

1

Online Handwriting Recognition Using Time -Order of Lexical and Signal
Co-Occurrences

Ashutosh JOSHI and George NAGY

DocLab, Rensselaer Polytechnic Institute , Troy NY 12180, USA.
joshia2@rpi.edu, nagy@ecse.rpi.edu

Abstract. Letter-polygram based Symbolic Indirect Correlation is a new method that offers significant
advantages for ordered unsegmented signals. However, its application to on -line, cursive handwriting requires
solving several difficult problems. (1) Reference strings of words must satisfy certa in uniformity properties on
their lexical match with the lexicon of unknown words. (2) The Viterbi algorithm must be modified and
trained to extract polygram -length feature matches from both the reference string and the query. (3) Efficient
permutation matching algorithms are required for the comparison of lexical and feature permutations. We
present our analyses, simulations and current status, and solicit suggestions to overcome these problems.

1. Introduction
Most recognition engines for difficult -to-segment scripts and speech are built around Hidden Markov Models
(HMM's) (Plamondon & Srihari, 2000; Hu & al., 1996; Dolfing, 1998; Bellegarda & al., 1995; Li &al., 2000).
Parametric recognizers for unsegmented signals, like HMM's, are hard to train. In cont rast, non-parametric
classifiers, like Nearest -neighbor classifiers (Desarathy, 1991) (and k -NN) require no training, are simple to
build, and have reasonable run -time characteristics after appropriate preprocessing of the reference data.

Symbolic Indirect Correlation (SIC) is a new non -parametric method for exploiting the ordered
correspondences between lexical transcripts of signals of arbitrary length and their feature representation. We
call it indirect because it is based on a comparison of comparison s, and symbolic because it makes use of ordered
lexical (letter) polygrams. Correlation is meant to suggest sliding-window type comparisons.

SIC is applicable wherever unlabeled signals can be compared to lexically labeled reference signals. It
avoids the usual integrated segmentation-by-recognition loop. In contrast to whole -word recognition, it does not
require feature-level samples of the words to be recognized. Unlike the prevalent Hidden Markov Methods, it
needs no estimates of an enormous number of cl assifier parameters by means of a fragile initial bootstrap. A
survey of recent pattern recognition textbooks and technical journals does not reveal any similar approach, nor
does a recent comprehensive survey of statistical pattern classification (Jain & al., 2000). We introduced SIC in
Nagy & al., 2003 and Nagy & al., 2004 with a representation based on ordered bipartite graphs, but here we use
permutations.

2. Correlation in time order of lexical and signal co-occurrences
SIC uses two tiers of compariso ns. At the first level, the feature-string representation of the unknown signal is
compared to the feature -string representation of the reference signal of known words or phrases, and each word
(class) in a lexicon of allowable words is compared to the tra nscript of the reference set. At the second level, the
permutation showing the order of the feature -level matches of the unknown signal with the reference is
compared with each of the lexical -level permutations that represent the order of matches of a lexi con word with
the transcript of the reference set. The decision is based on the largest isomorphic subpermutation found between
the feature-level permutation and each of the lexical -level permutations.

For simplicity we describe SIC using a lexicon of two words (purpose and republic) and a reference
string of three words (preserve ~ respond ~ pursue). In a lexical preprocessing stage on the transcripts of the
lexicon and of the reference words we find the location of all letter polygram matches (e.g the six th and seventh
letters of purpose match the fourth and fifth letters of preserve).

The matches between lexicon words and reference words are represented as a permutation that merely
lists the rank (order of occurrence from left to right) of a match in the reference string ordered according to the
corresponding polygram rank in the query. Thus, the permutation representation of the matches of purpose with
the reference string preserve ~ respond ~ pursue is 〈3, 2, 1〉 which shows that when we consider the mat ches in
purpose from left to right, i.e., pur (with pursue), po (with respond) and se (with preserve), they occur in the
reference in the order se, po and pur from left to right. Similarly the permutation for republic is 〈1, 2, 3〉.

If feature extraction is perfect and the writing is noiseless, it suffices to determine which lexical candidate
induces the same permutation as the query. For imperfect matches, classification is performed by finding the
largest common isomorphic subpermutation between the query and each of the lexical permutations.

3. Reference string characteristics
The reference string determines the nature of the lexical permutations and hence is the most important part of the
SIC classifier. An ideal reference string will generate lexical p ermutations that are least similar to each other. For

2

example, in a two-word lexicon the reference string should generate a monotonically increasing permutation for
one word and a monotonically decreasing permutation for the other. In such a case, the size of the largest
common isomorphic subpermutation is 1, the least possible size.

As the size of the lexicon increases it becomes increasingly difficult to select a reference string that
maintains maximum distance between every pair of lexical permutations. However, for large lexicons a random
selection of reference words will generate lexical permutations where about half the elements of any two lexical
permutations are isomorphic. For example, lexical permutations of length 20 have an average overlap of 12. 5.

