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Abstract

We present a document-specific OCR system and apply it
to a corpus of faxed business letters. Unsupervised classi-
fication of the segmented character bitmaps on each page,
using a “ clump” metric, typically yields several hundred
clusters with highly skewed populations. Letter identities
are assigned to each cluster by maximizing matches with
a lexicon of English words. We found that for 2/3 of the
pages, we can identify almost 80% of the words included
in the lexicon, without any shape training. Residual errors
are caused by mis-segmentation including missed lines and
punctuation. This research differs from earlier attempts to
apply cipher decoding to OCR in (1) using real data (2)
a more appropriate clustering algorithm, and (3) decoding
a many-to-many instead of a one-to-one mapping between
clusters and |etters.

1. Introduction

In today’s pixelated environment, any Tom, Dick and
Jane can design or download the font that best conveys
his or her message or personality. It is therefore of more
than academic interest to liberate OCR from the stereotypic
prototypes of predetermined character shapes. Document-
specific OCR can learn the peculiarities of the dominant
font much the way that we interpret a scrawled postcard
by exploiting the similarity of letters or groups of letters in
obscure words with those that appear in easily-read words.

Although there have been many earlier studies [1], [3],
[4], [5], [8], [9], [10], [11], [19], [20], [21] [22] that
exploited language context to decode character or word
bitmaps, we believe that this is the first application of such
techniques to a large collection of short, dirty documents.
Our fax data, from the ISRI corpus, contains letterheads,
addresses, signatures, upper and lower case, punctuation,
underscores, and averages less than twenty lines of body
type per document [25].
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Neither the methods cited above, nor those developed
expressly for substitution ciphers [6], [7], [13], [17], [18],
[24], [26], [27], are robust enough to unscramble the many-
to-many mappings encountered in the OCR application.
Such mappings arise because impure clusters correspond to
more than one alphabetic class of letters, and bitmaps corre-
sponding to the same alphabetic class may appear in several
clusters. We have developed a simple deciphering algorithm
that is more effective for OCR than the classical methods.

Our work has benefited from renewed interest in symbol-
based compression for the forthcoming JBIG2 standard [2],
[12], [15]. Symbol-based text-image compression is typ-
ically twice as efficient as JBIG1 compression, which in
turn is nearly twice as good as CCITT-G4. We therefore de-
signed our OCR in the expectation of rapid adoption of the
symbol-based text-image compression standards. Building
OCR on top of symbol-based compression offers the ben-
efit of dual-mode representation of documents [23] that al-
lows search on the character-coded version and preserves
the original page-image for viewing.

A critical advance in symbol-image compression has
been the development of cluster-distance metrics that
weight groups of adjacent difference pixels more heavily
than an equal number of scattered difference pixels [16].
A further improvement that we introduce is the separation
of difference clumps consisting of foreground pixels from
clumps of background pixels. This metric, combined with a
standard nearest-center clustering algorithm, improves sig-
nificantly the purity of the resulting clusters.

The next section describes our data, preprocessing, clus-
tering algorithm, decoding procedure, and evaluation. In
the third section we present our results. In the conclusions
we speculate on what is ahead in the direction that we have
taken.
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2. Data And M ethodology

2.1 Data

The data consists of 200 English-language business let-
ters transmitted locally in 204x196 dpi fine mode facsim-
ile from a Xerox 7024 fax machine to a fax modem. The
sample includes typewritten and poorly copied letters, some
with handwritten annotations. The average number of
words per letter is 257, and the average number of char-
acters is 1600. 87% of the words could be found in our
21,466-word lexicon compiled from the Brown corpus.

According to [25], the average character accuracy of the
tested commercial OCR systems barely topped 97%, in con-
trast with the nearly 99% obtained without facsimile trans-
mission on the same documents scanned at 300 dpi. A
character-level accuracy of 97% corresponds to a word ac-
curacy of only about 85%.

2.2. Preprocessing

For layout analysis we follow [14]. We find the con-
nected foreground components using 4-connectivity and
merge some adjacent components like the dots on i’s and
j’s. Text-line and word boundaries are determined using
thresholds based on the average height of the connected
components. At the end of this stage most of the charac-
ter images are isolated, but some are conjoined and some
are fragmented.

