
Word Discrimination Based on Bigram Co-occurrences 
 
 

Adnan El-Nasan, Sriharsha Veeramachaneni, George Nagy 
DocLab, Rensselaer Polytechnic Institute, Troy, NY 12180 

elnasan@rpi.edu, veeras@rpi.edu, nagy@ecse.rpi.edu 
 
 

Abstract 
 
Very few pairs of English words share exactly the same 
letter bigrams. This linguistic property can be exploited to 
bring lexical context into the classification stage of a word 
recognition system. The lexical n-gram matches between 
every word in a lexicon and a subset of reference words 
can be precomputed. If a match function can detect 
matching segments of at least n-gram length from the 
feature representation of words, then an unknown word 
can be recognized by determining the subset of reference 
words having an n-gram match at the feature level with 
the unknown word. We show that with a reasonable 
number of reference words, bigrams represent the best 
compromise between the recall ability of single letters and 
the precision of trigrams. Our simulations indicate that 
using a longer reference list can compensate errors in 
feature extraction. The algorithm is fast enough, even with 
a slow processor, for human-computer interaction. 
 
 
1. Introduction 
 
 We study letter n-gram statistics as a possible basis for 
a general method for large-vocabulary word recognition 
based on finding matching segments between unknown 
words from a lexicon and known words from a reference 
list. We assume that co-occurrence of at least one n-gram 
between the unknown word and a reference word can be 
determined by comparing their feature representations. 
Performing this comparison with every reference word 
results in a match list that contains only the reference 
words that share at least one n-gram with the unknown 
word. This list is converted into a match vector and 
compared lexically with a precomputed matrix (the match 
matrix) whose entries indicate the presence or absence of 
lexically identical n-grams between the reference words 
and the lexicon of admissible words. 
 Even with perfect n-gram matching, the selectivity 
depends on the proportion of n-grams in the lexicon that 
are included in the reference list. A longer reference list 
can compensate for imperfect features: if the features of a 

particular n-gram in an unknown word do not match those 
of the corresponding n-gram in a reference word, they still 
might match the features of the same n-gram in another 
reference word. With minimum-distance rather than exact 
matching, many words can be identified without detecting 
all of their constituent n-grams. The following questions 
are of interest: 
•  What is the relative effectiveness of singlets, bigrams, 

and trigrams as a function of the size of the lexicon and 
the length of the reference list? 

•  How does the discriminating ability of n-gram co-
occurrence depend on the size of the lexicon and on the 
length and content of the reference list? 

•  What is the degradation resulting from imperfect 
feature-level comparisons, and how can it be 
compensated? 

 
2. Prior Work 
 

N-gram statistics have been used for OCR 
postprocessing since the sixties, when large lexicons could 
not yet be stored. Raviv introduced Markov models [10], 
and Shinghal and Toussaint applied the Viterbi algorithm 
[12,13]. Hull and Srihari quantized n-gram probabilities 
[8] and explored combining them with dictionary look-up 
[9]. Suen tabulated the growth in the number of distinct n-
grams as a function of vocabulary size, their word-
positional dependence, and the influence of the selected 
corpus [2]. The entropy of n-grams for n≤5 is computed in 
[3]. We have not, however, found any study of n-gram co-
occurrences between pairs of words. 

Feature-level n-gram detection combines some of the 
advantages of character-level [11] and word-level 
classification [7]. It is more stable than character-based 
methods because individual characters or phonemes are 
often indistinct, and the presence of ligatures or co-
articulation facilitates matching longer segments. Like 
partial-word matching [15,16], feature-level n-gram based 
recognition is not limited by the size of the vocabulary in 
the training set, only by that of the lexicon. Full-word 
recognition, on the other hand, is limited to words with 
explicit samples in a training set and hence is seldom used 

George Nagy
This file may not be identical to the final published version. The authoritative version can be found in:

Procs. Sixth Int'l Conference on Document Analysis and Recognition, pp. 149-153,
Seattle, WA  Sept 2001

(c) Computer Society Press



for large vocabularies. Two systems for large vocabularies 
use Time Delay Neural Networks to avoid segmentation 
[4,14]. Seni et al. [4], reduces the number of candidate 
words from the lexicon using a coarse feature description 
of the unknown and a letter-generating grammar. The 
NPEN++ system [14] is based on character models built 
using HMM and arranged in a trie structure to guide the 
output from a Time Delay Neural Networks.  

