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ABSTRACT

Recent papers have claimed that the result of K-means clus-
tering for time series subsequences (STS clustering) is inde-
pendent of the time series that created it. Our paper revisits
this claim. In particular, we consider the following question:
Given several time series sequences and a set of STS clus-
ter centroids from one of them (generated by the K-means
algorithm), is it possible to reliably determine which of the
sequences produced these cluster centroids?  While recent
results suggest that the answer should be NO, we answer
this question in the affirmative.

We present cluster shape distance, an alternate distance
measure for time series subsequence clusters, based on clus-
ter shapes. Given a set of clusters, its shape is the sorted list
of the pairwise Euclidean distances between their centroids.
We then present two algorithms based on this distance mea-
sure, which match a set of STS cluster centroids with the
time series that produced it. While the first algorithm cre-
ates smaller “fingerprints” for the sequences, the second is
more accurate. In our experiments with a dataset of 10
sequences, it produced a correct match 100% of the time.

Furthermore, we offer an analysis that explains why our
cluster shape distance provides a reliable way to match STS
clusters to the original sequences, whereas cluster set dis-
tance fails to do so. Our work establishes for the first time
a strong relation between the result of K-means STS clus-
tering and the time series sequence that created it, despite
earlier predictions that this is not possible.

1. INTRODUCTION

It has been claimed in recent literature [18] (preliminary
version [19]) that the result of K-means clustering for time
series subsequences (STS clustering) is independent of the
time series that created it:

” As we prove in this paper, the output of STS
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clustering does not depend on input, and is there-
fore meaningless”. [18]

Specifically, it was shown that when measuring the distance
between sets of cluster centroids (cluster set distance), this
distance is on average no smaller for cluster sets from the
same time series, obtained by using different random seeds in
the clustering algorithm, than for cluster sets from different
time series.

The claim of meaninglessness for STS subsequence clus-
tering “has cast a shadow over the emerging discipline of
time series data mining” [28]. This work has also generated
a flurry of follow-up research activity, including the current
paper.

Our paper focuses on the issue of dependence between the
output of STS clustering (i.e., the set of clusters) and its
input (i.e. a time series sequence). Specifically, we revisit
the following question, which was believed to be solved in
the negative by [18]:

Given several time series sequences and a set of
STS cluster centroids from one of them (gener-
ated by the K-means algorithm), is it possible
to reliably determine which of the sequences pro-
duced these cluster centroids?

To accomplish this task, we first define an alternate dis-
tance measure for time series subsequence clusters, cluster
shape distance. Given a cluster set, its shape consists of the
pairwise Euclidean distances between the cluster centroids
in the set; cluster shape distance is the Euclidean distance
between the shapes of two cluster sets. Our distance mea-
sure can be contrasted with the older measure of cluster set
distance. Unlike the latter, our measure is invariant under
translations and rotations of the cluster sets.

When using the new distance measure, we find that the
input and output of subsequence clustering are no longer in-
dependent. In fact, we provide two algorithms for matching
an STS cluster set with the original time series that gener-
ated it. These algorithms take as input a dataset consisting
of multiple time series sequences, and a set of queries, where
each query is a set of STS cluster centroids that are to be
matched to one of the sequences in the dataset.

Given a dataset D = {S1,S2,...5,} and a query Q (i.e.
the centroids of an STS cluster set generated by some dataset
from D), our algorithms return some index j into D; this
means that S; is believed to be the time series that gener-
ated @ (i.e. its match). If this is correct, then we say that



our algorithm has produced a correct match.

Both matching algorithms contain two phases, where phase
I preprocesses the time series sequences in our dataset, and
phase II uses the results of phase I to match a query with
some sequence in the dataset. The separation of matching
algorithms into two phases allows them to be easily adapted
to a database setting, where the dataset of multiple time se-
ries sequences is given ahead of time, and the queries are
supplied in an ad-hoc fashion one at a time. This setting
allows preprocessing to be done off-line, and ensures a very
quick answer for each query.

In phase I, both algorithms compute a list of cluster shapes
for each sequence, by performing multiple clustering runs
with different initial seeds. The first algorithm outputs the
average of these cluster shapes, which we call a cluster con-
stellation, whereas the second algorithm outputs the whole
list. While the first algorithm creates smaller “fingerprints”
for the sequences, the second is more accurate. In our exper-
iments with a dataset of 10 sequences, it produced a correct
match 100% of the time!

These results establish a strong dependence between the
result of K-means STS clustering and the time series se-
quence that created it. As far as we know, ours is the
only work that achieves this while using the same K-means
STS clustering algorithm as in [18], thereby disproving their
claim. Furthermore, we are able to distinguish between
many sequences at a time, whereas other work, such as [18,
8, 27], only distinguished between two sequences at a time.

In addition, we offer an analysis that explains why our

cluster shape distance provides a reliable way to match STS
clusters to the original sequences, whereas cluster set dis-
tance fails to do so.
Outline. We start by providing some background in Sec-
tion 2. We describe our algorithm for STS clustering, which
is the same as that in [18]. In Section 3 we define the two
notions of distance between cluster sets, cluster set distance
and cluster shape distance. The latter is a new approach
to measuring distances between sets of cluster centroids. In
Section 4, we provide an algorithm for matching an STS
cluster set with the original time series, which is based on
cluster shape distance. In Section 5, we present accuracy
tests for our matching algorithm, and discuss their results.
In Section 6, we consider the notion of sequence smoothness,
and observe its correlation with certain aspects of the se-
quence’s cluster shapes, such as their number. In Section 7,
we explain why the shape of the cluster centroids depends
on the sequence, whereas the actual position of the cluster
centroids does not; we also explain the correlation between
sequence smoothness and the number of shapes. We con-
clude with Section 8.

