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Abstract

Tables are the only acceptable means of communicating certain types of structured
data. A precise definition of “tabularity” remains elusive because some bureaucratic
forms, multicolumn text layouts, and schematic drawings share many characteristics of
tables. There are significant differences between typeset tables, electronic files designed
for display of tables, and tables in symbolic form intended for information retrieval.
Although most research to date has addressed the extraction of low-level geometric
information from scanned raster images of paper tables, the recent trend toward the
analysis of tables in electronic form may pave the way to a higher level of table under-
standing.

Recent research on table composition and table analysis has improved our under-
standing of the distinction between the logical and physical structures of tables, and
has led to improved formalisms for modeling tables. The present study indicates that
progress on half-a-dozen specific research issues would open the door to using existing
paper and electronic tables for database update, tabular browsing, structured informa-
tion retrieval through graphical and audio interfaces, multimedia table editing, and
platform-independent display.

1 Introduction

1.1 Why tables?

Tables are the prevalent means of representing and communicating structured data. They
may contain words, numbers, formulas, and even graphics. Developed originally in the
days of printed or handwritten documents, they have been adapted to word-processors
and page composition languages, and form the underlying paradigm for spreadsheets and
relational database systems.

Some common examples of data usually presented in the form of tables are calendars,
rail and flight schedules, financial reports, experimental results, and grade reports. Note
that not all tables can be easily interpreted using only common sense: consider, for in-
stance, the Periodic Table of the Elements (see Figure 1). Appendix A presents a number
of other examples chosen primarily to illustrate difficult cases from the standpoint of au-
tomated table understanding. Some of these are quite challenging even from a human
perspective.

The only other common representation for structured data is a list. If we consider
ordered lists analogous to vectors, then we can think of tables as analogous to matrices.
Unlike vectors and matrices, lists and tables may contain non-numeric data items. Graphs
are required for relationships more complex than can be represented by tables and are used

!Presented at Third International Workshop on Graphics Recognition, Jaipur, India, September 1999.


George Nagy
This file may not be identical to the final published version. The authoritative version can be found in:

Procs. IAPR Workshop on Graphics Recognition (GREC99), Jaipur, pp. 109-134, 
1999.