In [1], we proposed full-word recognition, using 
bigrams, for words without training samples. Like the 
widely-used Hidden Markov methods [7], feature-level n-
gram detection brings the context into the classification 
phase rather than relegating it to post-processing. In 
contrast to HMM, it requires no estimation of model 
parameters, but only storing a set of representative patterns 
with their labels. 

 
 
3. Method 
 

To illustrate the power of n-gram matching, we 
postulate a (large) lexicon that contains all admissible 
words. The reference words, for which some feature-level 
representation is available, are a (small) subset of the 
lexicon. The unknown (target) word is represented in the 
same feature space. There is a match routine that detects 
any common segment between the target word and each of 
the reference words. The output of the match routine is a 
binary match vector where "1" means a match, and "0" 
means no match. 

An L x R binary matrix can represent the lexical n-gram 
matches between the R reference words and the L lexicon 
words. The entries of the matrix indicate whether a 
reference word and a lexicon word share at least one n-
gram. The percentage of unique rows in the match matrix 
is called the selectivity of the reference set with respect to 
the given lexicon. 

Table I is a small but complete example of a lexicon 
and a reference list. It also shows the bigram match list for 
an unknown word generated by the feature-matching 
process. The alphabet includes initial and trailing blanks 
(^) that form additional bigrams. This increases the length 
of the match lists and improves selectivity. 

Table II shows the match matrix for the chosen lexicon 
and reference list.. With the specified reference list, every 
word in the lexicon corresponds to a unique match vector. 
For instance, 1011 must be people. But if period is added 
to the lexicon, 1011 matches both people and period. 
Adding tripod to the reference list resolves the ambiguity. 
If only a single row matches the Match Vector exactly, 
then the target word is identified uniquely (and therefore 
correctly), otherwise it is ambiguous. 

 
 

 

  Lexicon  Ref. List  Match List Match Vector 
^consequences^ ^Erie^   ^Erie^    1 
^Erie^    ^has^         0 
^hair^    ^lever^   ^lever^    1 
^has^    ^position^  ^position^   1 
^lever^ 
^nile^ 
^pair^ 
^people^ 
^position^ 
^they^ 
 
Table I. This lexicon, reference list, and match list provide 
sufficient information to identify an unknown word with 
match vector 1011 as people. 

 
                 ^Erie^      ^has^   ^lever^  ^position^    ^tripod^      

 
^consequences^    0    1   0   1    0 
^Erie^      1    0   0   0     1 
^hair^      0    1   1   0     0 
^has^       0    1   0   0    0 
^lever^      0    0   1   0    0 
^nile^       1    0   1   0    0 
^pair^      0    0   1   1    0 
^people^      1    0   1   1    0 
^position^     0    0   0   1    1 
^they^      0    0   0   0    1 
 
^period^    1    0   1   1    1 
^tripod^     1    0   0   1    1 
 
Table II. Match matrix corresponding to Table I. The 
match vector "1011" uniquely identifies the eighth row 
(people) in the original matrix (bold). If period were added 
to the lexicon, then 1011 could either be period or people. 
But if tripod is now added to the reference list, then period 
(10111) can be distinguished from people (10110). 
 

Clearly any instance of a lexicon word can be identified 
uniquely if the corresponding row is unique. Therefore  
R = log2 L is a lower bound on the length of the 
reference list for unique identification of every word in the 
lexicon. 

