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Abstract 
 

We propose further improvement of a handwriting 
recognition method that avoids segmentation while able 
to recognize words that were never seen before in 
handwritten form. This method is based on the fact that 
few pairs of English words share exactly the same set of 
letter bigrams and even fewer share longer n-grams. The 
lexical n-gram matches between every word in a lexicon 
and a set of reference words can be precomputed. A 
position-based match function then detects the matches 
between the handwritten signal of a query word and each 
reference word. We show that with a reasonable set of 
reference words, the recognition of lexicon words exceeds 
90%. 
 
1. Introduction 
 

We are proposing a single-user unconstrained 
handwriting recognition system that utilizes partial word 
matching to detect letter-bigram or longer segments from 
a feature-based representation of word patterns. The 
system has a lexicon, and a reference set. The lexicon is 
the set of all plausible word labels. Words in the reference 
set are words from the lexicon for which we have 
handwritten samples. The proposed system consists of 
three stages: lexical processing, signal matching and 
classification. The lexical processing stage pre-computes 
the bigram match properties for each word in the lexicon 
by matching the label of a lexicon word against the label 
of each reference word. The signal matching stage reports 
the length of the longest matching segment between the 
feature representation of the unknown and the feature 
representation of each reference word. In contradistinction 
to our earlier work [4], these matches are limited to the 
positions where each lexical candidate matches the label 
of a reference word. The classification stage then finds a 
label from the lexicon that has lexical match properties 
that most resemble the signal match properties of the 
unknown. This method is similar in principle to the error 
correcting output codes proposed by Dietterich and Bakiri 
for solving multi-class learning problems [1]. In our 
method, each reference word induces a dichotomy on the 
lexicon and therefore the error correcting property is 
based on similarity between segments of lexicon and 
reference words. 

A letter n-gram is a sequence of n consecutive letters. 
N-grams have been studied and utilized since the sixties. 
Raviv introduced Markov models to OCR [9] and 
Shinghal and Toussaint applied the Viterbi algorithm 
[10][11]. Hull and Srihari quantized n-grams probabilities 
[7] and combined them with dictionary lookup [8]. Suen 
tabulated the growth in the number of distinct n-grams as 
a function of vocabulary size [12]. The entropy of n-grams 
for 5≤n  is computed in [14]. 

Hong and Hull introduced partial-word matching and 
used them for detecting patterns from the same source 
with similar shapes [5][6]. Feature-based partial-word 
matching for detecting bigram co-occurrences combines 
some of the advantages of character-based and word-
based recognition. Like character-based recognition, 
vocabulary is expandable and recognition is not limited to 
words with explicit handwritten samples in a training set. 
However, feature-based bigram detection is more stable 
than character-based recognition because it avoids 
segmentation and special ligature processing. 

We introduced letter n-gram co-occurrences between 
pairs of words for word discrimination in [2]. We have 
shown in [3] that with a reasonable number of reference 
words, bigrams represent the best compromise between 
the recall ability of single letters and the precision of 
trigrams. We also determined the performance of an ideal 
system as a function of lexicon and reference set sizes.  In 
[4] we proposed a complete handwriting recognition 
system based on detecting bigram co-occurrences and 
reported its performance as a function of lexicon and 
reference set sizes. 

Like the widely used Hidden Markov methods, feature-
level bigram detection brings context into the recognition 
stage instead of relegating it to post-processing. Unlike 
HMM, it requires the estimation of relatively few 
parameters, storing instead a reference set of 
representative patterns and their labels. 

 
2. Method and notation 
 

The proposed system is based on detecting match 
properties between words (Figure 1). The match 
properties indicate the presence or absence of at least a 
bigram-length match between the lexical labels of two 
words.  
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The system uses a lexicon and a reference set. The 

match properties of each lexicon word, for a specific 
reference set, are pre-computed at the lexical stage. The 
expected signal match properties of an unknown word are 
computed at the signal stage using length and location 
information about n-gram matches computed at the lexical 
stage. This information improves word discrimination by 
eliminating the possiblity of false matches at the “wrong” 
location. At the classification stage, the label of the lexical 
word with the match properties that are most similar to the 
match properties of the query word is assigned as the label 
of the query. To describe the system in detail, we are 
using the following notation: 

 
C  : the lexicon of length N . 

ic  : the ith lexicon word. 
R  : the reference set of length T . 

jr  : the jth reference word. 
k
ijv  : the length and position of the kth lexical match 

(of at least bigram length) between ic  and jr  
( ), ,k k k k

ij ij i jv l s s= . 
k
ijl  : the number of letters in the kth match. 
ˆk
ijl  : the estimated length of the kth ink match. 
k
is  : Index of letter in ic  where match begins. 
k
js  : Index of letter in jr  where match begins. 
ijV  : { }:k

ijv k∀ . 
V  : ijV 

  . 
k
ijw  : the estimated length and position of the kth ink 

match between the query word q , hypothesized 
as ic , and jr , ( )k

j
k
i

k
ij

k
ij sslw ˆ,ˆ,ˆ= . 

ijW  : { }:k
ijw k∀ . 