Periodic Table

1 18
H 1 He 2
1| o | 2 13 14 15 16 17 | wewe
1008 4003
Li 3|Be 4 B s|C 6N 7O slF o|Ne 10
2 | titiem | serytiom Boon | catn | Niogm | Owoen | Fuerine | Neon
son | oo won | 2on | wor [ 15w | 1ses | 2010
Na 11|Mg 12 Al 13|Si 14|P 15|S 16|Cl 17|Ar 18
3| sodum | megnesum 3 4 5 6 7 8 9 10 11 12 Atuminum | Siicon | phosprorous|  sutur | crioine | avgon
200 | 2305 2om | 2wos | wom | moss | mess [ soom
K 19|Ca 20 Sc 21|Ti 22|V 23[Cr 2a)Mn 25|Fe 26|/Co 27|Ni 28/Cu 29|Zn 30 Ga 31|Ge 32|As 33|Se 34|Br 35|Kr 36
4 | Potassum | calcium Seandium | Titanium | Vanadium | Chromium | Manganese | iron Cobalt Nickel Copper Zine Gallium | Germanium | Arsenic | Selenium | Bromine | Krypton
200 | w00 wgs | ares | ssw | si0w | siem | sseer | seom | see | msw | esa e | ner | mez | mew | mes | e
Rb 37|Sr 38 Y 39|Zr 4o|Nb 41{Mo 42|Tc 43|Ru 24|Rh as|Pd 4s|Ag 47(Cd 48 In 9|Sn so0[Sb s1fTe s2fl  s3|Xe sa
5 | ruidum | Stontum Yuium | Zirconium | iobium Technetium | Rutherium | Rnodium | Palegium | Siver | Cadmium g [ Tin | avimony | Tesium | togne [ xenon
waes | e soos | oz | o206 | s © | wowor | weeos | w06 | w7ess | 12 maez | mem | 12 | e | wees | s
Cs s5|Ba s6 Lu n|Hf 72|Ta 73|\W 74|Re 75(Os 7e|lr 77|Pt 78|Au 79|Hg so| [Tl e1|Pb 82|Bi 83[Po sa|At es|Rn 86
6 | cosum | saium Lugium | Haifrium | Tamatum | Tungsen | Rheum | osmum [ widum | Painem | God | ey Thalium | Led | Bismah | Polonium | Asaine | Redon
o5 | 137327 waosr | wmas | 1sosss | mses | w20 | 1002 | 10222 | 1esee | 1ssesr | 20080 23 | 2z | eew | eoy | @o [ e
Fr s7|Ra ss Lr 103|Rf 104[Db 105(Sg 106|Bh 107|HS 108|M1 109
7 | Frencum | reciom ! Oubrium | Sesborgiom | Bohrium | Hessium | Metoerium
@z | o0 50) sy sy 6 62 ) @0)
La s7|Ce s8|Pr s9|Nd eo/Pm 61/Sm e2|Eu 63|Gd e4|Tb es5[Dy es|HO &7|Er es|Tm e9|Yb 70
Lantharum | Carium Neodymium | Prometrium | Semarium | Europium | Gadolinium | Terbium | Dygrosim | Hoimium | Extium | Thutm | terbium
138.906 140.115 140.908 14424 (145) 15036 151.965 157.25 158.925 162.50 164.93 167.26 168.934 17304
Ac 89|Th oo|Pa o1fU 92|Np 93|Pu 94|Am o5/Cm 96|Bk 97|Cf e8|ES 99|Fmioo|Md101|No 102
Actinium | Thorium [ Protactinium | Uranium | Neptunium | Piutonium | Americum | - curium | Berkelium | caiforium | Einstinium [ Fermium Nobelium
227.028 232038 231036 238029 237.048 (244) (243) (247) (247) (251) (252) (257) (258) (259)

Figure 1: Periodic Table of the Elements (from http://www.trends.net/~mu/misc.html).

primarily for inter-document structure. Trees are often used to represent intra-document
structure.

It is noteworthy that the need to analyze and reformat the 1890 U.S. Census forms
launched the punched-card “tabulator” industry. Electronic computers were commissioned
during WWII for computing ballistic tables. The major commercial applications envi-
sioned for computers in the fifties centered on database manipulation, which remains the
mainstay of business data processing.

1.2 What is a table?

Some multicolumn text configurations, like telephone directories, have tabular layouts
(e.g., the center region in Figure 6 in the appendix). Some engineering drawings also look
like tables. Furthermore, there is no precise distinction between “table” and “form.”

In common parlance we refer to two-dimensional assemblies of cells used to present
information as tables. When two-dimensional assemblies of blank cells are used to collect
information, we call them forms. Some forms are laid out in a regular grid like a table,
others are not. Peterman et al. distinguish between tables and forms as follows: tables
have a regular, repetitive structure along one axis, so that the data type is determined
by either the horizontal or the vertical index. Forms represent only a one-to-one mapping
between indices and data, in which there are no implications of regularity of data [41].

Forms processing is now a major industry. Large applications, such as medical claims
processing, state income tax, insurance and retirement systems require conversion of sev-
eral hundred thousand forms per day. In many such applications most forms are filled
out by hand. The similarities between table and form processing are emphasized in [52]
and [7]. Continuing efforts to pass processing costs down to the end users will cause many
of these mass form-processing applications to be migrated to the Web. Electronic forms
are based on HTML, JAVA, Active-X, or XML. JetForm, the market leader, has over five
million users.

So far there is no comparable table-processing industry, but some service bureaus do



offer conversion of printed tables to electronic form. Research on the conversion and
interpretation of tabular material has been popular since the mid 1980’s.