Identical columns are redundant and the corresponding 
words can be deleted from the reference list. In fact, any 
column that is a linear combination of other columns is 
redundant (over the binary field GF[2], addition is modulo 
2). The converse, that all redundant columns are linearly 
dependent on the other columns, is false, therefore we 
cannot find by algebraic manipulation a minimal subset of 
the lexicon to serve as reference words. This problem is 
equivalent to the NP-complete Minimum Test Collection 
problem [6]. We can find short reference lists with a 
greedy algorithm that selects at each step the lexicon word 
that discriminates the most pairs of still-confused lexical 
words. 



4. Experiments 
 

All of our experiments are based on the 1,013,253 word 
Brown Corpus [7]. This corpus contains 43,300 unique 
words collected from thousands of published items. The 
Corpus contains only lower case letters, apostrophes (e.g. 
i'm) and a few quotation marks. Not all of the words are 
regular dictionary words: there are 454 isolated s's, mmm 
occurs twice, and mmmm once (these may be initials or 
abbreviations stripped of periods). The most common 
word is the (69991). Examples of words that share the 
same letters are rate/tear. Among the rare examples of 
words that share the same bigrams are asses/assess, and 
possess/possesses. The percentages of words with a unique 
set of letters, bigrams, and trigrams are 48.68%, 99.92%, 
and 99.99%.  

We first compare the selectivity (percentage of unique 
matches) of singlet, bigram, and trigram length segments. 
Then we examine the effect of the relative lengths of the 
reference list and the lexicon. We compare reference lists 
composed of stop words against lists of less common 
words). Finally we simulate the effects of feature-level 
errors on selectivity, and demonstrate the advantage of 
additional instances of each reference word. Only words 
from the lexicon are tested. We have not yet investigated 
methods to reject outliers (words that do not occur in the 
lexicon). 
 
4.1 Length of Matching Segments 
 

Figure 1 compares the selectivity of unigram (singlet), 
bigram, and trigram length segments on a lexicon of the 
1000 most common words of the Brown Corpus, as a 
function of the length of the reference list. The reference 
list is selected from the lexicon according to decreasing 
word frequency, so most of the words are short. 

 

10
1

10
2

10
3

0

20

40

60

80

100

Reference Length

%
 o

f u
ni

qu
e 

m
at

ch
 v

ec
to

rs

Unigram
Bigram 
Trigram

 
 
Figure 1. Selectivity as a function of the length of the 
reference list: unigrams, bigrams, and trigrams (L=1000). 

Bigrams appear to be the best option, except for very 
short reference lists that contain too few bigrams. The 
unigram graph flattens out because anagrams (like rate and 
tear) are so common. The trigram selectivity keeps 
climbing as additional trigrams are included in the 
reference list, but because there are more trigrams, a 
longer reference list is required to cover them all. The 
remaining experiments are all based on bigrams. 
 
4.2 Length of the reference list and the lexicon 
 

Table III shows selectivity for reference lists and 
lexicons of various lengths. Here too the reference list 
contains the most frequent words of the lexicon, and the 
longer lexicons include the shorter lexicons. 

 

 
Table III. Selectivity for different sizes of Lexicon (L) and 
Reference List (R). 

 
4.3 Choice of Reference Words 
 

The most common words (stop words) tend to be short 
and contain only frequent bigrams. Figure 2 compares 
selecting the reference words from the head of the lexicon 
with selecting them from the tail. The longer words are 
more effective: with 50 stop-words, we recognize only 
75% of the lexicon, but with the 50 least common words, 
the selectivity is over 95%.  The performance of reference 
words selected by our greedy algorithm matches is best. 
The first 40 words selected by the greedy algorithm result 
in the same number (998) of unique matches as the 
reference list composed of the entire lexicon. 
 