W  : ijW 
  . 

( )iR c  : { }: ,1xyW x i y T= ≤ ≤ . 
UR  : { }:1 ,1xyW x N y T≤ ≤ ≤ ≤ . 
( )iR c  : ( )U

iR R c− . 
 
2.1. Lexical processing 
 

Given a lexicon C  and a reference set R , the match 
properties matrix V  is calculated. Each element ijV  
corresponds to all (bigram or longer) lexical matches 
between the lexical candidate ic  and the reference word 

jr . Each of these matches k
ijv  describes the length of the 

match k
ijl  and its shift position k

is  and k
js , in both ic  and 

jr . These vectors are defined only when a lexical match 
exists between lexicon and reference words. An example 
V  is shown in Table 1. 

Table 1 Example of a match matrix 

Reference
Lexicon adds lever beeper 

adds 4,1,1 0 0 
beer 0 2,3,4 3,1,1; 2,3,5 
leopard 0 2,1,1 0 
leopards 2,7,3 2,1,1 0 
lever 0 5,1,1 2,4,5 
mere 0 2,2,4 2,2,5 
beeper 0 2,5,4 6,1,1 

 
2.2. Signal processing 
 

In this stage the match properties of the unknown word 
q  are detected. This is done by a location-guided 
matching of the feature representation of q  and the 
feature representation of each handwritten word in the 
reference set.  

Each handwritten word is represented as a string of 
feature symbols. These features are very simple and 
represent extremal points, cusps and intersections of the 
trace of the stylus in the x and y directions. Flybacks are 
detected and intersection points with the original stroke 
are marked. Each of these features is assigned an 
alphabetic label (Figure 2). 
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Figure 2 Features and their labels 
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The string representation of the word is constructed by 
analyzing its coordinate sequence and concatenating the 
corresponding feature labels (Figure 3). 

 

nTWBnNSXsEeNnWwSsnTwSNeEsS

 
Figure 3 The feature string of has 

 
2.2.1. Letter feature-length estimation. The expected 
feature-length of the letters in the alphabet is calculated by 
modeling the reference words and their feature lengths as 
an over-determined system of linear equations. 

The total length of each word is the sum of its 
constituent character lengths. A linear equation is 
constructed for every word in the reference set and a least-
squares solution is found for the whole system (Figure 4). 
A more detailed description is found in [13]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2.2. Detecting ink matches. The longest common 
subsequence (LCS) between the unknown and each 
reference word, near the expected location, is now 
determined. We align the reference word’s label and the 
query’s hypothesized label with their feature string 
representation from the left and right ends. We localize 
the search for the LCS to that part of string alignment cost 
matrix that corresponds to the rectangular intersection of 
the alignments. Figure 5 shows that the r’s are the longest 
match, so st is not detected as the desired matching 
segment between the words history and  request. Such 
false matches are avoided by localizing the search in the 
cost matrix to the estimated location of the bigram st. 
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Figure 3 A system of linear equations to 
estimate feature-length of the alphabet 
4 Matching segments between the words
history and request 
g common bigrams or longer segments 
andwritten words is inherently ambiguous. 
we model the process as a probabilistic two-
ction problem: matches ( )M  and no 
) . 

ification 

formulate the classification problem of 
e lexical word ic , represented with respect to 
e set by V , given the query’s match matrix W , 

( ) ( ) ( )
( )
i i

i
P W c P c

c W
P W

=   

( )
( ) ( )

U

i k
ij i

R

P c
P w c

P W
= ∏  

∝  ( )
U

k
ij i

R
P w c∏  

( )
( )

( )
( )

ˆ ˆ, ,
i i

k k k k
ij ij ij ij

R c R c
P l l M P l l M≡ ∏ ∏  

)  is the probability that query word q  and 
ord jr  exhibit match properties represented by 
 q  has the same lexical label as ic . Therefore, 

( )ˆ ,k k
ij ijl l M  if ic  has a lexical match with jr , and 

( )ˆ ,k k
ij ijl l M  otherwise. 