1.3 Metadata

Metadata is (formal) data that describes some collection of data, just as a metalanguage
is a (formal) language that describes some language. Table processing is often mentioned
in the context of metadata. It is, of course, only one example of metadata, and is only
tenuously related to the use of the term in library science, Web searches, optical char-
acter recognition, document image analysis, or programming and scripting languages.
Nevertheless, it is clear that unlike natural-language text conversion, where sequential
character-by-character conversion of printed text into a simple symbolic form like ASCII
may suffice, in the case of tables it is essential to extract the metadata that represents
the relationships among the entities. In the sequel we shall endeavor to clarify the role of
metadata in table processing.

1.4 Rationale for this study

It appears likely that the automated or semi-automated interconversion of tables from
one medium to another (e.g., from paper or electronic text to a spreadsheet, database,
or query-answer system), or from one format to another in the same medium (e.g., for
different display sizes) will prove desirable in a variety of computing environments. In
some applications it may be advantageous to query and reference tabular data without
regard to the underlying medium or form.

The object of this study is to collect information about the composition, use, interpre-
tation and understanding of tables that may prove useful in the development of tools for
manipulating multimedia tables.

1.5 Guide to the remainder of this paper

There is no useful precedent for organizing a background study about tables such as this.
Our organizing principle was simply to attempt to orthogonalize the various issues, so as
to be able to make independent decisions regarding tool development.

We first consider the underlying media under the headings of paper, electronic, and
symbolic form. Tables on paper must be optically scanned for any type of automated
processing. Electronic tables such as those found in word-processing documents, e-mail,
and the Web, already have the content of the leaf cells in symbolic form, so no OCR is
necessary, but the structure is seldom available in a convenient form. Symbolic tables
such as spreadsheets and databases reveal not only the content, but also the structure, in
symbolic form.

Format considerations are of primary interest only in paper tables. We enumerate
the graphic conventions, including layout and typography, that are used to designate the
relationship between the various elements. Some of these conventions are mimicked in elec-
tronic tables: for instance, horizontal rulings may be represented by lines of underscores,
asterisks, or hyphens (see Figure 6). Leaders of dots are common in both (Figure 4).

Next we consider the syntax and semantics of tables. We proceed from simple struc-
tures with no explicit headings to the most complex cases that include nesting. We discuss
the various formal paradigms that have been developed for representing and using table
syntax and explain the various viewpoints that have emerged on distinguishing form from
meaning in tables.



In any actual project, the source of the tables to be processed is of major concern. We
examine plausible sources of tables, including publications, business records, electronic
mail, and the Web. It is important to keep in mind that most tables represent recycled
data. They are prepared for publication or posting (Figure 4), for broadcasting to a select
group (Figure 6), or for communication between individuals (Figure 3).

In this section we also discuss three operations on tables: table spotting, table-
similarity detection, and the extraction of structure and content. The latter may be
initiated with layout analysis, or by analysis of the content of leaf cells. The economics
favor automated processing of batches of similar tables, but the interpretation of a mixed
stream of tables of various formats is more challenging.

Among the interesting aspects of table processing is the human-computer interface to
both the table extraction software and the downstream data utilization. The interface
depends, of course, on the application. At the top level, we differentiate between query
applications and database update applications. We consider graphical and audio access
as a function of the modality (electronic or symbolic) of the table.

The penultimate section reveals half-a-dozen applications that would result from new
developments in multimedia table processing.

In the last section, we summarize potential applications of table processing and appro-
priate research directions, and append a bibliography of the topics discussed. (At the time
of this writing, another excellent bibliography, compiled by Hurst, could be found on-line at
http://www.cogsci.ed.ac.uk/~matth/research/tables/bibliography/biblio.html.) An ap-
pendix of illustrative examples completes the paper.

2 Media

We consider tables that appear in three different media: paper, electronic, and symbolic.
(We are still looking for better terminology.)