2. BACKGROUND

In this section, we provide the background information
about the K-means subsequence clustering algorithm.

2.1 K-means STS Clustering

Our algorithm for subsequence clustering is the same as
that in [18]; we describe and discuss it in this section.

The input to the STS clustering algorithm consists of a
time series sequence of length m, a window size w, and the
number of clusters K. We slice the original time series into
m —w + 1 subsequences, each of length w and we put these
into a subsequence matrix M[m — w + 1][w]. We then nor-

malize each subsequence, using the standard technique that
was first introduced to time-series similarity querying in [13].
Normalization is performed by subtracting the subsequence
average from each value in the subsequence, and dividing it
by the standard deviation. As a result, each subsequence
has an average of 0 and a standard deviation of 1. We then
cluster the normalized subsequences from M using the K-
means clustering algorithm introduced in [20], as follows:
STS Clustering Algorithm.

1. Randomly choose K subsequences indices in the range
[1,m — w + 1], to be used as seeds into the algorithm.
The subsequences corresponding to these indices will
serve as the initial set of K cluster centroids.

2. For each subsequence in M, calculate its Euclidean
Distance to the K cluster centroids and assign it a
value in the range [1, K], corresponding to the closest
cluster center.

3. After each subsequence has been assigned to a cluster,
recalculate the center of each cluster, taking the mean
(average) of all the subsequences in that cluster.

4. Repeat steps 2-3 until the cluster centroids remain un-
changed. The output is a matrix C[K][w], which con-
tains the final set of K cluster centroids.

We refer to one run of this algorithm as a clustering run.
Given a data sequence S, the number of clusters K, and
the window length w, a clustering run returns some set of
cluster centroids for S.

2.2 K-means clustering

We now give a perspective on K-means clustering, which
is a subroutine of K-means STS clustering. It is a technique
for discovering groups of similar patterns in a large collection
of unlabeled vectors. It was used by one of the authors as
early as 1964 for finding similar Han (Chinese) characters
for the first level of a two-level classifier [4], and later for
sorting unlabeled printed glyphs into alphabetic classes in a
cryptographic approach to optical character recognition [5,
6, 24], for feature extraction [23], and for unsupervised crop
classification by remote sensing [25].

The algorithm was popularized as a general method for
“exploratory” multivariate analysis of unlabeled data [2, 20].
A variation that addressed some of the shortcomings of the
elementary algorithm by splitting and merging classes was
called Isodata [3]. In the communications community, it-
erative minimization of the sum-of-squared-error criterion
became known as Vector Quantization [12, 29]. Examples
of easy- and difficult-to-cluster pattern configurations were
presented in [22] and in [15].

Among the first attempts at evaluating its effectiveness
was [9]. Variations of the method with respect to initial-
ization, cost function, splitting and merging clusters, and
distance metrics, are described in [16, 29, 10]. Current
research focuses on combining multiple cluster configura-
tions obtained by different algorithms, i.e., clustering en-
sembles [30].

It is easy to see that both the sample re-assignment step
and the recomputation of the cluster centroids decrease the
sum of the distances of the samples to their cluster centroids.
Therefore starting with any set of seed points (initial cluster
centroids), K-means always converges to a (local) minimum.



Different seeds may lead to different final cluster configura-
tions with different sums of squared error. Because the sum
of the within-cluster and between-cluster scatter is a con-
stant, the algorithm simultaneously maximizes the latter.

The final number of clusters is not necessarily equal to
the number of initial seeds: some clusters may become un-
populated, but neither step forms new clusters. Finally, and
for our analysis most importantly, multiple global minima,
each reachable by a different initialization, may exist.

In STS analysis, the K-means algorithm is used to find
the averages of overlapping subsequences. The K cluster
centroids are representative of the different subsequences,
and may therefore be considered as a condensed represen-
tation of the entire sequence (much like the eigenvectors in
Karhunen-Loeve Transform or Principal Component Anal-
ysis). Different sequences typically yield different centroids.
It appears, however, that with different initializations, even
the same sequence may lead to different centroids.

3. MEASURING CLUSTER DISTANCE

Our ability to correctly match K-means STS clusters to
the sequences that produced them hinges on the issue of
cluster distance. While it has been shown impossible to
accomplish this matching by measuring the Euclidean dis-
tances between sets of cluster centroids, we avoid this prob-
lem by defining an alternate distance measure for sets of
centroids. This section discusses both distance measures.

3.1 Cluster Set Distance

In [18], it was shown that the cluster set distance between
two sets of cluster centroids from the same time series, ob-
tained by using different random seeds in the clustering al-
gorithm, is on average no smaller than that between two sets
of cluster centroids from different time series.

DEFINITION 1. (Cluster Set Distance) Given two sets
of K cluster centroids , X = (X1,X2,...,Xk) and Y, their
cluster set distance is the sum of minimal Euclidean dis-
tances:

cluster-set-dist(X,Y) = dist(x1, closest(x1,Y))+

+dist(x2, closest(x2,Y))+. . .+dist(xk, closest(xk,Y)),

where dist is the Euclidean distance, and closest(x;,Y") de-
notes the cluster center in Y with the smallest Fuclidean
distance to x; (nearest neighbor).