2.3. Unsupervised Classification

The first cluster is seeded by the first character-bitmap
on the page. New clusters are created whenever a character
bitmap cannot be assigned to one of the existing clusters.
A character bitmap is assigned to the cluster to which its
bitmap distance is least (distance is calculated only to the
first bitmap of each cluster). The symmetric distance metric
is computed by aligning two bitmaps to be compared ac-
cording to their horizontal and vertical pixel medians, then
shifting one relative to the other in a 3x3 neighborhood
to find the best match. Because most of the bitmap pairs
are highly dissimilar, the clustering algorithm has various
bailout rules that allow it to abandon unpromising pairings
quickly.

The symmetric distance between two aligned bitmaps
A and B is defined as the asymmetric distance between A
and B plus the asymmetric distance between B and A. The
asymmetric distance between A and B is the count of the
number of pixels that are black in A and white in B, with
each black difference pixel in A weighted by the number
of its black 4-neighbors in A. The asymmetric distance be-
tween B and A is the converse.

At the end of the initial clustering pass, similar clusters
are merged if the ratio of their average intra-cluster to inter-
cluster distance is larger than 0.5. The two averages are

based on all pairs of bitmaps within the same cluster, and
on all pairs in different clusters, respectively. The ratio is
retained for further use.

Any singleton cluster is merged into the nearest larger
cluster if its distance to any one of the members of that clus-
ter is less than an arbitrary threshold value.

2.4. Context Analysis

Context analysis is done by iterative applications of sev-
eral simple modules each attempting to assign labels to the
clusters by different rules. Every tentative assignment is
evaluated using a v/p ratio which is the number of valid
words from the lexicon over the number of word-patterns
containing them. A word-pattern may contain a mixture
of elements from labeled and unlabeled clusters. Only one
match will be counted even if there are multiple matches
for the same word-pattern from the lexicon. Word interpre-
tations are built up progressively from the accepted assign-
ments. The most useful modules are as follows.

¢ JointAssign: We take the three largest clusters and try
to assign to them every triplet of eight most common
letters (observed in the Brown corpus) {a,e,i,o,n,r,s,t},
from which we select the triplet that maximizes the
number of matching lexicon entries among all those
words which contain at least two occurrences of these
three clusters. For instance, by assigning e,i,o to clus-
ters 1,2,3 respectively, the following strings (x stand-
ing for any other clusters) can be interpreted as the pat-
terns below them and matched with words from lexi-
con in the third line:
clusters> x3x13xx1x xXXX3X2xx23X 1xXX2x3

patterns> o eo e o1l do e 1io

matches > homeowner association ??????
The vip ratio in this case is 2/3. If the best triplet makes
a v/p ratio above 0.75, we accept the assignment. Oth-
erwise, we try clusters 2,3,4, and 3,4,5 in turn.

¢ UniqueMatch: Next, every word-pattern containing at
least one unlabeled cluster is checked to see if some as-
signment yields a unique lexicon match. For instance,
the unlabeled cluster “_" in the pattern “w_ic_" will be
tentatively labeled with “h” since it produces a unique
match “which”. The one in “_low” will not be assigned
since the pattern matches both “flow” and “glow”. The
tentative assignment will be checked to make sure v/p
is at least 0.25. The search is iterated with the updated

patterns until no more new unique matches are found.

e MostMatch: If there are still unlabeled clusters, then
the algorithm assigns every letter in turn to one of the
unlabeled clusters and checks which assignments re-
sults in the highest v/p ratio. If the best ratio is at least
0.75, and the second best is not too close (at least 0.1
below), then this assignment is ratified. For example, if



cluster 9 appears in only four words, “9low,” “ierce,”
“a99air,” and “lu99a,” then f is assigned to 9 because it
yields 3 lexicon words out of 4 (v/p = 0.75), whereas p
results in only two matches (v/p = 0.5), and g in only
one (v/p = 0.25) (if “luffa” appeared in the lexicon,
then the match would be even safer).

o \erifyAssign: Finally, every assignment is verified by
trying to replace it with each of the other 25 letters.
If the v/p ratio can be improved, and either more than
one word contains this cluster or the single word that
contains it has at least two letters, then the label is re-
placed, and the verification is continued. Precaution
is taken to guard clusters that appear only once as a
single-letter word from receiving assignment of “a” or
“i” unless context from other words would also justify
it.

Other modules exploit the most frequent short words (1-
4 letters) and the most frequent bigrams, or try to assign an
unlabeled cluster to its nearest labeled neighbor determined
by intra/inter-cluster distance ratio.

These modules make cumulative contributions in the in-
terpretation process. Jointly, they are able to handle split
clusters of the same symbol. Loose requirements (v/p less
than 1) on the simultaneous assignment of all bitmaps in the
same cluster give some tolerance for clustering errors that
yield impure clusters.

