. The design process then adds nodes one-by-one 
below the root. 

The design loop consists of choosing a tree node just below one 
that has already been specified, and of evaluating all pixels as 
candidates for this node in the light of the statistics measured for 
the various classes. The desirability of any candidate pixel de- 
pends on the relative probabilities of the classes at the node, and 
on the pixels previously examined. After a pixel has been selected, 
a decision must be made whether either of the outcomes possible 
upon observing the pixel permit an identity to be assigned to the 

input pattern. If so, the branch corresponding to the outcome is 
routed to a leaf node. This node specification sequence is re- 
peated until all tree paths terminate, or until some other con- 
straint condition is reached (for example, a  limit on tree size or a 
required level of estimated performance). 

The sequence in which new nodes are attached to the tree is an 
important consideration. For example, the tree may be designed 
level-by-level, or by pursuing particular paths in depth. A perfor- 
mance-related selection mechanism will be discussed later in the 
paper. 

It is clear that because of the interrelation among the nodes, 
decision tree design is inherently a complicated multivariable 
optimization problem, perhaps best stated in dynamic program- 
ming terms. The problem of optimal design cannot be resolved 
neatly by a node-by-node progression. The iterative design flow 
is, however, capable of producing large design trees for many 
thousands of sample patterns with an efficient use of computa- 
tional resources. 

A general procedural version of the algorithm follows. 

procedure TREEDESIGN 
Estimate a priori class probabilities for current application. 
Estimate pixel state probabilities for each class from training 
samples 
Node list = (root node) 

while number of nodes < N and  PC < T  do  
Select node with highest entropy from node list. 

Evaluate information gain for each untested pixel and 
assign pixel with highest gain to this node. 
Create black and white successor nodes to current node 
and add to node list. 

end  while 
assign identity to each leaf with P, > T, designate all other leaves 
as “ reject.” 
end  TREEDESIGN 

Details of these steps are discussed in succeeding sections. 

A. Estimation of State Probabilities 
The first step in the design process is to estimate the state 

probabilities (i.e., the probabilities of white and black for different 
pixel positions) for each character class. The estimate for a  given 
pixel is formed on the basis of the frequency distribution of white 
and black in that position for a  large collection of identified 
sample character patterns. 

An error in the value assigned to a given pixel state probability 
can result in degraded performance, particularly for probabilities 
in the neighborhood of 0  or 1. Suppose, for example, that a  given 
pixel is observed to be black for 100 out of 100 samples of class 
A. The actual state probability may be, say, 0.99 and it is only the 
luck of the draw that no white observations resulted from the 100 
trials. 

If we assume a priori that the probability 8  that a  pixel is black 
is uniformly distributed over [0, 11, then the Bayes’ estimate (i.e., 
the expected value of the a posteriori distribution) of 8  is 

/btY’+i(l - B)Nm,t d0 n + 1 
=- 

‘= jolp(lpq”-“de N+2’ 

where n is the number of “black” values observed for the pixel in 
N samples. 

The estimate ~7 is always nearer to 0.5 than is the observed 
frequency of black. In addition, it approaches the observed 
frequency n/N as a large number of observations are made. 

To obtain a more flexible estimation rule, the expression for @  
can be modified to 

A nfa 
‘= Nt-20. 



96 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT - 30, NO. 1, JANUARY 1984 

00000 
0011100000 

OZfJ998888751 
000000000000 

01222221111111000 
0699999999970 “279999999988875310 
05999***+**93 0~9+******+9**999830 

03589*+***970 
0001*****+*91 

06*+99**94 
07*99*9**70 
19*9uzLT**91 

059970019**5 
0**940 06**80 
399*1 39*92 

06.960 o*+*i50 
19+94 069”91 

059*95000007**+40 
08**99~22259**+70 

039****99999***+92 
07******++*+*****50 
19**99988899999**00 

05+*9731111111~9+*93 
18**810 039**60 

0059**70 01Ll**920 
0038**+820 0078***710 
0399***9720 0279++*971 
079****+970 o69*+**+9uo 
079**+*+970 079tt999930 