Figure 1 illustrates the definition. In this case, the cluster
set distance between X and Y is the sum of AD+ BD+CD;
the cluster distance between Y and X is DB + EC + FB.
Note that this distance measure is not commutative.

We have implemented subsequence clustering and cluster
set distance, and confirmed the results observed in [18], us-
ing both Matlab and Java. We agree that the cluster set
distance between the two sets of clusters for the same time
series, obtained by using different random seeds in the clus-
tering algorithm, is no smaller than for two sets of clusters
from different time series. In addition, we have confirmed
another observation in [18], that the plots of the cluster cen-
troids resemble sine waves, and that the mean of the cluster
centroids, when weighed by cluster size, is a line or very
close to it.

While it is clear that the cluster set distance measure does
not produce meaningful results, we will present an alter-
nate measure for comparing time series subsequence clusters.
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Figure 1: Examples of cluster set distance.

run | w seeds(K = 3) D2 D3 Dy 3 Avg
1 8 | 226 549 82 | 2.7771 | 4.4644 | 2.4942 | 3.2452
2 8 | 902 7 171 | 4.4855 | 2.7416 | 2.9164 | 3.3812
3 8 | 525 751 820 | 4.4928 | 2.5958 | 2.8388 | 3.3091
4 16 | 226 549 82 | 5.1477 | 6.5741 | 3.1317 | 4.9512
5 1161902 7 171 | 6.6168 | 3.6607 | 4.8998 | 5.0591
6 16 | 525 751 820 | 6.5801 | 3.2478 | 5.0325 | 4.9535
7 32 | 226 549 82 | 8.3883 | 9.2677 | 3.7964 | 7.1508
8 32 | 902 7 171 | 6.9156 | 9.4574 | 5.9889 | 7.4539
9 32 | 525 751 820 | 9.2988 | 4.9502 | 7.4518 | 7.2336

Figure 2: different clustering runs for ocean series

This new measure, called cluster shape distance will allow us
to create algorithms that definitively establish a dependence
between the input of STS clustering and its output. We dis-
cuss it next.

3.2 Cluster Shapes

In this section, we introduce the notion of cluster shapes,
that will later be used for an alternate distance measure be-
tween sets of cluster centroids. They are defined as follows:

DEFINITION 2. (Cluster Shape) Given a set S of K
clusters with centroids C1,...,Ck, the shape of S is the
sorted sequence of all the pairwise Euclidean distances be-
tween the cluster centroids in S; it contains K % (K — 1)/2
numbers.

To illustrate this definition, imagine that after clustering
a set of time-series subsequences using the algorithm in Sec-
tion 2.1, we have obtained K cluster centroids of length w.
We then calculate the Euclidean distances for all pairs of
these centroids; there are K * (K — 1)/2 such pairs. For ex-
ample, when K = 3, we obtain 3 distances D1 2, D1,3, D23,
where D; ; represents the Euclidean distance between clus-
ter centroids ¢ and j.

Figure 2 illustrates the results for 9 different clustering
runs for the ocean series from [17].} It shows the distances
between cluster centroids , as well as their sum and average.
These results produced by clustering runs with K = 3 and
w = 8,16, 32; three different runs were performed for each
combination of K and w.

It is easy to see that in Figure 2, when we consider dif-
ferent runs with the same K and w, the sum and average
are very close regardless of the initial choice of cluster cen-
troids. While their distances (columns 4-6) are not necessar-
ily close, the insight here is that the order of the distances is

L All data sequences used in this paper were of length 1000.



run o1 4o 03
1 2.4942 | 2.7771 | 4.4644
2 2.7416 | 2.9164 | 4.4855
3 2.5958 | 2.8388 | 4.4928
4 3.1317 | 5.1477 | 6.5741
5 | 3.6607 | 4.8998 | 6.6168
6 3.2478 | 5.0325 | 6.5801
7 3.7964 | 8.3883 | 9.2677
8 5.9889 | 6.9156 | 9.4574
9 4.9502 | 7.4518 | 9.2988

Figure 3: different shapes for the ocean series

arbitrary. By sorting the set of distances D;,; for each run,
the resulting lists of numbers d1, 2,43 are also similar for
different initial seeds, as can be seen in Figure 3. This list
of numbers is the shape of the cluster set.

3.3 Cluster Shape Distance

In this section, we introduce a new approach to measur-
ing distances between sets of cluster centroids, called cluster
shape distance. With this new approach, given n series from
different sources and m sets of cluster centroids, these sets
can be mapped back to their original series with high accu-
racy.

Cluster shape distance is just the distance between the
shapes of two sets of cluster centroids:

DEFINITION 3. (Cluster Shape Distance) Given two
sets of clusters, X and Y, with cluster shapes {01,d2,03,...}
and {81,85,085,...} respectively, their cluster shape distance
is the Euclidean distance between their shapes:

cluster-shape-dist(X,Y) =
= dist({01, 62,03, - ..}, {01, 05, 03,...})

Note that the storage requirements are much smaller for
cluster shape distance than for cluster set distance. In order
to compute the cluster set distance between a given set of
cluster centroids S and another one that we will be receiving
in the future (our query), one needs to store S in its entirety;
for K centroids of length w, this means K *w values. On the
other hand, to compute the cluster shape distance between
S and a future set, one only needs to store the shape of S,
which means K (K —1)/2 values. Since K is typically much
smaller than 2w, the amount of storage is greatly reduced.