)M  is the probability that, given a lexical 
ts between ic  and jr ,  query word q ’s kth 
 reference word jr   has a length k

ijl  where the 
ngth of the match between  ic  and jr  is ˆk

ijl . 
ry word q  represented by its match matrix W  
sified to class *c , where: 
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( )
( )

( )
( )

* ˆ ˆarg max , ,
i i

k k k k
ij ij ij ij

i R c R c
c P l l M P l l M= ∏ ∏  

( ) ( )
( )

( )
( )

* 1 ˆ ˆarg max , ,
i i

U

k k k k
ij ij ij ijki R c R cij

R

c P l l M P l l M
P l M

= ∏ ∏
∏

( )
( )

( )
( )

( )
( )

( )
( )

* 1 ˆ ˆarg max , ,
i i

i i

k k k k
ij ij ij ijk ki R c R cij ij

R c R c

c P l l M P l l M
P l M P l M

= ∏ ∏
∏ ∏

( )
( )( )

*
ˆ ,

arg max
ˆ ,i

k k
ij ij

k ki R c ij ij

P l l M
c

P l l M
= ∏  

The class-conditional distributions ( )ˆ ,k k
ij ijP l l M  and 

( )ˆ ,k k
ij ijP l l M  are modeled as discrete 2-D empirical 

distributions of the feature-based match lengths among the 
words of the reference set. The probability of match 
location is conditioned on ˆk

ijl , the shorter edge of the 
rectangle enclosing plausible matches in the string 
alignment cost matrix. 
 
3. Experiments and results 
 

A database of about 6000 words was written by a 
single writer, with no constraints, on a CrossPad. We 
selected eleven mutually exclusive sets of samples (words 
ranging from 5 to 15 characters): a reference set RSet, and 
10 test sets TSet-i. Less than 50% of distinct word labels 
appear in both RSet and any TSet-i. Table 2 describes the 
statistics of these datasets. The last column of Table 2 is 
an average over the ten test sets. 

 

Table 2 Statistics of data used in testing 

 Database RSet TSet-i 
Number of words 5940 1000 100 
Lexically unique 1661 674 66 
Characters/word 
      (average) 

1-25 
(4.3) 

5-15 
(7.32) 

5-15 
(7.33) 

 
 
3.1 Preliminary results 
 

We study the effect, on the system performance, of 
adding new words to the reference set and to the lexicon. 
Each word in the ten test sets will be used as a query 
word. A match vector will be generated for each query. 

Table 3 reports the recognition results for each test set 
as a function of three different sizes of reference set and 
lexicon. Figure 6 shows how the average accuracy, over 
all test sets, increases as the number of reference words 
increases. Figure 7 shows how the average accuracy 
decreases as the size of the lexicon increases, given a 
fixed number of reference words. 

 

Table 3 Recognition rates as a function of reference set 
and lexicon sizes 

 

 

 

 

 

 

 

Figure 5 Average accuracy as a function of the 
number of reference words 

 

 

 

 

 

 

 

Figure 6 Average accuracy as a function of the lexicon 
size 

4. Discussion 
 

The accuracy of the system improves as the number of 
reference words increases because additional reference 
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words compensate for matching errors due to letter-form 
or stroke variations. As the size of the lexicon increases, 
given a fixed reference set, the accuracy decreases as a 
result of attempting to pack more samples into the fixed-
size feature space. The results are substantially as 
predicted from simulations [3]. 

Bigram detection using information about match 
position and expected length improves significantly on the 
accuracy we reported in [4]. We are still using an 
elementary set of features and simplistic string matching.  
We are currently modifying the features and signal 
matching routines to improve the estimation of the class-
conditional distributions. We plan to use features that are 
more expressive, and implement more elaborate 
approximate string matching.  

Table 3 shows increase in recognition rates, for all test 
sets and lexicon sizes, as the number of reference words 
increases. We believe that some sets improve more than 
others because they contain words with higher average 
Hamming Distance. Therefore, the words tolerate more 
match errors incurred at the signal matching stage. We are 
currently studying the relation between the lexical and 
signal matching stages and their contribution to the overall 
accuracy of the recognition system. The reference set can 
be easily augmented by adding newly recognized words. 
This provides a practical means for improving accuracy 
through adaptation. 

At the signal matching stage, we assume independence 
between matches of the unknown and each reference 
word. When two reference words share the same letters 
with the unknown then these matches are correlated, 
which biases the classifier in favour of lexicon words that 
contain frequent bigrams. We intend to model such 
correlations to improve accuracy. 

We will make use of standard word frequencies to 
resolve multiple candidates. These will eventually be 
modified to account for the writer’s own word-usage 
statistics. We will consider using dynamic word-transition 
models as well. 
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