2788888620 0278888750 

0209*****999999*+*930 
“279+*9965556899**81 

018**93000001379*950 
orJ**700 0028*+00 
OS**60 05**00 

5**60 059*90 
5**70 017**eo 

000000000 00110000 1577888888888876~100 
00000000111100000 

0 0 

Fig. 2. Composite digitized characters. Integers indicate the probability that 
a given pixel is black in fifty design samples of that class. Asterisks show 
positions which are black in all of the samples, blanks correspond to “all 
white,” zeros stand for probabilities in range of 0 to 0.10. 

This more general formula results from the assumption that the a 
priori distribution is a beta-distribution with parameter (Y rather 
than a uniform distribution [3]. Note, however, that the specifica- 
tion CY = 1 corresponds to the latter assumption. In practice, cy is 
chosen for the particular application and is not critical for large 
sample sizes. In the experiments reported here, the value (Y = 1 
was employed routinely. For very small sample sizes, however, a 
value of (Y much larger than 1 yielded superior results, probably 
because the pixel distribution tends to be concave rather than 
flat. 

If we assume, further (and this is a critical assumption for 
simplifying the design process), that the state probabilities pi = 
Pr(pixe1 j = 11 class k) are statistically independent, then the 
initial estimates can be used at every node in the tree. If the pixel 
correlation were included in the analysis then the state probabili- 
ties would vary from node to node. The state probability at a 
given node would then depend on the outcomes of pixel observa- 
tions along the path from the root to this node. 

Thus, not only are the calculations simplified if pixel indepen- 
dence is assumed, but in addition, the relevant statistics, namely, 
the pixel state probabilities per class, can be held fixed during the 
tree design phase. The patterns on which the design is based are 
not referenced again after the pixel probabilities have been esti- 
mated. Since in practice a design may be conducted using 
hundreds of thousands of scanned characters, the reduction in 
computational expense due to neglecting correlation is consider- 
able. 

The validity of the independence assumption depends largely 
on the uniformity of printing. Scanned samples in a single-font 
style printed by one machine are found to vary mainly in edge 
pixels in a random way (see Fig. 2). Pixel probabilities tend to be 
independent in such cases. As more printers, additional font 
styles, etc., are included in the sample population, the assumption 
of independence becomes less realistic. Variations in line thick- 
ness among characters, for example, imply that pixels along the 
periphery of the patterns are correlated. In such cases, the inde- 
pendence assumption becomes an ad hoc measure, to be justified 
by the performance attained in competition with alternative 
procedures. 

B. Prohuhility Distribution of Chses at a Node 
Before it can assign a pixel to a tree node, the design process 

must calculate the class probability distribution at the node. 

These can be computed by traversing the path to the node as 
follows. Suppose pixel j is tested at a given node. Let the 
probability that a character belonging to the k th class follows the 
path to this node be P(k). The two branches out of this node 
correspond to the color values possible for pixel j and lead to a 
“black” successor node and a “white” successor node, respec- 
tively. The probability that the sample from class k arrives at the 
black node is Pi(k) = P(k)P(pixel j = Blk) = P(k)pi. Like- 
wise, the probability that it arrives at the white successor node is 
Pb(k) = P(k)(l - PA). 

At the root of the tree, the class probabilities are the a priori 
probabilities of the classes, which can be estimated from analyz- 
ing sample documents. The above formulas permit calculation of 
the class distribution at successive nodes along any path from the 
root. 

C. Criteria for Extension and Termination 
The candidate nodes for extension at any step in the design 

process are the leaf nodes in the current tree. One of these has to 
be chosen, assigned a pixel test, and linked to two new leaves. 
The principle adopted here is to choose the candidate node whose 
class distribution has the greatest mathematical uncertainty [13]. 
(The concept of uncertainty in a decision tree will be discussed in 
a later section.) 

