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Abstract. Letter-polygram based Symbolic Indirect Correlation is a new method that offers significant 
advantages for ordered unsegmented signals. However, its application to on -line, cursive handwriting requires 
solving several difficult problems. (1) Reference strings of words must satisfy certa in uniformity properties on 
their lexical match with the lexicon of unknown words. (2) The Viterbi algorithm must be modified and 
trained to extract polygram -length feature matches from both the reference string and the query. (3) Efficient 
permutation matching algorithms are required for the comparison of lexical and feature permutations. We 
present our analyses, simulations and current status, and solicit suggestions to overcome these problems.  

 
1. Introduction 
Most recognition engines for difficult -to-segment scripts and speech are built around Hidden Markov Models 
(HMM's) (Plamondon & Srihari, 2000; Hu & al., 1996; Dolfing, 1998; Bellegarda & al., 1995; Li &al., 2000). 
Parametric recognizers for unsegmented signals, like HMM's, are hard to train. In cont rast, non-parametric 
classifiers, like Nearest -neighbor classifiers (Desarathy, 1991) (and k -NN) require no training, are simple to 
build, and have reasonable run -time characteristics after appropriate preprocessing of the reference data.  

Symbolic Indirect Correlation (SIC) is a new non -parametric method for exploiting the ordered 
correspondences between lexical transcripts of signals of arbitrary length and their feature representation. We 
call it indirect because it is based on a comparison of comparison s, and symbolic because it makes use of ordered 
lexical (letter) polygrams. Correlation is meant to suggest sliding-window type comparisons.  

SIC is applicable wherever unlabeled signals can be compared to lexically labeled reference signals. It 
avoids the usual integrated segmentation-by-recognition loop. In contrast to whole -word recognition, it does not 
require feature-level samples of the words to be recognized. Unlike the prevalent Hidden Markov Methods, it 
needs no estimates of an enormous number of cl assifier parameters by means of a fragile initial bootstrap. A 
survey of recent pattern recognition textbooks and technical journals does not reveal any similar approach, nor 
does a recent comprehensive survey of statistical pattern classification (Jain & al., 2000). We introduced SIC in 
Nagy & al., 2003 and Nagy & al., 2004 with a representation based on ordered bipartite graphs, but here we use 
permutations. 
 
2. Correlation in time order of lexical and signal co-occurrences 
SIC uses two tiers of compariso ns. At the first level, the feature-string representation of the unknown signal is 
compared to the feature -string representation of the reference signal of known words or phrases, and each word 
(class) in a lexicon of allowable words is compared to the tra nscript of the reference set. At the second level, the 
permutation showing the order of the feature -level matches of the unknown signal with the reference is 
compared with each of the lexical -level permutations that represent the order of matches of a lexi con word with 
the transcript of the reference set. The decision is based on the largest isomorphic subpermutation found between 
the feature-level permutation and each of the lexical -level permutations.  

For simplicity we describe SIC using a lexicon of two words (purpose and republic) and a reference 
string of three words (preserve ~ respond ~ pursue ). In a lexical preprocessing stage on the transcripts of the 
lexicon and of the reference words we find the location of all letter polygram matches (e.g the six th and seventh 
letters of purpose match the fourth and fifth letters of preserve).  

The matches between lexicon words and reference words are represented as a permutation that merely 
lists the rank (order of occurrence from left to right) of a match in the  reference string ordered according to the 
corresponding polygram rank in the query. Thus, the permutation representation of the matches of purpose with 
the reference string preserve ~ respond ~ pursue  is 〈3, 2, 1〉 which shows that when we consider the mat ches in 
purpose from left to right, i.e., pur (with pursue), po (with respond) and se (with preserve), they occur in the 
reference in the order se, po and pur from left to right. Similarly the permutation for republic is 〈1, 2, 3〉. 

If feature extraction is perfect and the writing is noiseless, it suffices to determine which lexical candidate 
induces the same permutation as the query. For imperfect matches, classification is performed by finding the 
largest common isomorphic subpermutation between the query and each of the lexical permutations.  

 
3.  Reference string characteristics 
The reference string determines the nature of the lexical permutations and hence is the most important part of the 
SIC classifier. An ideal reference string will generate lexical p ermutations that are least similar to each other. For 
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example, in a two-word lexicon the reference string should generate a monotonically increasing permutation for 
one word and a monotonically decreasing permutation for the other. In such a case, the size  of the largest 
common isomorphic subpermutation is 1, the least possible size.  

As the size of the lexicon increases it becomes increasingly difficult to select a reference string that 
maintains maximum distance between every pair of lexical permutations. However, for large lexicons a random 
selection of reference words will generate lexical permutations where about half the elements of any two lexical 
permutations are isomorphic. For example, lexical permutations of length 20 have an average overlap of 12. 5. 