2.5. Evaluation

The evaluation considers both the (partially) labeled
sample and the ground-truth as a sequence of words without
regard to line breaks. The two sequences are matched with
the words as the basic units (two words have to be identical
to be counted as a match) and the length of the longest com-
mon subsequence (LCS) is calculated (raw score 1). Then
the interpretation is spell-corrected using the same lexicon
for calculating another LCS score (raw score 2). To com-
pare across different pages, we normalize raw scores 1 and
2 by the number of words in the truth file (called true words)
to obtain final scores 1 and 2.

Business letters contain, of course, many proper nouns
and digit sequences that can be identified only when their
constituent letters share a cluster with bitmaps of lexical
words. Errors in such assignments cannot be corrected by
the spell checker. So we also count the true words appear-
ing in the lexicon and normalize the raw scores with it to
obtain final scores 3 and 4.

3. Results

The median proportion of characters per sample that are
assigned alphabetic labels is 93% - the remainder are in
clusters that cannot be matched to the lexicon. These in-
clude mis-segmented patterns, special symbols (e.g., $),

digits, and punctuation. The median number of clusters per
sample is 244; typically 55% of these are singletons.

Figure 1 shows a plot of the ratio of percent true words
that are correctly interpreted (score 4). From the plot, we
see that there are two clusters of results: most of the pages
show up in a group with the scores above 50% and average
near 80%, while the rest are below 50% and average near
20%. Table 1 lists the averages of all four scores broken
down by these two groups. For pages in the first group,
good knowledge of the letter content can be obtained from
the word interpretations (see example in Figure 2). Pages in
the second group suffered from catastrophic failures in the
interpretation process so that no meaningful contents can be
extracted. Recalling that shape based recognition of these
pages achieved a word-level accuracy of only about 85%
(before spell check), we believe that our method deserves
further pursuit.
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Figure 1. Percent true words (contained in our
lexicon) identified versus number of charac-
ters on the page.

dear homeowners a an accordance with article add
of the bypass of the mess pillage homeowners
association a and paragraph a of the declaration
of a covenant a conditions a and restrictions for
the property a notice is hereby given that the
annual meeting of the mess pillage home owners
will be held at a a a a am on steady remember la

a saga at the recreation room located at ...

Figure 2. An example interpretation sequence
after spell check.

4. Conclusions

We are convinced that adaptive, document-specific char-
acter recognition algorithms are necessary to improve OCR
beyond its current plateau. Although commercial software
performs very well on clean pages and on common fonts,



Table 1. Average scores by performance
group. avg: average of scores 1to 4.

group #pages || scorel | score2 | score3 | score4
avg > 50 137 64.2 68.7 73.4 78.5
avg < 50 63 114 16.2 13.7 19.4
all 200 47.6 52.2 54.6 59.9

its error rate increases abruptly on low-quality pages and
unusual typefaces that are easily read (in context) by hu-
mans. Context recognition based on the homogeneity of
type shapes and image distortion within the same document
is, of course, only one of the possible remedies. In this re-
search, we explore how far linguistic context alone can take
us. We expect that future systems will integrate contextual
methods with shape based classifiers instead of restricting
the use of context to post-processing.

The method that we have described can be readily ap-
plied to text images compressed with symbol-matching.
Widespread acceptance of the standard will stimulate the
development of special-purpose hardware. With meth-
ods such as those advocated here, the resulting volume
of compressed text images can be efficiently converted to
character-coded form without resorting to further pixel-
level manipulation. Access to a standard file format for se-
quences of compressed character bitmaps will also greatly
facilitate the development of OCR algorithms for specific
applications.

The major weakness of our method is its inability to cope
with digits, special symbols, and punctuation. Not only are
these glyphs not recognized, but punctuation appended to
a word precludes matching it correctly to the lexicon. Al-
though it is clear that context is insufficient to recognize
unconstrained, poorly digitized text, it is surprising that it
comes fairly close to what has been achieved with shape-
based methods.

However, contextual methods are also applicable to non-
alphabetic symbols. We are currently attempting to extend
contextual bitmap identification to this set. Since digits,
special symbols and punctuation are seldom combined with
letters or with each other in unique configurations, we ex-
pect that will have to rely more on statistical morphology
than on strictly lexical methods. Fortunately, the availabil-
ity of large corpora in coded form allows us to compile the
necessary information.
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