Several criteria for termination of the design process have been 
considered. One convenient rule is to stop when an overall 
estimated recognition rate has been attained. The probability of 
correct recognition C may be calculated by summing the majority 
class populations over all leaf nodes in the current tree. That is, 
let C, = maxk P, (k), where P,,(k) is the probability that a sample 
belonging to the k th class arrives at node n. Then, 

c= cc, 
IlSL 

where L is the set of leaf node indices. 
As an alternative rule, design may be stopped when a pre- 

specified tree size (total number of nodes) has been attained. The 
size specification can be made on the basis of implementational 
considerations such as memory limitations or maximum number 
of computations (path length). 

When design is terminated due to either criterion the leaf 
nodes are assigned decision labels. Those leaves having C, ex- 
ceeding a threshold T are labeled with the majority class, while 
the remainder are classified as reject nodes, By varying the reject 
threshold T the quantities C, may be used to plot a curve of 
estimated reject rate versus error rate. The designer can then 
choose the operating point best suited to his requirements. Note 
that the expected overall substitution error rate cannot exceed 
1 - T. 

D. Pixel Selection- Entropy 
The effectiveness of a node-by-node design scheme is highly 

dependent on the rule by which pixels are evaluated for assign- 
ment to a given node. A pixel must be selected on its ability to 
contribute discrimination to the classification process. a measure 
based on the entropy notions of information theory possesses 
desirable properties as a pixel selection criterion. 

The application of the entropy measure presumes that the state 
probability for each class 

pi = Pr {pixelj = B( class k } 

has been estimated for every pixel. Also assumed known is P(k), 
the II priori probability that a member of the k th class arrives at 
the node being considered. 

The mathematical uncertainty in the identity of an input 
pattern presented to the node is represented by the entropy 

HO = -zP(k)log P(k). 
k 
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Similarly, the uncertainty of identification after observing “B ” 
or “ W ”, respectively, if the j th pixel is tested, is expressed by the 
two quantities: 

Hi = - zP’(k(B)log P’(klB), 
k 

HJw= -xP’(kjW)log Pj(klW), 
k 

where PJ(klB) is the probability that the sample belongs to the 
k th class given that pixel j is black, and is calculated from the 
pixel state probabilities p{ by Bayes’ rule: 

f’(k)& Pi(W ) = cpci>pj. 
I 

In like manner, the probability of class k given that thej th pixel 
is white is 

f’(k)(l - ~$1 
P’(klW) = Cp(i)(l -pi) ’ 

i 

where P(k) is the probability of arrival of class k at the node 
being considered. 

The probability that pixel j is actually observed to be black is 
calculable from the two sets of probabilities already estimated 

pd = CP(k)p{, 
k 

and in similar fashion 

~b = cP( k)(l - pi). 
k 

Note that Pi, P/,,, and P(k) will take on different values from 
node to node, but for simplicity we omit the node index here. 

The expected uncertainty after testing pixel j is then FJ = 
Pd Hi + P/,,Hb and the net information gained in examining the 
pixel is measured by the average reduction in uncertainty IJ =  
HO - fl’. 

The rule for pixel selection employed in our design procedure 
is to choose the pixel j that minimizes H’, i.e., the one that 
maximizes the information gain. 

In the development above we have used probabilities condi- 
tioned on the particular node to be extended. Alternatively, it is 
possible to define the overall entropy of the tree as 

H, = c CP(k, n)log P(k, n), 
n k 

where P( k, n) is the joint probability that a  sample arrives at 
node n and belongs to class k. Selecting a pixel for a  given node 
so as to minimize H, is equivalent to maximizing the conditional 
node information gain as described above, but the formulas 
contain an extra normalizing factor. However, it is worth noting 
that in selecting the node to be extended during a given design 
loop it is the contribution of the node to H, that must be 
calculated, and not the conditional entropy for each node, since 
the normalizing factors vary from node to node. 