Cluster constellations are simply the result of averaging
together many cluster shapes for the same series:

DEFINITION 4. (Cluster Constellation) A cluster con-
stellation is the average of cluster shapes resulting from mul-
tiple clustering runs over the same series with the same w

and K. Cluster constellations are denoted by (A1, A, As,...).

EXAMPLE 1. Let A, B, C, and D be sets of cluster cen-
troids produced by four clustering runs over the same time
series, with K = 3. Let a1,az2,as be the shape of A, where
a1 18 the shortest length between any two cluster centroids in
A, a2 is the second shortest, and as is the longest. Similarly,
we compute b, b2, bz, c1,c2,c3, and d1,d2,ds as the shapes of
B, C, and D respectively. Then, (A1, Aa, A3) is the cluster
constellation for (A, B,C, D), where A; = avg(a;,bi,c;i,d;).

As can be seen in Figure 3, for a given series with any given
combination of K and w, these shapes for various clustering

A Ao As
ocean | 2.3598 | 3.0464 | 4.4583
packet | 2.1712 | 2.2315 | 2.3619
soil 1.9434 | 2.0073 | 2.0582
Sp 2.5302 | 2.9574 | 3.7740
tide 2.7175 | 3.3878 | 3.7050

Figure 4: cluster constellations for K =3, w =8

data A1 AQ Ag
ocean | 3.3018 | 5.1779 | 6.5902
packet | 2.3881 | 2.4878 | 2.6392
soil 2.0046 | 2.3572 | 2.5495
Sp 3.6240 | 4.1210 | 5.5512
tide 3.7356 | 4.2792 | 4.6382

Figure 5: cluster constellations for K = 3,w = 16

runs tend to be very similar to each other. While all these
shapes have K = 3, this is not necessary. These shapes
remained similar when we varied K and w, or when we tried
other series.

On the other hand, shapes for clustering runs from differ-
ent time series, tend to be very different. This is illustrated
in Figures 4, 5, and 6. Figure 4 shows cluster constellations
for five sequences from [17], with K = 3 and w = 8. Fig-
ure 5 is for the same sequences, with K = 3 and w = 16.
Figure 6 is with K = 4 and w = 8. Each of these cluster
constellations were computed by performing 100 clustering
runs and averaging the resulting shapes together.

On the basis of these empirical observations, one can con-
jecture that cluster shape distance is a more appropriate
distance for STS clusters than cluster set distance. Our
conjecture will be confirmed in the next section by showing
that cluster shape distance can serve as a basis for an algo-
rithm that matches STS cluster sets back to their original
time series.

4. CLUSTER MATCHING ALGORITHM

We now provide an algorithm for matching an STS clus-
ter set with the original time series, which uses the distances
between cluster shapes (and constellations), as opposed to
cluster set distances. There are two variations of this algo-
rithm, which we treat as separate algorithms.

The input to both algorithms consists of:

e a dataset consisting of N time series sequences

e one or more queries consisting of STS cluster set cen-
troids that are to be matched to one of the sequences
in the dataset

o fixed values for the number of clusters K and the win-

data A1 Az As A4 A5 Ae
ocean | 2.4787 | 2.5844 | 2.9337 | 2.9778 | 3.2012 | 4.7337
packet | 2.2235 | 2.2518 | 2.3438 | 2.5314 | 2.5647 | 2.6129
soil 2.0568 | 2.0874 | 2.1464 | 2.1803 | 2.2105 | 2.2533
Sp 2.1239 | 2.4650 | 2.9448 | 3.1700 | 3.4565 | 4.1346
tide 2.4059 | 2.4585 | 3.3746 | 3.4247 | 4.0473 | 4.1776

Figure 6: cluster constellations for K =4,w =8




dow size w, that were used to create the queries

Both algorithms consist of two phases, where phase I pre-
processes all the time series sequences in the input dataset,
and phase II uses the results of phase I to match each query
with some sequence in the dataset.

STS Cluster Matching Algorithm I

I-a For each sequence in the dataset, perform ) different
clustering runs with given K and w, compute the shape
of each resulting cluster set, and average all the shapes
to obtain the cluster constellation for that sequence.

I-b Store the resulting IV constellations in a master table
M.

II-a For each query, compute its shape, and find the Eu-
clidean distance to each of the constellations in M.

II-b The sequence with the smallest distance is the answer
to the query.

In phase I, both algorithms compute a number of cluster
shapes for each sequence, by performing multiple cluster-
ing runs, and create a master table M. However, the first
algorithm stores in M, for each input sequence, the aver-
age of these cluster shapes (a cluster constellation), whereas
the second algorithm stores all these shapes in an individual
table.

STS Cluster Matching Algorithm II

I-a For each sequence in the dataset, perform @ different
clustering runs with given K and w and compute the
shape of each resulting cluster set; store all the shapes
into an individual table consisting of the resulting @
constellations.

I-b Store the resulting IV individual tables in a master
table M.

II-a For each query, compute its shape, and find the Eu-
clidean distance to each of the shapes in each of the
individual tables in M.

II-b The sequence with the smallest distance is the answer
to the query.