L 1000 3000 10,000 30,000 43,300 
R  
30 27.2  20.9    12.97     9.04      8.01

100 84.0 81.1     75.12    68.15    66.94
300 98.4 98.7     97.58    95.21   95.25

1000 99.8 99.8     99.57    98.63   98.66



10
1

10
2

10
3

0

20

40

60

80

100

Reference length

%
 o

f u
ni

qu
e 

m
at

ch
 v

ec
to

rs

Stop words       
Less common words
Greedy words     

 
 
Figure 2. Selectivity with stop words, less common words, 
and an independent, random match matrix, as a function of 
the length of the reference list (L-1000). 
 
4.4 Effect of Feature-level Errors 
 

Because we do not expect the feature matching between 
unknown target word and the words in the reference list to 
be reliable, we investigate the vulnerability of this scheme 
to false matches and missed matches. We explore the 
sensitivity of the method to noise by randomly altering 
ones in the match vector to zeros, and zeros to ones. This 
creates the possibility that an unknown word can be 
misidentified rather than rejected.  

We relax the requirement for a perfect match. We will 
accept a word if the row nearest the target vector (in the 
Hamming distance sense) is unique. We include multiple 
instances of each word in the reference list, with the 
expectation that correct matches against the other 
instances of the same word may compensate an incorrect 
feature match against one exemplar. 

We call Q the probability of feature-level error. We 
randomly change, in the Match Vector, 0's to 1's with 
probability p(e|0), and 1's to 0's with probability p(e|1). 
These probabilities are determined for each value of Q 
under the assumption that the match scores, given either a 
match or a non-match, are both Gaussian with equal 
variances, and that the prior probability of a match is equal 
to the proportion of 1's in the match matrix (0.20). 

 

10
1

10
2

10
3

0

20

40

60

80

100

Reference length

%
 o

f u
ni

qu
e 

m
at

ch
 v

ec
to

rs

Q = 0   
Q = 0.05
Q = 0.1 

 
 
Figure 3. Recognition rate, with feature-level errors, as a 
function of the length of the reference list. 
 

 
Table IV. Error (E) and reject (R) rate as a function of the 
feature-level error and the number of instances (M) of each 
reference word (L=1000, R=104). 
 
We vary Q from 0.0 to 0.10. Figure 3 shows the rate of 
correct recognition (100% - %errors - %rejects) when the 
nearest row in the match matrix is chosen instead of 
seeking an exact match. For every reference list, the 
recognition drops sharply between Q=0.05 and Q=0.10. 
Now we vary the number of instances M of every word in 
the reference list from 1 to 5. This increases the length of 
the Match Vector by M. As above, we perturb its elements 
randomly and select the nearest row of the match matrix. 
The resulting errors and rejects are shown in Table IV. 
The results indicate that multiple copies of the reference 
words alleviate the effect of feature errors. 
 
 
 
 

Q p(e|0) p(e|1) σσσσ M %R %E 
0  0 0  1  13.2   0 

0.01  0.0056 0.0277 0.2245 1   14.6  0.4 
     3  13.2 0 
     5  13.2 0 

0.05  0.0249 0.1502 0.3337 1   24.6  3.7 
     3  14.6 0.5 

    5  13.2 0.1 
0.10  0.0425 0.3301 0.4626 1   44.8  18.0 

    3  29.8 11.1 
    5  23.0 8.2 



5. Discussion 
 

The lexical matching can be performed extremely fast 
by a variety of techniques. With perfect matching, the 
rows of the match matrix can be presorted for binary 
search. Comparing each row can be aborted as soon as a 
mismatch is found, and the search can also be ordered 
column by column, and halted as soon as a unique row is 
found. Another fast search method replaces the match 
matrix by a list of bigrams that co-occur between words in 
the lexicon and the reference list, and indexes into this list 
from the Match Vector. For inexact matching, we can use 
a standard nearest-neighbors preprocessing technique 
based on the triangle inequality or k-d trees. With the 
43,300-word lexicon and a 100-word reference list, we can 
process 90 words per second without any code 
optimization on a 350MHz PII.  