The entropy criterion for selecting pixels tends to promote 
short path lengths by approximate balancing of the decision tree. 
It favors the splitting of an input population into two subpopula- 
tions of equal weight while not splitting the component class 
populations, to the extent that these objectives are attainable. 
These and several additional properties of IJ are discussed in the 
Appendix, where a reformulation of the expression above is 
given. 

IV. BOUNDS ON RECOGNITION PERFORMANCE 
A practical decision tree represents a compromise between 

storage space and classification accuracy. If the recognition 

processor were capable of unlimited storage, then characters 
scanned into n-pixel arrays could be optimally recognized by a 
decision tree having at most 2” nodes. But with existing or 
foreseeable storage capacities, the optimal tree is impractically 
large for the typical OCR situation in which an unknown char- 
acter is represented by hundreds of pixels. For example, a  bal- 
anced tree having only 20 nodes along each path defines a table 
of the form of Table I having more than three million entries. 

The decision tree method of recognition must therefore rely on 
examining only a subset of the character pixels in order to make 
an identification. The pixels must be both highly reliable and 
discriminatory in order to permit rapid accurate decisions. A 
simple probabilistic model is helpful in estimating what perfor- 
mance can be achieved in a given environment. 

Let us define the reliability of a  pixel test as the greater of the 
state probability pi and its complement (which is the probability 
that the pixel is “W ” for the given class). As above, we shall 
assume that pixel states along any path are mutually indepen- 
dent. 

Consider the performance of a  balanced tree containing L 
levels, and such that every pixel has a reliability equal to P, 
regardless of the identity of the input pattern. A particular path 
through the tree consists of a  sequence of L  branches, of which, 
say, i correspond to the more likely of the two possible outcomes 
for samples of a  given class. Then the probability that the 
specified path is followed by samples belonging to this class is 
pi =  P’(1 - P)Lpf. 

W ithin the balanced tree there are L 

( 1  

( 1  i paths having this same 

value of pi, where L IS the usual notation for the number of 
combinations possibli for L  distinct items taken i at a  time. The 
quantity i is a  variable that may take on any integer value from 0 
to L. 

Suppose that there are N equally likely classes. Let us partition 
the leaves of the tree into N groups of equal size, and associate 
each group with a different class. That is, there are (2L + N) 
leaves within each group. If N is not a  factor of 2’, then the 
leaves are partitioned into N groups such that no two groups 
differ in size by more than one leaf. To the leaves in each group, 
we assign the maximum values of p, for the respective class, 
beginning with pL and proceeding downwards. The probability 
that a  sample pattern is correctly identified is equal to the 
probability that it arrives at one of the leaves in its class group. 
The assignment described assures that the 2L most probable 
outcomes, i.e., the 2” largest values of /3, over all classes, yield 
correct classifications. No alteration in the assignments to the 
groupings can improve on this performance. Therefore, the tree 
just described sets an upper limit on average recognition rate 
under the prescribed conditions. The average recognition rate P, 
is given as follows. 

. 

Let (I be the integer such that 

Then 

PC = 2 (;)pLy - P)’ 
i=O 

We observe that PC cannot be increased by pruning the bal- 
anced tree in some manner. Pruning results in accumulating the 
occupancy probabilities of several nodes into a single node, and 
thus cannot increase discrimination. Furthermore, a reduction in 
the reliability of any node decreases the peak leaf occupancy 
probabilities for the affected class and thus cannot yield a higher 
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Fig. 3. Realizability of the bound on classification accuracy. There are three 
classes, X, y. and z, and each interior node of the tree is assumed to specify a 
pixel of reliability P. Each node is labeled with classes for which the most 
probable exit branch is to the right. Otherwise the most probable branch is 
to the left. Below leaves are tabulated for each class the quantity i (see text), 
the number of high probability branches along the path to the leaf. Circled 
number is the maximum i for the leaf, and indicates the class assigned to the 
leaf. Among the 96 values of i listed, the 32 largest values (three 5’s, fifteen 
4’s, and fourteen 3’s) are each assigned to a different leaf. Therefore proba- 
bility of correct classification for this tree equals the upper bound given in 
text with L = 5 and a = 1. 