Figure 7 shows a set of 10 cluster shapes (01, d2, d3). Each of
these shapes came from a different clustering run, two runs
for each of the five series listed in Figure 4. The information
about the sequence that produced each shape was then hid-
den, and the cluster matching algorithm was used to match
these shapes (queries) with the original sequences (dataset).
In this case, the assignments are all correct, and appear in
the rightmost column of Figure 7.

Note that both matching algorithms can be easily adapted
to a database setting, where the dataset of multiple time se-
ries sequences is given ahead of time, and the queries con-
sisting of STS cluster set centroids are supplied in an ad-hoc
fashion one at a time. This setting allows preprocessing to
be done off-line, and ensures a very quick answer for each

query.

5. EXPERIMENTAL EVALUATION

We now present our accuracy tests for the two matching
algorithms defined above. These tests used a dataset of ten

01 d2 d3 Assignment
2.6517 | 2.9498 | 3.7824 Sp
2.5873 | 3.5066 | 3.6869 tide
2.5958 | 2.8388 | 4.4928 ocean
2.1594 | 2.2460 | 2.3478 packet
1.9323 | 2.0474 | 2.0711 soil
2.1960 | 2.2640 | 2.3352 packet
2.4942 | 2.7771 | 4.4644 ocean
2.5529 | 2.8036 | 3.7939 Sp
1.9481 | 2.0417 | 2.0672 soil
2.8821 | 3.1982 | 3.7473 tide

Figure 7: sample shapes and their assignment for
K=3,w=_8

sequences from [17], listed in Figure 8. While such a dataset
seems small, it must be remembered that earlier work has
predicted that reliable matching would be impossible even
in the case of only two sequences! Ten sequences is therefore
more than sufficient for our purposes.

Accuracy test for STS cluster matching

1. We varied K and w, so K took values between 3 and
5, and w took one of the values in 8, 16, 32, 64. For
each of the 12 combinations of K and w, we ran the
algorithm 100 times. Therefore, the algorithm was run
a total of 12 * 100 = 1,200 times.

2. There were 10 queries for each invocation of the algo-
rithm. These were computed afresh each time from the
data sequences, by running the clustering algorithm
once on each of the 10 sequences in the dataset.

3. @, the number of clustering runs per sequence (see step
I-a of the matching algorithm), was fixed at 100.

4. Each invocation of the algorithm produced 10 poten-
tial matches, one for each sequence (i.e. for the query
that came from that sequence). As a result, for each
combination of K and w, we obtained 1000 potential
matches, 100 for each sequence.

5. We then computed the percentage of correct matches
for each sequence; we will refer to it as the accuracy
score. Ideally, it should be close to 100%.

The results of our test for Algorithm I appear in Fig-
ure 8. Overall there is an accuracy average of over 90%.
This means that, given a set of cluster centroids, Algorithm
I will correctly identify which series produced it in over 90%
of the cases.

The outcome for Algorithm II is more dramatic. All the
scores are 100%! These results show that it is possible to
tell which STS cluster set comes from which input sequence,
by using the cluster shape distance as a similarity measure.
If we are able to identify the original series that produced
the cluster centroids, this in turn means that the output
STS clustering does depend on input, despite earlier claims
to the contrary.

6. THE EFFECT OF SMOOTHNESS

In this section, we consider the notion of smoothness for
data sequences, and its effect on the number of unique shapes
for the sequences, as well as on those shapes themselves. We
observe that there is a strong correlation between them.



K 3 4 5

w 8 [ 16 [ 3264 | 8 [16 [ 32 [64 | 8 [ 16 | 32 | 64

burstin | 89 | 100 | 100 | 100 | 89 | 100 | 100 | 100 | 97 | 100 | 100 | 100

robot | 100 | 100 | 100 | 100 | 99 | 100 | 100 | 100 | 96 | 100 | 100 | 100

soil 80 | 100 | 94 | 100 | 85 | 100 | 99 | 95 | 95 | 100 | 100 | 97

tide 98 | 100 | 100 | 100 | 99 | 100 | 98 | 100 | 100 | 100 | 97 | 100

infra | 100 | 100 | 100 | 100 | 85 | 100 | 100 | 100 | 100 | 100 | 100 | 100

packet | 100 | 100 | 87 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

sp 90 | 100 | 100 | 100 | 75 | 100 | 100 | 100 | 98 | 90 | 100 | 100

sensorA | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 98 | 100 | 100 | 96

ocean | 100 | 100 | 93 | 100 | 95 | 100 | 100 | 100 | 93 | 100 | 85 | 95

leleccum | 100 | 100 | 100 | 83 | 97 | 92 | 91 | 99 | 98 | 93 | 100 | 83

Figure 8: accuracy scores
sequence b o1 42 43 skew
1 | burstin | -1.1187 1| 3.1317 | 5.1477 | 6.5741 || 2.8626
2 robot | -0.5442 2 [ 3.1601 | 5.1581 | 6.5680 || 2.8977
3 soil -0.4324 | less smooth 3 | 3.1851 | 5.3072 | 6.5946 || 2.9209
4 tide -0.1331 4| 3.1995 | 5.4227 | 6.5815 || 2.9487
5 | packet | 0.9389 5 | 3.2478 | 5.0325 | 6.5801 || 2.9705
6 infra 0.9756 6 | 3.3854 | 5.2233 | 6.5960 || 3.1462
7 Sp 2.0663 7 | 3.4312 | 4.9095 | 6.5661 || 3.1684
8 | sensorA | 2.1822 | more smooth 8| 3.6607 | 4.8998 | 6.6168 || 3.4080
9 | ocean | 2.3444 9 | 3.9748 | 4.4091 | 6.6150 || 3.5316
10 | leleccum | 2.9033