2.1 Paper tables

Paper tables are usually typeset (Figure 7), or typewritten (Figure 5), or computer-
generated (Figure 2). In principle they can also be hand-printed or drafted (like telephone-
company drawings [2, 5, 3, 4, 6, 8, 9], and the header-blocks of old engineering drawings),
but we deem such hand-drawn tables as more akin to forms and exclude them from con-
sideration here.

Paper tables are converted to digital form by optical scanning. Printed tables are
typically scanned at sampling rates of 200 to 600 dpi, but for some applications facsimile
scans (100 x 200 dpi) may be important. High-speed duplex scanners have a throughput
of 100 pages per minute at 300 dpi and 24-bit color depth.

Copying and scanning may introduce noise and skew. Both of these are more effec-
tively corrected on a gray-level representation of the page. Image-reparation software is
available from many vendors, including Lead Technologies, Mitek, Visual Image, Cardiff,
and Captiva. The majority of the published work on table processing deals with the
extraction of structure from scanned paper tables [1, 5, 8, 17, 22, 25, 28, 35, 52, 55, 61].

2.2 Electronic tables

Tables in plain text format may appear in e-mail (Figure 6) or on Web pages prepared
by amateurs. The structure of the table is represented only by ASCII symbols for space



(blanks), tab characters, and carriage returns. Occasionally printable ASCII symbols are
used to show horizontal and vertical rules.

Electronic tables tend to be smaller and simpler than paper tables (but for a counter-
example, see Figure 8). The amount of detail that can be displayed on a typical monitor
is less than one tenth of what can be seen on a typeset page.

Mark-up languages like SGML, HTML, and XML have special conventions for tables,
but there is no assurance that table tags are not abused or misused. Page composition
languages have elaborate facilities for formatting tables, like TROFF Tbl [36] and the
ITEX table and array environments [34]. Many other table composition systems are
surveyed in [54].

MS-Word has a table formatting subsystem and provides interconversion between ta-
bles in plain-text, Word-table, Rich Text Format (RTF) and Excel spreadsheets. Frame-
Maker offers PDF (Portable Document Format) for posting tables on the Web in non-
editable form, and XML for applications where the structure needs to be accessible. Adobe
is proposing PGML (Precision Graphics Makeup Language) for combining the benefits of
PDF and XML. VXML is a proposed general-purpose format for audio access to Web
documents.

Tables may also be reproduced in any raster image format, such as TTIF or GIF, or
rendered directly in PostScript [43]. Although directly-generated tables in image format
may look superficially like scanned paper tables, they are not affected by noise or skew.

Among references that address electronic tables are [12, 27, 41, 42].

2.3 Symbolic tables

Arrays of structured data are often manipulated in spreadsheets like Lotus or Excel. A
spreadsheet is a two or three dimensional array of named cells. Operations on selected
cells, rows, and columns can be specified by formulas. Note, however, that spreadsheets
carry only minimal semantics of the data they contain.

The most complete representation of structured data is undoubtedly a DBMS. Database
systems have evolved from the Codasyl standard to Codd’s relational formulation to the
currently favored object-oriented paradigms. The modification and retrieval of database
entries is accomplished through a language like SQL (the Structured Query Language)
which is essentially isomorphic to the mathematically trustworthy relational algebra.

Although database systems have facilities for representing a very general set of rela-
tions, the appropriate relations and operations can be programmed directly for a specific
application. Table operations can be readily coded in a general purpose language like
C or C++, or in matrix-oriented languages like APL (A Programming Language) or M
(Matlab).

For humans, paper tables are the easiest to assimilate, and symbolic tables, the hardest.
For computers, it is the opposite.

3 Format

A representative set of layout conventions for tables may be found in [10], but such con-
ventions address table synthesis rather than analysis. Effective table layout involves many
considerations: see [21, 54, 57, 58, 59]. Good table layout is transparent and does not draw
attention to itself. Even though most of us have been dealing with tables since the first
grade, the complexity and variety of table formats tends not to be appreciated without
explicitly looking for it in a large heterogeneous collection. A definitive reference on visual



information display in general is [51]. While the emphasis here is primarily on graphics,
table design receives some consideration as well.