Ol 
0.50 0.75 0.85 0.90 0.95 0.98 0.99 0.995 1.00 

Pel Reliability 

Fig. 4. Lower bound on error rate as a function of pixel reliability and tree 
size. Calculations are based on balanced trees of depth (path length or 
number of levels) as shown on the ordinate. Minimum number of levels 
necessary to discriminate between 26 classes is 6. Pixel reliability is assumed 
to be the same for all pixels in the tree. 

probability of correct recognition no matter how the leaves are 
redesignated. 

These observations may be formalized to arrive at the follow- 
ing conclusion: the quantity, PC is an upper bound on the 
recognition rate of N equally likely classes by a decision tree 
whose longest path comprises L nodes, and none of whose pixel 
tests have a reliability greater than P. The bound is achieved if 
every pixel test has reliability P for each class, and if an “ap- 
propriate” distribution of the state probabilities for each class 
exists within the tree, i.e., if it is actually possible to distribute the 
class probabilities over the leaves in the manner indicated above. 
If it is not possible, then PC is still a bound, but can not be 
realized by any tree of the given size. 

Fig. 3 shows an example with three classes and five levels in 
which PC is realizable. As can easily be shown, however, for the 
same number of classes, but with only four levels in the tree, the 
bound is unrealizable. 

Fig. 4 is a plot of the quantity 1 - PC (the lower bound on the 
rate of unrecognized characters) as a function of maximum path 
length for several values of pixel reliability, and assuming 26 
classes. 
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Fig. 5. Actual and estimated error rate as a function of the number of nodes 
in tree, Estimated error for each of seven trees is computed as part of the 
design process on the basis of the pixel probabilities in design sample. New 
samples were used to determine actual classification error for each tree. 

V. EXPEIUMENTS 

A. Stunned Data 
The bounds on recognition performance summarized in Fig. 4 

indicate that to obtain low error rates from small trees, high 
reliability is required of the pixels selected for inclusion in the 
tree. Such a condition is best provided by well-registered machine 
printed characters in a single-font style. 

Fig. 2 is derived from the superposition of 500 sample char- 
acters in a Courier type font. The characters were scanned at a 
resolution of 4 mil. Each scanned character is registered by 
translating it so as to center its bounding rectangle in the pattern 
field. The figure illustrates what one would expect for well-printed 
characters. Most of the pixel positions are stable; noise is re- 
stricted to the contours of the characters and is due to slight 
errors in registration, to discretization by the scanner, and to 
small differences in the printed characters. 

The data of Fig. 2 is typical of the scanned characters used in 
the experiments. Upper case characters were scanned at several 
different resolutions (4 to 6 mil), and stored on magnetic tape. 
One set of scanned patterns was reserved for tree specification; 
the remainder were set aside for recognition performance tests. 
For design experiments a portion of the training set was read 
from tape, registered by the bounding rectangle method, and used 
to estimate pixel frequencies. Characters used for recognition 
tests were also registered by the same method. 

B. Estimated Versus Actual Performance 
Fig. 5 shows a comparison of estimated performance against 

that obtained by actual recognition of scanned characters. Trees 
of several different sizes (as measured by the number of test 
nodes) w.ere constructed by the design algorithm. The cross-over 
point in Fig. 5 is a consequence of the probabilistic design 
approach. Because of the small number of design samples used 
(50 per class) and the rule which reduces the estimated pixel 
reliability below its observed value, the estimated error tends to 
be higher than the actual error rate for small trees (where only a 
few pixels are used in classification). Performance improves as 
larger trees are constructed, but not as quickly as estimated due 
to correlation among the selected pixels. That is, the additional 
pixels selected for inclusion in the tree do not supply independent 
information as postulated by the model. 