Figure 9: The smoothness of the data sequences

6.1 Sequence Smoothness

First, we define the notion of sequence smoothness. If
we look at the DFT of a sequence, the energy for a large
class of signals (colored noises) is concentrated in the first
few coeflicients. These signals have a skewed energy (or
power) spectrum, that drops as O(f~°), where f is the fre-
quency. [11]

DEFINITION 5. (Smoothness Coefficient) Given a time
series sequence o, its smoothness coefficient b is measured as
follows: |DFTp(c)| = O(f7°), where DFT (o) represents
the first m coefficients of the Discrete Fourier Transform of
o for some small value of m. [11]

From the definition, it follows that the smaller the exponent
of f, the fewer coefficients of the DFT are needed to store
most of the amplitude of the time series. The actual value
strongly depends on the nature of the data sequences. For
example, for b = 2, we have brown noise, or a random walk,
which models stock movements and exchange rates; its en-
ergy spectrum follows O(f~?2). Informally, the larger the b,
the smoother the time series.

For our set of 10 sequences, the values of b are shown in
Figure 9. These were computed with the value of 8 for m;
since the DFT coefficients are complex, this represents 16
real numbers.

In the next section, we show a correlation between the
b value of a sequences and some properties of its shape.
For that purpose, we classify the sequences in Figure 9 into
two groups: less smooth (sequences 1-6) and more smooth
(sequences 7-10).

6.2 Differences between the two groups

Figure 10: unique shapes for ocean (K = 3, w = 16)

When examining the individual tables in Algorithm II,
we often find that after many clustering runs on any one
series, only a few unique shapes are returned; that is, all
other shapes are copies of one of these (up to some precision
factor).

For instance, after 100 clustering runs for the ocean se-
ries, with K = 3 and w = 16, only 9 unique shapes (up to
precision of 4 decimal digits) were found; Figure 10 shows
these shapes. Note that all three shapes for the ocean series
from Figure 3 with w = 16 have exact matches in Figure 10,
namely shapes 1, 8, and 5.

However, other series produced more unique shapes, such
as 82 for the burstin sequence (K = 3,w = 16). Are there
any differences between these sequences that can account
for this disparity? The explanation seems to be in their
smoothness coefficient b.

In general, we have observed a strong correlation between
sequence smoothness and the number of unique shapes for it.
Figure 11 shows the maximum number of unique shapes for
the sequences in the two groups from Figure 9, for various
combinations of K and w. It is clear that the more smooth
sequences have fewer unique shapes than the less smooth
ones.

While there are more shapes for the less smooth sequences,
they tend to be “closer” to each other. That is, when we
use precision 3 rather than 4, the number of less smooth
shapes decreases significantly whereas the number of the
more smooth shapes does not (Figure 12).

Furthermore, there is a strong correlation between se-
quence smoothness and the shapes themselves. Specifically,
we consider the shape skew, defined as follows:

DEFINITION 6. (Shape Skew) Given a shape (81,02, ...),



K 3 4

w |16 [ 32 ] 64 |16 [ 32 ] 64
less smooth | 70 | 82 | 79 | 77 | 81 | 87 | 89 | 84
more smooth | 14 | 9 |16 | 28 | 29 | 27 | 18 | 54

Figure 11:

groups (precision 4)

number of unique shapes for the two

K 3 4

w |16|32|64 |16|32|64
less smooth | 45 | 46 | 59 | 60 | 53 | 80 | 67 | 63
more smooth | 14 | 9 |14 | 25 | 25 | 25 | 17 | 49

Figure 12: number of unique shapes for the two
groups (precision 3)

its skew is the standard deviation of 8;’s, divided by their av-

erage:
skew(d1,d2,...) = stddev(d1,92,...) / avg(d1,d2,...)

For equilateral triangles, skew is 0; the further a triangle is
from an equilateral, the greater is its skew.

Figure 13 shows the average skew of the sequences in the
two groups from Figure 9. It is clear that the shapes for the
more smooth sequences are more skewed than for the less
smooth ones.

7. CAUSE OF EQUIVALENT CONFIGURA-
TIONS IN STS CLUSTERING

We will now explain why the shape, or structure of the
configuration of STS cluster centroids depends on the se-
quence (Section 5), whereas the actual position of the clus-
ter centroids does not. We also explain why the number of
shapes depends on the smoothness coefficient (Section 6).

7.1 K-meansoptimization as afunction of pair-
wise distances

In order to explain the experimental results presented in
Section 5, we first reformulate the usual K-means objective
function or optimization criterion, i.e., the Sum-of-Squared-
Errors (SSE), in terms of the scalar products (pairwise dis-
tances) between pattern vectors.

Let N d-dimensional row vectors, labeled x1, ..., z;,. ..
be clustered into K clusters with centroids p1,. .., gk, - - -
Let I(k) be the index of the cluster to which z; was assigned,
and n(k) be the number of patterns in cluster k. Then, the
following is the formula for SSE:

SSE = mlnz Z — p) (s — pr)
k=1icI(k)
K
cwn3 (Sl > ) T 5 )
k=1 \iel(k) jeI(k) icI(k) ]EI(k)

= min szxl Z Z Z wzwj

lEI(k)JEI(k)

K
= const + max Z n Z Z zlz]
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Figure 15: Cluster configuration, with centroids
shown with crosses, found by K-means algorithm
with K = 3.