Longer reference strings give more complicated lexical permutations, in effect increasing the distance
between classes. However, there is an upper bound on the separation of classes because when the size of the
lexical permutation increases beyond the n umber of distinct polygrams in the query word, at least some
polygrams in the query will have multiple matches in the reference string. Such polygrams form isomorphic
subpermutations. Therefore, the largest common isomorphic subpermutation between two lexi cal permutations
will be at least as large as min(∆1, ∆2), where ∆i is the largest number of matching reference polygrams for a
polygram in the ith lexical word.

4. Choosing a reference string
Depending on the reference string, a lexical permutation can b e a subpermutation of another lexical permutation,
even when the corresponding word is not a lexical subset of the other, making it impossible for SIC to
distinguish between the two. To avoid this we want the reference string to induce lexical permutations of about
equal lengths.

For a lexicon of 50 randomly selected words we constructed a reference string of 309 words (225 unique)
that generated lexical permutations that were each approximately 60 elements long. We achieve the same
accuracy (97%) as with a reference string of 1000 words in earlier simulations, with the same amount of noise
(20% of the elements added and 20% deleted) (Nagy & al. 2004). The results of classification with simulated
noise are plotted in Figure 1. Longer permutations compensa te for missed and spurious elements due to noise.
The probability of error asymptotically decreases to the Bayes risk.

(a) (b)

Figure 1. Mean Rank and Mean Error (a) with 20% elements deleted and added randomly, and (b) with 40%
elements deleted and added randomly. With more noise we need longer lexical permutations.

Finding the maximal common isomorphic subpermutation problem is NP complete in the difference

between the sizes of the longer of the two permutations and the largest common isomorphic s ubpermutation
(Bose & al., 1993). In order to reduce the computation time for graph comparison we break the reference string
into several smaller reference strings and combine the results from the different classifications using these
reference strings. Thus, instead of comparing two large graphs, we compare several pairs of small graphs.

5. Handwriting Features
We describe the handwritten curves using simplistic time -ordered local extrema of the trace of the stylus in eight
equally spaced x and y directions by projecting the ink trace in each direction (El -Nasan, 2003). Local maxima
of specific projections represent extremal -points on the ink trace in the corresponding direction (method
suggested by Prof. F. Lebourgeois, INSA de Lyon). The extrema are also labeled according to the zone
(ascender, body or median, descender) in which they occur.

Figure 2 shows the length and location of a polygram co -occurrence (match) between the word whatever
and 26 other (reference) words in the feature and lexical domai n. Each line y = i, represents the length and
location in whatever of a polygram co-occurrence (solid line) between whatever and reference word i. The
character labels are placed at the start (lexical) or estimated start (feature) of the particular charact er in whatever.

A good proportion of the feature matches in Figure 2a are clustered, i.e., they begin and end at nearly the

3

same locations – typically at the beginning of a loop and at some rare feature combination (cusp or inflection)
respectively. The correlation coefficient is only ~0.11 between lexical and feature matches for 10 queries and
two reference sets of 132 and 235 words (each designed to yield lexical permutations with ~80 elements)
respectively.

The scale invariance of our feature se t is desirable, but it causes many spurious matches (Figure 3) and
thus low correlation between lexical and signal matches. Zoning, shown in Figure 3 by dotted lines, can
eliminate some of the spurious matches, though most are inherent to the extremal poin t features due to scale
invariance.

Intersection points in a handwritten trace are useful indicators of irregularity and can be used to
distinguish similar curves and thus similar symbols (like ‘u’ and ‘v’). However, the chronological position of
intersection points with respect to the extrema is unreliable. For example, in Figure 3, if we include the
intersection points in the feature strings of always and today we would still exactly match the first loop of w and
a, but not the second loop in these lette rs. We propose to identify and correct transposition errors involving
intersection points.

(EeNnWwSsEeNnWwSsakjiWwSsEeNnWwSsEeNnWwSsEWnNSsEeNnWwSsEeNnWwSsEeNnWwSsEeNnWECDGHIsnNeEsSwWn)

(RRRSsnsakjiWwSsEeNnWwSsEeNnWwSNeEWwSsakjiWwSsEeNnWwSsEeNnWwSsTTTwSsETTTCDGHINSs)F(WnNS)
(e)

(EeNnWwSsEeNnWwSsakjiWwSsEeNnWwSsEeNnWwSsEWnNSsEeNnWwSsEeNnWwSsEeNnWwSsEeNnWECDGHIsnNeEsSwWn)
(RRRSsnsakjiWwSsEeNnWwSsEeNnWwSNeEWwSsakjiWwSsEeNnWwSsEeNnWwSsTTTwSsETTTCDGHINSs)F(WnNS)

(f)

(g) (h)

Figure 3. Pairs (a)-(b) and (c)-(d): The bold parts of the two words have exactly the same feature representation,
because the ‘w’ in always (enlarged in Figure (g)) has two loops connected together, which is the same in ‘o’ or ‘a’
in today (enlarged in Figure (h)) except for scale. We currently ignore the intersection points in ‘a’ for reasons
discussed in Section 5. (e): The feature string for always and today with the matching parts of Figures (a) and (b)
in bold. (f): Same for pair in Figures (c) and (d).