The only information from feature-level matching used 
by the current algorithm is whether two words share a 
segment of minimum length. Using additional 
information, such as the approximate location and number 
of matches, will increase the selectivity. 

The greedy algorithm drastically reduces the length of 
the reference list required for unique matches with a given 
lexicon, but it must be remembered that it also reduces 
redundancy against feature errors. Furthermore, providing 
a fixed reference list for a writer or a speaker is likely to 
be less satisfactory than using the writer's or speaker's own 
words. 

N-gram matching may find application in the 
recognition of unsegmented words in situations where 
partial matches between different words can be detected. It 
could be used with phoneme bigrams for spoken words, 
and with letter bigrams for word traces in electronic ink 
and bitmaps of printed or handwritten words. In 
personalized systems, the system would gradually become 
more accurate as new samples of words and their labels 
are added to the reference list. In other words, the system 
will learn with use. 
 
6. Acknowledgment 
 

We thank Yarmouk University, Jordan, for their 
financial support. 
 
 
 
 
 
 
 
 
 
 

7. References 

1. El-Nasan, G. Nagy, “Ink-Link”, Proc. ICPR, vol. 2, pp. 573-
575, 2000. 

2. Suen, "N-gram statistics for natural language understanding 
and text processing”, PAMI-1, 2, pp. 164-172, 1979. 

3. E. Yannakoudakis, G. Angelidakis,  "An insight into the 
entropy and redundancy of the English dictionary", PAMI-
10, 6, pp. 960-970, 1988. 

4. G. Seni, R. Srihari, N. Nasrabadi, “Large Vocabulary 
Recognition of On-Line Handwritten Cursive Words”, 
PAMI-18, 7, pp. 757-762, 1996. 

5. H. Kucera, W. Francis, “Computational analysis of present-
day American English”, Providence, RI: Brown University 
Press, 1967. 

6. http://www.nada.kth.se/~viggo/wwwcompendium/node148.h
tml 

7. J. Hu, M. Brown, Turin W., “HMM Based Online 
Handwriting Recognition”, PAMI-18, 10, pp. 1039-1045, 
1996. 

8. J. Hull, S. Srihari, "Experiments in text recognition with 
binary n-gram and Viterbi algorithms", PAMI-4, 5, pp. 520-
530, 1982. 

9. Hull, S. Srihari, R. Choudhari, "An integrated algorithm for 
text recognition: comparison with a cascaded algorithm", 
PAMI-5, 4, pp. 384-395, 1983. 

10. Raviv, “Decision making in Markov chains applied to the 
problem of pattern recognition”, IEEE Trans. Inform. 
Theory, IT-3, 4, pp. 536-551, 1967. 

11. K-F. Chan, D-Y. Yeung, “Elastic Structural Matching for 
On-Line Handwritten Alphanumeric Character Recognition”, 
Proc. ICPR, vol. 2, pp. 1508-1511, 1998. 

12. R. Shinghal, G.T. Toussaint, "Experiments in text 
recognition with the modified Viterbi algorithm", PAMI-1, 2, 
pp. 184-193, 1979. 

13. R. Shinghal, G.T. Toussaint, "The sensitivity of the modified 
Viterbi algorithm to the source statistics", PAMI-2, 2, pp. 
1181-1184, 1980. 

14. S. Jager, S. Manke, A. Waibel, “NPEN++: An On-Line 
Handwriting Recognition System”, IWFHR, pp. 249-260, 
2000. 

15. T. Hong, J. Hull, “Algorithms for Post-Processing OCR 
Results with Visual Inter-Word Constraints”, Proc. ICIP, vol. 
3, pp. 312-315, 1995. 

16. T. Hong, J. Hull, “Visual Inter-Word Relations and Their 
Use in OCR Post-Processing”, Proc. ICDAR, vol. 1, pp. 442-
445, 1995. 


	Abstract
	L
	Q