Longer reference strings give more complicated lexical permutations, in effect increasing the distance 
between classes. However, there is an upper bound on the separation of classes because when the size of the 
lexical permutation increases beyond the n umber of distinct polygrams in the query word, at least some 
polygrams in the query will have multiple matches in the reference string. Such polygrams form isomorphic 
subpermutations. Therefore, the largest common isomorphic subpermutation between two lexi cal permutations 
will be at least as large as min(∆1, ∆2), where ∆i is the largest number of matching reference polygrams for a 
polygram in the ith lexical word. 
 
4. Choosing a reference string 
Depending on the reference string, a lexical permutation can b e a subpermutation of another lexical permutation, 
even when the corresponding word is not a lexical subset of the other, making it impossible for SIC to 
distinguish between the two. To avoid this we want the reference string to induce lexical permutations  of about 
equal lengths.   

For a lexicon of 50 randomly selected words we constructed a reference string of 309 words (225 unique) 
that generated lexical permutations that were each approximately 60 elements long. We achieve the same 
accuracy (97%) as with a reference string of 1000 words in earlier simulations, with the same amount of noise 
(20% of the elements added and 20% deleted) (Nagy & al. 2004).  The results of classification with simulated 
noise are plotted in Figure 1. Longer permutations compensa te for missed and spurious elements due to noise. 
The probability of error asymptotically decreases to the Bayes risk.  

  
(a) (b) 

Figure 1.  Mean Rank and Mean Error (a) with 20% elements deleted and added randomly, and (b) with 40% 
elements deleted and added randomly. With more noise we need longer lexical permutations.  

 
Finding the maximal common isomorphic subpermutation problem is NP complete in the difference 

between the sizes of the longer of the two permutations and the largest common isomorphic s ubpermutation 
(Bose & al., 1993). In order to reduce the computation time for graph comparison we break the reference string 
into several smaller reference strings and combine the results from the different classifications using these 
reference strings. Thus, instead of comparing two large graphs, we compare several pairs of small graphs.  
 
5. Handwriting Features 
We describe the handwritten curves using simplistic time -ordered local extrema of the trace of the stylus in eight 
equally spaced x and y directions by projecting the ink trace in each direction (El -Nasan, 2003). Local maxima 
of specific projections represent extremal -points on the ink trace in the corresponding direction (method 
suggested by Prof. F. Lebourgeois, INSA de Lyon). The extrema are also labeled according to the zone 
(ascender, body or median, descender) in which they occur.  

Figure 2 shows the length and location of a polygram co -occurrence (match) between the word whatever 
and 26 other (reference) words in the feature and lexical domai n. Each line y = i, represents the length and 
location in whatever of a polygram co-occurrence (solid line) between whatever and reference word i. The 
character labels are placed at the start (lexical) or estimated start (feature) of the particular charact er in whatever.  

A good proportion of the feature matches in Figure 2a are clustered, i.e., they begin and end at nearly the 
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same locations – typically at the beginning of a loop and at some rare feature combination (cusp or inflection) 
respectively. The correlation coefficient is only ~0.11 between lexical and feature matches for 10 queries and 
two reference sets of 132 and 235 words (each designed to yield lexical permutations with ~80 elements) 
respectively. 

 
 
 
 

The scale invariance of our feature se t is desirable, but it causes many spurious matches (Figure 3) and 
thus low correlation between lexical and signal matches. Zoning, shown in Figure 3 by dotted lines, can 
eliminate some of the spurious matches, though most are inherent to the extremal poin t features due to scale 
invariance. 

Intersection points in a handwritten trace are useful indicators of irregularity and can be used to 
distinguish similar curves and thus similar symbols (like ‘u’ and ‘v’).  However, the chronological position of 
intersection points with respect to the extrema is unreliable. For example, in Figure 3, if we include the 
intersection points in the feature strings of always and today we would still exactly match the first loop of w and 
a, but not the second loop in these lette rs. We propose to identify and correct transposition errors involving 
intersection points.  

 

  

  
(EeNnWwSsEeNnWwSsakjiWwSsEeNnWwSsEeNnWwSsEWnNSsEeNnWwSsEeNnWwSsEeNnWwSsEeNnWECDGHIsnNeEsSwWn) 

(RRRSsnsakjiWwSsEeNnWwSsEeNnWwSNeEWwSsakjiWwSsEeNnWwSsEeNnWwSsTTTwSsETTTCDGHINSs)F(WnNS) 
(e) 

(EeNnWwSsEeNnWwSsakjiWwSsEeNnWwSsEeNnWwSsEWnNSsEeNnWwSsEeNnWwSsEeNnWwSsEeNnWECDGHIsnNeEsSwWn) 
(RRRSsnsakjiWwSsEeNnWwSsEeNnWwSNeEWwSsakjiWwSsEeNnWwSsEeNnWwSsTTTwSsETTTCDGHINSs)F(WnNS) 

(f) 

   
(g) (h) 

Figure 3. Pairs (a)-(b) and (c)-(d): The bold parts of the two words have exactly the same feature representation, 
because the ‘w’ in always (enlarged in Figure (g)) has two loops connected together, which is the same in ‘o’ or ‘a’ 
in today (enlarged in Figure (h)) except  for scale. We currently ignore the intersection points in ‘a’ for reasons 
discussed in Section 5. (e): The feature string for always and today with the matching parts of Figures (a) and (b) 
in bold. (f): Same for pair in Figures (c) and (d).  