Figure 2. Length and location in the query of common polygrams between the query and a reference word in
(a) feature, and (b) lexical domain. Reference words are s orted by the location of their first feature match.

(a) (b)

4

To better identify polygram co-occurrence in the feature domain we propose matching the loops as a
whole unit. We will also consider some loop size attribute (curve -length, loop area, etc.) to avoid matching loops
of different nature. However, incorporating the loop size into the feature string leads to two additional problems:
1) loop definition and identification, and 2) scale invariance.

Some researchers (Doermann & al., 2002; Xue and Govindaraju, 2001) define a loop as a continuous ink
trace that starts and ends at the same point. According to this definition we would get as many loops as
intersection points in Figure 4. However, the intersection points marked non-loop occur only because of the
intersection of two loops. We propose the following definition to overc ome this anomaly: A loop is a continuous
ink trace that starts and ends at the same (intersection) point such that a point that immediately precedes the
intersection point going into the loop or immediately follows it coming out of the loop lies outside th e area
enclosed by the loop. This leads to correct identification of all the intersection points as labeled in Figure 4.

In order to maintain the scale invariance of the features at word level, we normalize the curve lengths of

the ink traces using the average curve length between extremal -point features in the median zone.
Another factor affecting feature polygram matching may be our handling of cusps. We define a cusp as a

point where extrema in three adjacent directions occur simultaneously and treat cusps as special features. It may
however, be prudent to treat cusps either as smooth curves or small loops (Figure 5).

We use also features based on the curvature of handwriting (De Stephano & al. , 2004a; De Stephano &
al., 2004b) provided by Prof. Angelo Marcelli, and the extremal -point features without zones.

(a) (b) (c)

6. Conclusion
We haven't presented any error rates on on -line handwriting because we don't have any that are acceptable. The
theory show that SIC offers several sig nificant advantages over alternative classifiers for patterns represented by
unsegmented strings of features, but our investigations have also brought to light many stumbling blocks. We
explain some of the problems that we are striving to overcome.

Our feature strings, even in clean cursive writing, often have more than 100% noise, i.e., missed and
spurious elements among corresponding polygrams in the query and the reference words. The polygrams are
detected by string matching, which requires setting thre sholds on the number of feature matches that are
expected to constitute a polygram match, and on the length or number of possible gaps in the sequence. The
length of letter bigrams varies from 12 features for letters with simple shapes, like cc, to about 40 for complex
pairs like mm. We insist on using simple features because we want to validate the claim that SIC can work with
any sequence-preserving features.

The theory and simulations assure us that extending the length of the reference string will overc ome noise
in feature matches even if the noise is correlated. However, our painstakingly developed Branch -and-Bound
algorithm (Nagy & al., 2004) can find the longest common subpermutation only in pairs of permutations of
about 20 elements. We also have translated finding common permutations into a clique -finding problem over
graphs with n2 nodes, where n is the average length of the permutations to be matched. Among the dozens of
reported approximate maximal -clique and independent set algorithms, we have no t found any whose bias (they
all report too few elements, of course) we could estimate reliably on variable -size graphs (Hochbaum, 1997;
Abello & al., 2001; Bomze & al., 1999). We have shown that for SIC the cliques must always be "near" the

Figure 4. Intersecting loops along with intersection points that do not define a loop.

Figure 5. A cusp (a) can be thought of as a singularity in the class of smooth curves (b) or small loops (c). The main
difference is the order of o ccurrence of the extremal point features (shown by an arrow in the particular direction).

5

diagonal of this large graph, and have experimented with truncated graphs. However, the advantage of truncation
is significant only for graphs too large to use an exact clique -finding algorithm even on the truncated graph.
Even for the multiple reference string approach that we described above, it would be desirable to increase the
length of each segment by a factor of two. This is in the realm of feasibility, and can easily be done with multiple
processors, but we have not yet done it (we have never claimed that SIC is fast!).

A difficult problem is that of permutation size normalization. A temporary solution, reported above, that
may not always be applicable in practice, is to generate reference strings with the property that they produce
roughly equal length lexical permutations. This requires having a large database of words with feature
representations. Most on -line handwritten databases have many writers but relatively few words by each.