C. Reject Criterion 
By designating selected leaf-nodes of the trees to be reject 

nodes (according to the criterion described earlier in the paper), 
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o’3L Combining these two expessions yields 

HJ = PJHA + PhHJ, 

= [ Pd log Pi + P&HJw ] 

- $  [P(k)pilog A + P(k)@ - pi )l%(l -PI!)] 

-CP(k)logP(k). 
k 

Noting that the last term on the right-hand . _. side is Ho, and 
Fig. 6. Error-reject curve Error rate can be reduced significantly by convert- 

ing the leaves with the highest estimated error rates to reject nodes, 
defining several new entropy expressions, the average informa- 
tion gained by observing the state of thej th pixel is 

the curve in Fig. 6  was obtained. The original tree in this sample 
contained 300 test nodes (and therefore 301 decision nodes). 
When every leaf was associated with a character label, the error 
rate was 0.15 percent. By successively setting to reject nodes the 
leaves whose estimated error rate was highest, the substitution 
rate was gradually reduced to zero as shown. The penalty was a 
2.3 to 1 ratio of rejected characters to substitution errors avoided. 

VI. CONCLUSION 

A sequential character recognition algorithm based on binary 
decision trees was described and the method tested on single-font 
typewritten characters. The design approach is simple and com- 
putationally efficient. The only information required for design is 
the a priori class probabilities and the number of black bits in 
each pixel position in each class in the design sample. The 
following advantages are observed: 

a) The classification is rapid and ideally suited for micro- 
processor implementation. 

b) A tree can be designed with just enough nodes to yield a 
prescribed expected error probability (within the limitations 
imposed by the assumption of statistical independence be- 
tween pixels). 

c) A rational method of rejecting samples at certain leaves is 
provided. This method minimizes the expected error rate for 
the prescribed reject rate. 

d) Compensation for the uncertainties in the estimation of 
pixel probabilities from small numbers of design samples 
can be achieved by extending the recognition tree. 

e) The scheme is analytically tractable and upper bounds on 
the expected recognition performance for a tree with a given 
number of nodes can be readily calculated. This model can 
assist in estimating the tree size required in a given applica- 
tion. 

APPENDIX 

An Alternative Formulation of the Expression for Information Gain 
The entropy expression defined in the text can be rewritten as 

follows: 
PAH’H,: = - c PdP’( klB) log P’( klB) 

= - $P(k)pLlog P(k)Pi + CP(k)pLlog Pi 
k 

but 

and so 

CP(k)pl( = Pd, 
k 

P,Hi = Pdlog Pi - xP(k)pLlog P(k)pi. 
k 

Likewise, 
PCHk = P:,log Pb - ;P(k)(l -pI:)logP(k)(l -pi). 

Zi= Ho - gJ = H’(BIW) -zP(k)HA(BIW) 
k 

where 

H’(BIW) = -Pilog Pi - P&log Pb 

ff~(W ’) = -pilogp~ -(I -pi)log(l -PI$ 

The latter pair of expressions can be interpreted directly. 
HJ( B/W)/ is the uncertainty of the state of the jth pixel, 
averaged over all classes. Hi( B/W) is the uncertainty of the 
state of the j th pixel for the k th class in particular. 

Several properties result from this reformulation. 

1) Since both Hj( B/W) and Hi( B/W) are numbers between 
0 and 1, then the maximum possible information to be 
gained by testing a pixel is unity. 

2) This maximum value occurs if HJ( B/W) is unity, and if 
the individual terms P(k) H& B/W) vanish. That is, each 
class having a nonzero probability of occurrence should 
have thej th pixel either always “black” or always “white”, 
and the sum probability of occurrence of the classes associ- 
ated with either state should be 50 percent. 

In addition, the reformulation has certain computational ad- 
vantages over the original expression for information gain. For 
instance, all the uncertainties Hd( B/ W) can be calculated and 
stored prior to starting the tree design procedure. Only one 
entropy per pixel, namely, H’( B/W) has to be recalculated for 
each node specified. 
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