Figure 2. Length and location in the query of common polygrams between the query and a reference word in  
(a) feature, and (b) lexical domain. Reference words are s orted by the location of their first feature match.  

(a) (b) 
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To better identify polygram co-occurrence in the feature domain we propose matching the loops as a 
whole unit. We will also consider some loop size attribute (curve -length, loop area, etc.) to avoid matching loops 
of different nature. However, incorporating the loop size into the feature string leads to two additional problems: 
1) loop definition and identification, and 2) scale invariance.  

Some researchers (Doermann & al., 2002; Xue and Govindaraju, 2001) define a loop as a continuous ink 
trace that starts and ends at the same point. According to this definition we would get as many loops as 
intersection points in Figure 4. However, the intersection points marked non-loop occur only because of the 
intersection of two loops. We propose the following definition to overc ome this anomaly: A loop is a continuous 
ink trace that starts and ends at the same (intersection) point such that a point that immediately precedes the 
intersection point going into the loop or immediately follows it coming out of the loop lies outside th e area 
enclosed by the loop. This leads to correct identification of all the intersection points as labeled in Figure 4.   

   
 
 
In order to maintain the scale invariance of the features at word level, we normalize the curve lengths of 

the ink traces using the average curve length between extremal -point features in the median zone.  
Another factor affecting feature polygram matching may be our handling of cusps. We define a cusp as a 

point where extrema in three adjacent directions occur simultaneously and treat cusps as special features.  It may 
however, be prudent to treat cusps either as smooth curves or small loops (Figure 5).  

We use also features based on the curvature of handwriting ( De Stephano & al. , 2004a; De Stephano & 
al., 2004b) provided by Prof.  Angelo Marcelli, and the extremal -point features without zones.   

 

   
(a) (b) (c) 

 
 

 
6. Conclusion 
We haven't presented any error rates on on -line handwriting because we don't have any that are acceptable. The 
theory show that SIC offers several sig nificant advantages over alternative classifiers for patterns represented by 
unsegmented strings of features, but our investigations have also brought to light many stumbling blocks. We 
explain some of the problems that we are striving to overcome.  

Our feature strings, even in clean cursive writing, often have more than 100% noise, i.e., missed and 
spurious elements among corresponding polygrams in the query and the reference words. The polygrams are 
detected by string matching, which requires setting thre sholds on the number of feature matches that are 
expected to constitute a polygram match, and on the length or number of possible gaps in the sequence. The 
length of letter bigrams varies from 12 features for letters with simple shapes, like cc, to about 40 for complex 
pairs like mm. We insist on using simple features because we want to validate the claim that SIC can work with 
any sequence-preserving features. 

The theory and simulations assure us that extending the length of the reference string will overc ome noise 
in feature matches even if the noise is correlated. However, our painstakingly developed Branch -and-Bound 
algorithm (Nagy & al., 2004) can find the longest common subpermutation only in pairs of permutations of 
about 20 elements. We also have translated finding common permutations into a clique -finding problem over 
graphs with n2 nodes, where n is the average length of the permutations to be matched. Among the dozens of 
reported approximate maximal -clique and independent set algorithms, we have no t found any whose bias (they 
all report too few elements, of course) we could estimate reliably on variable -size graphs (Hochbaum, 1997; 
Abello & al., 2001; Bomze & al., 1999). We have shown that for SIC the cliques must always be "near" the 

Figure 4. Intersecting loops along with intersection points that do not define a loop.  
 

Figure 5. A cusp (a) can be thought of as a singularity in the class of smooth curves (b) or small loops (c). The main 
difference is the order of o ccurrence of the extremal point features (shown by an arrow in the particular direction).  
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diagonal of this large graph, and have experimented with truncated graphs. However, the advantage of truncation 
is significant only for graphs too large to use an exact clique -finding algorithm even on the truncated graph. 
Even for the multiple reference string approach  that we described above, it would be desirable to increase the 
length of each segment by a factor of two. This is in the realm of feasibility, and can easily be done with multiple 
processors, but we have not yet done it (we have never claimed that SIC is fast!). 

A difficult problem is that of permutation size normalization. A temporary solution, reported above, that 
may not always be applicable in practice, is to generate reference strings with the property that they produce 
roughly equal length lexical permutations. This requires having a large database of words with feature 
representations. Most on -line handwritten databases have many writers but relatively few words by each.  

We are conducting experiments with three kinds of (simple) features, three diff erent on-line handwritten 
databases, several algorithms for finding the maximal common subpermutations, analysis and simulations of the 
match properties of purely random permutations and random permutations generated from text with simulated 
noise, and with a number of methods of reference string selection. We remain optimistic that we will eventually 
succeed, but dare not promise low error dates on sizeable data in time for IGS05.  
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