The most striking aspect of tables is the isothetic (horizontal and vertical) arrange-
ment of cells. Most of the conventions are directed at distinguishing the row and column
headings from the leaf cells, and separating the cells from one another. It is convenient to
distinguish the notion of header cells from that of leaf cells.

Peterman et al. consider a table a collection of five types of cells: data, vertical in-
dices, horizontal indices, title, and footnotes. They present a detailed analysis of “table
topology,” i.e., the conventions governing the layout of cells, and of the placement of data
within the cells. The contents of each cell are analyzed by string matching to discover
cells with similar letter syntax. The resulting rules for determining the “reading order” of
the table are embodied in a PERL script. They present experimental results on a hetero-
geneous corpus of 100 electronic tables that they suggest mimic the results of processing
typeset paper tables with 99% accurate OCR. It is clear that even aside from possible
OCR and image processing errors, manual editing would be required for most applications
[41].

3.1 Demarcations

In printed tables horizontal and vertical boxing and rules are often used for separating
entries. Boxing differs from rules in the appearance of explicit corners between horizontal
and vertical lines. Professional layout practice dictates using boxing and rules (especially
vertical rules) only to the extent desirable to avoid ambiguity: white spaces make for
easier reading (see Figures 7 and 8). Image processing techniques for the extraction of
line segments include the Hough Transform [52], thinning, vectorization [1] and projection
profiles [28]. Turolla et al. succeed in detecting 95% of 11,513 lines in 114 tables.

In many tables, the cells can be isolated by considering the horizontal and vertical
channels of the background (white spaces) [8]. Inter-row spaces may be quite narrow,
but inter-column spaces are typically wider than interword spaces. Multiple, regularly
spaced vertical channels are the leading clue to the presence of a table surrounded by
text or graphics. However, short passages of poorly typeset text may also display vertical
white runs that are easily mistaken for table separators. Depending on the content of the
cells, vertical columns may be left-justified, right-justified, or centered. The leaf cells may
(Figure 7) or may not (Figure 2) follow the justification used in the header cells.

When a table is fully boxed, the minimal cycles of the corresponding graph can be used
to locate the entries [52]. Itonori combines information derived from rulings and from the
position of the text blocks [28].

3.2 Headers

Vertical headers may be distinguished by their position, explicit ruling or boxing, and
larger or bolder type. They may span several columns and in such a case are often centered
above them (or rarely, as in Figure 5, below). Horizontal headers may span several rows,
in which case they may be above the top row (Figure 7), aligned with the top row, or
vertically centered among the rows.

The vertical headers are called the “boxhead,” and the horizontal headers are called the
“stub.” The content cells form the body of the table, and any rectangular configuration
of cells is a “block” [10]. Headers are called “labels” in [54], “spanning labels” in [27],
“indices” in [41], “headings” in [8], and “captions” in [42].



3.3 Leaf cells

The simplest tables have no column or row headers and physically constitute an m x n
array. More complex tables have one or more levels of column or row headers which may
correspond to single or multiple columns or rows. The most complex tables are nested,
i.e., a cell may be replaced by an entire table. (Does Figure 4 consist of several tables or
one nested table?)

Single columns may be split proceeding down, and single rows may be split proceeding
to the right. The merging of columns and rows is rare, except in the case of nested tables.
Entire tables are sometimes split to accommodate page size. Logically merging such tables
may require semantic analysis.

The presence of data items that do not fit on a single line of a cell complicates the
analysis of both paper and electronic tables (Figures 4 and 2). In such a case, it is
necessary to distinguish line-wrapped data from multiple rows of cells. Useful clues include
hyphenation, indentation, and morphological homogeneity. Often, not every cell within a
row contains line-wrapped data. In that case over-segmentation by horizontal separation
reveals empty cells that are an artifact of multi-line cells. Cell alignment among sparse
columns is addressed in [22] (Figure 5 is an egregious case).