We are conducting experiments with three kinds of (simple) features, three diff erent on-line handwritten
databases, several algorithms for finding the maximal common subpermutations, analysis and simulations of the
match properties of purely random permutations and random permutations generated from text with simulated
noise, and with a number of methods of reference string selection. We remain optimistic that we will eventually
succeed, but dare not promise low error dates on sizeable data in time for IGS05.

Acknowledgements
We thank Prof. Sharad Seth (UNL) for collaborating with u s from the beginning on the analysis and simulation
(with UNL MS student Yu Lin), and for providing Tablet -PC sample data; Dr. Mahesh Viswanathan (IBM
Research) for handwriting samples; Prof. Angelo Marcelli (and his student Marco at U. Salerno) for sugges tions
and algorithms on preprocessing and feature matching, and for sample data; Prof. Dan Lopresti (Lehigh U.) for
advice on dynamic programming, simulations, and efficient code; Prof. Mukkai Krishnamoorthy (RPI) for help
with permutation-theoretical analysis; Prof. Shashank Mehta (IIT Kanpur) for the Branch -and-Bound algorithm;
and Dr. Harsha Veeramachaneni (ITC Trento) for the clique formulation.

References
Plamondon, R., and Srihari, S. N. (2000), “Online and offline handwriting recognition: A compreh ensive

survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-22, pp. 63-84.
Hu, J., Brown, M., and Turin, W. (1996), “HMM based online handwriting recognition,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. PAMI-18, pp. 1039-1045.
Dolfing, J. (1998), “Comparison of ligature and contextual models for hidden Markov model based on -line

handwriting recognition," in Procs. of ICASSP, vol. 2, pp. 1073-1076.
Bellegarda, E. J., Bellegarda, J. R., Nahamoo, D., and Nathan, K. S. (1995), “A discrete parameter HMM

approach to on-line handwriting recognition," in Procs. of ICASSP, vol. 4, pp. 2631-2634.
Li, X., Parizeau, M., and Plamondon, R. (2000), “Training Hidden Markov Models with multiple observations –

A combinatorial method,” IEEE Pattern Analysis and Machine Intelligence , vol. PAMI-22, pp 371-377.
Desarathy, B., (1991), Nearest neighbor (NN) norms: NN pattern classification techniques . IEEE Press.
Jain, A. K., Duin, R. P. W., and Mao, J. (2000), “Statistical pat tern recognition: A review,” IEEE Transactions

on Pattern Analysis and Machine Intelligence , vol. PAMI-22, no. 1, pp 4-37.
Nagy, G., Joshi, A., Krishnamoorthy, M., Lin, Y., Lopresti, D., Mehta, S., and Seth, S. (2004), “A nonparametric

classifier for unsegmented text," in Proc. SPIE, vol. 5296-14, (San Jose), pp 102-108.
Nagy, G., Seth, S., Mehta, S., and Lin, Y. (2003), “Indirect symbolic correlation approach to unsegmented text

recognition," in DIAR 03: Workshop on Document Image Analysis and Retrieval , (Madison, WI).
Bose, P., Buss, J. F., and Lubiw, A. “Pattern matching for permutations”, Proc. Workshop on Algorithms and

Data Structures, Lecture Notes in Computer Science 709 , Springer Verlag pp. 200-209, 1993.
El-Nasan, A. (2003), InkLink: A writer-dependent online unconstrained handwriting recognition system . PhD

thesis, Rensselaer Polytechnic Institute, Troy, NY.
Doermann, D., Intrator, N., Rivlin, E., Steinherz, T. (2002), “Hidden loop recovery for handwriting recognition”,

Proc. IWFHR 02, pp 375-380.
Xue, H., Govindaraju, V. (2001), “ Building Skeletal Graphs for Structural Feature Extraction on Handwriting

Images,” Proc.ICDAR, pp 96-100.
De Stefano, C., Guadagno, G., and Marcelli, A. (2004a), “A saliency based segmentation method for online

cursive handwriting,” Int’l J. of Pattern Recognition and Artificial Intelligence , vol. 18 (7), pp 1139-56.
De Stefano, C., Garruto, M., and Marcelli, A. (2004b), “A saliency based multi -scale method for online cursive

handwriting shape description ,” Proc. IWFHR-9, Tokyo, Japan, November 26 -28.
Hochbaum, D. S. (1997), Approximation Algorithms for NP-Hard Problems. PWS Publishing Company.
Abello, J., Butenko, S., Pardalos, P., Resende, M. (2001), “Finding independent sets in a graph using

multivariable polynomial form ulations,” Journal of Global Optimization 21, pp. 111-137.
Bomze, I., Budinich, M., Pardalos, P., Pelillo, M. (1999), “The maximum clique problem,” in Du and Pardalos

(Ed.) Handbook of Combinatorial Optimization , Kluwer Academic.