Therefore the conventional objective function SSE is equiva-
lent to maximizing the sum of the intra-cluster scalar prod-
ucts

x

1
2

k=1

Yo >

i€I(k) jelI(k)
where

!

wizy = ||w|| + ||zj|| — 5 (=i — 25)(zi — x;).

5
We conclude that if all the vectors have the same length,
then two cluster configurations with identical intra-cluster
pairwise scalar products mq,m; (or alternately identical pair-
wise distances (z; — z;)(z; — x;)’, must yield the same value
of SSE. However, the cluster centroids of the two configura-
tions will, in general, be different.

7.2  Multiple global maxima

Figure 14 shows a set of points in 2-D vector space that
exhibit multiple global maxima of the SSE. When clustered
with the K-means algorithm with K = 3 these samples will

Figure 16: Centroids found with different initial
cluster centroids. The two cluster configurations
have the same shape and the same SSE, but the
centroids cannot be mapped into one another one
another simply by renumbering them.



K 3 4
w 8 | 16 | 32 | 64 8 | 16 | 32 | 64
less smooth | 0.0788 | 0.0834 | 0.1111 | 0.0821 | 0.1256 | 0.1087 | 0.1500 | 0.1475
more smooth | 0.2541 | 0.2520 | 0.2125 | 0.3330 | 0.2440 | 0.2489 | 0.2253 | 0.2840
Figure 13: average skew for the two groups
be grouped either as indicated in Figure 15 or as in Fig- 1 2 3 4 5 6 7 8 9 10 11 12 13
ure 16. The two configurations have the same SSE (the S: 12 3 8 4 7 1 6 5 9 4 1 3 8
sum of the distances from the patterns to their cluster cen- M|2 3 8 4 71 6 5
troids), and the same shape (here, congruent triangles), but 3|8 4 7 1 6 5 9 4
evidently not the same position; that is, the cluster centroids 2\ls 8 4 7 1 6 5 9
cannot be mapped into one another by renumbering. W4 71 6 5 9 4 1

The existence of multiple equivalent configurations for the
points in Figure 14 is due to symmetries in the configura-
tions of the subsequence vectors. We will show that approx-
imate symmetries inevitably arise in STS clustering because
many pairs of shifted subsequences have almost the same
Euclidean distance between them. This results in multiple
cluster configurations with nearly identical SSEs.

7.3 Cyclic shifts

We will first show that periodic signals exhibit many pairs
of equidistant shifted subsequences and, consequently, mul-
tiple global minima of the SSE. Overlapped subsequences
of a periodic sequence can be conveniently represented as
cyclic shifts of a single subsequence (provided that the win-
dow length is equal to the period (or to a multiple thereof).

Consider a sequence S consisting of many repetitions of
a single subsequence s of length w, i.e., S = s,s,8,s,8,....
With infinite repetition, all of the shifted subsequences of
length w of s can be obtained from the circulant matriz
M. For example, if w = 5, s = 2,3,8,4,7, and S =
2,3,8,4,7,2,3,8,4,7,2,3,8,4,7,... then

4

T
~N & 00 W N
N~ &~ 00 W
W NN =
[ BNCIN \CREN |
=00 W N

Because all of the cyclic-shifted subsequences contain the
same values, their lengths are also the same. Now consider
two pairs of rows that correspond to the same shift, for in-
stance rows 1 & 4, and rows 2 & 5. The scalar product of
both pairs will be the same (113 in this case). Therefore
the Euclidean distance between row vectors 1 & 4, and be-
tween rows 2 & 5, is also the same. The dot product and
the distance between the vectors corresponding to rows 3 &
1 is also the same (because 6 mod 5 = 1): they are shift
equivalent to row vectors 1 & 4.

In fact, there can be at most w/2 distinct distance values
(aside from 0) for w even and (w — 1)/2 distinct values for
w odd. (The factor of 2 arises because a shift forward or
backward is the same.) Therefore the scalar products among
the (5 x 4)/2 = 10 pairs of vectors created by cyclic shifts
of 2, 3, 8, 4, 7, will have only two distinct values: 104 and
113. So the five row vectors lie in 5-D space at the vertices
of a polyhedron with only two distinct edge lengths (i.e., an
1sosceles simplet).

If we self-concatenate the above subsequence many times,
different random initializations will form three clusters pop-
ulated either by rows 1 & 4; 3 & 5; and 2, or by rows 1

Figure 17: Similar distance components in shifted
subsequences.

& 3; 2 & 5; and 4. The SSE for the two configurations is
the same: 58.0. So are their shapes, or lengths of the sides
of the two triangles formed by the two sets of cluster cen-
troids. However, the coordinates of the centroids of the two
configurations are different.

The shape of the triangles depends on the two distinct val-
ues of pairwise distances in 5-D space. We saw that for 2, 3,
8, 4, 7, all the scalar products between vectors were either
104 or 113. For a different sequence, 1, 2, 4, 8, 16, they are
124 or 186. The ratios of the sides of the triangles of the op-
timal cluster configurations (which form isosceles triangles)
are 0.86 and 0.97: therefore their shapes are different.

7.4 Arbitrary sequences

We are not clustering periodic sequences, but the number
of dissimilar distance values between shifted subsequences
in many real problems is also lower than what might be
expected. Consider the arbitrary sequence

$=2,3,8,4,71,6,59,4,1,3,8,...

shown in Figure 17. Examine two pairs of subsequences,
with window length w = 8, beginning at positions 1 & 3, and
2 & 4 respectively. If the window were shifted cyclically, then
the two pairwise distances would be exactly equal. Even as
it is, however, we see that seven pairs of component values
(shown in italics) are identical. If we shifted the second
sequence one more position, then six of the eight pairs of
dot-product components would still be the same. We would
therefore expect that the corresponding distances between
the shifted subsequences would also be very similar.

This multiplicity of almost identical distances gives rise
to alternative cluster configurations with almost identical
SSEs. With different random initializations, K-means lands
on one of these local extrema. The average value of each dis-
tinct group of distances depends, of course, on the underly-
ing sequence, and therefore so will the shape of the resulting
cluster configuration. (Note that Figure 14 had many pairs
of patterns with almost identical distances.) As in the case
of cyclic shifting, the centroids of the different configurations
cannot be mapped onto one another by renumbering.

If the same subsequence (a pattern) occurs several times in
the sequence, then the number of identical pairwise distance
values will increase correspondingly. Strict periodicity is the
extreme case. Smooth sequences have more similar shift-
equivalent pairs of subsequences, and therefore give rise to



more congruent and less skewed cluster configurations. We
note, however, that ezact equivalences arise only with peri-
odic sequences, and only if the window length is equal to an
integer multiple of the period.

7.5 Summary

In STS, the K-means sum-of-squared-error optimization
criterion is a function of the scalar product of pairs of sub-
sequence. Pairs of subsequences with the same displace-
ment (shift-equivalent pairs) are almost equidistant (exact
equality holds only for strictly periodic sequences). The
multiplicity of similar pairwise distance values gives rise to
approximately equal extrema of the optimization criterion
(the SSE) for several cluster configurations, any of which
may be reached with some random initialization. The cen-
troids of these configurations have the same structure, but
the clusters contain different vectors, hence their centroids
cannot be mapped into one another by renumbering. The
distinctive shape of the configurations depends on the dis-
tances between tight groups of shift-equivalent subsequences
(windows). The cluster configurations of smooth, repetitive
sequences display the most symmetry.

8. DISCUSSION

The recent claim of meaninglessness for STS subsequence
clustering [18] (preliminary version [19]) “has cast a shadow
over the emerging discipline of time series data mining” [28].
It has also generated a flurry of follow-up research activity.
As a result of this claim, many have moved away from STS
subsequence clustering, such as [26, 1, 21]. Others tried to
find “meaningful” results by using alternate clustering meth-
ods, such as density-based clustering [8] and self-organizing
maps [27], or by limiting themselves to cyclic data [7], or by
suggesting the use of medoids rather than means for clus-
tering [14].

As far as we know, ours is the only work that succeeds to
demonstrate a strong dependence of output on input for the
K-means STS clustering algorithm. This is despite the fact
that our matching criteria are tougher than elsewhere, such
as [18, 8, 27] — we are not restricted to just two sequences.
We therefore hope that this work will help to lift some of
the shadow that has been cast over time-series data mining.

Our research raises several questions, such as:

1. Why does cluster shape distance provide a reliable way
to match clusters to the original sequences for STS
clustering, where cluster set distance fails to do so?

2. How does sequence shape depend on various properties
of the sequence? Specifically, why are the number of
unique shapes, and the shape skew, correlated with
sequence smoothness?

3. Given some value of  (number of shapes), what is the
expected level of accuracy of our matching algorithms
for a given dataset? Conversely, how large should the
value of Q be to achieve some desired expectation of
matching accuracy?

We have provided the answer to Question 1, and partially
to Question 2, in Section 7. Question 3 remains open; we
now discuss it further.

We found that @ = 100 was sufficient for 85% accuracy for
algorithm I and 100% accuracy of Algorithm II. However,

this clearly depends on the nature of the sequences. Would
@ = 25 suffice? Will there be cases where @ = 100 is not
enough? How can we tell, for a given dataset and a given
degree of accuracy, what the appropriate value of @ should
be?

There is a direct connection between the number of unique
shapes and the value of Q. Clearly, if there are at most j
unique shapes for any sequence in the input dataset, and
we only store those, then @ = j suffices to achieve 100%
accuracy with Algorithm II. We therefore hope that our re-
search into shapes, and specifically the two correlations we
have identified in Section 6, will prove a good starting point
for answering Question 3.

In general, relating the error rate to the size of the train-
ing or reference set has been the objective of long-standing
research in pattern recognition. Only asymptotic results
have been obtained, the best known of which is the bound
of the Nearest Neighbor classifier at twice the Bayes Error
Rate [10]. There are also no general results on reaching
local vs. global optima with different initializations in gra-
dient descent algorithms. We therefore expect that strong
assumptions about the nature of the sequences in the dataset
will be necessary to provide a full answer to Question 3.

Another question that arises naturally is whether the sen-
sitivity of our clustering algorithm to different initializations
is simply due to the fact that it finds local, rather than
global, minima. We believe that this is not the primary
cause. We chose to use the clustering algorithm from [18]
so as to duplicate their setting. However, we have experi-
mented with other K-means STS clustering algorithms, that
attempted to get closer to the global minimum, and the re-
sults where the same. We also saw no improvement in our
matching algorithm when we used K-medoids in place of
K-means.
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