As mentioned, in scanned paper tables error-prone OCR must be used to recover the
contents of every cell. The other difficulties that distinguish format extraction in scanned
paper tables from that in electronic tables are the potential presence of global or local
skew, and overlap between boxing or ruling and alphanumeric cell contents.

Box-driven reasoning is proposed in [23] to mitigate content-separator overlaps. Instead
of seeking the intersection of horizontal and vertical lines, inner (white) and outer (black)
bounding boxes constitute the lowest-level structure analyzed. The proposed underlying
model is described only as follows: “A table-form document is a type of form composed
of strings and cells made from vertical and horizontal lines.” The system was tried only
on 10 fairly complex forms, and only the timing results are given in detail.

Skew may be handled by rotating the table to the nominal orientation, but the nec-
essary pixel mapping often distorts both graphics and characters. A better strategy is to
determine the skew, and perform further processing parallel to the skewed axes, or to per-
form skew correction on the gray-scale scan. Techniques for segmenting boxes and ruling
from alphanumeric data have been developed in both the engineering drawing analysis and
the form processing communities. A fast and elegant method of finding nearly horizontal
and vertical rules in large run-length encoded tables appears in [9].

3.4 Models

In general, format extraction is greatly simplified by the availability of a model for the
tables being analyzed [18, 17, 19, 16, 55]. The model ideally includes a database of cell
contents and cell relations that can be drawn upon to resolve ambiguities. Such a model
may either be specified by an operator explicitly for every batch of similar tables, or it
can be derived from consistency constraints with the database and from any operator-
entered corrections. We favor the latter approach because it requires less skilled operators
and potentially decreases the amount of operator interaction necessary as more and more
similar tables are processed.

Building on extensive previous work, Rus and Subramanian offer an interactive method
of building models consisting of modular interactive agents for information access and
capture in distributed databases [46]. They give examples of structure detectors and
segmentation modules for both paper and electronic tables. These modules subdivide



documents according to prevalent white spaces and match table rows by syntactic string
matching. In an interesting digression, they predict the probability of incidental white
streams from word length statistics.

4 Deep Structure

All researchers struggle with the distinction between physical and logical structure in
tables. The problem is that, unlike the case in text, the 2-D layout reveals certain rela-
tionships among items that evidently belong to the logical structure. Different researchers
draw the line at different points of table analysis or synthesis. Some of the dichotomies
we have noted are shown in Table 1.

metadata <= data

content <= format

logical structure <= physical structure
denotational view <= functional view
abstract table <= concrete table
structure <= layout
model <= instance
semantics <= syntax
e

relational structure

geometry, topology

Table 1: Logical/physical dichotomies in table structure.

We choose to approach table structure from the relational database perspective. We
consider the deep structure of a table as a set of tuples of attributes. Each column header
is the name of an attribute, and each row has a unique key. Table interpretation is the
recovery of the deep structure from a surface (paper or electronic) representation. The
relational view is also advocated in [27], where it is called a “denotational” view, while
the reading order, or physical arrangement, is called a “functional” view.

Unfortunately, in physical tables the names of the attributes are often not given ex-
plicitly. For instance, a column of names and corresponding telephone number may not
be headed by “NAME” and “TELNOQO.” Furthermore, it is understood that if multiple
workers may share a telephone number, then the name, rather than the telephone number
is the key.

Multiple column headers, where the top header subsumes several headers at the next
level, are common:

NAME ADDRESS TELNO
First Last | # Street City State Zip-code | Area-Code # Extension

Even when present, the attribute names in tables are often assigned far more casu-
ally than in a database system, and therefore less consistency can be expected. Explicit
identification of keys is rare. Tables may be incomplete, poorly composed, and contain
erroneous labels and entries. Errors may also be introduced, of course, in the analysis
process.

While in a relational table the order of the tuples and attributes is immaterial, tables
are often presented in a sorted order. Whether this order needs to be preserved cannot
be determined from a purely syntactic analysis and depends on the application. For
instance, the names and telephone number of some job candidates may convey only the



access information, or the names may already be ranked according to test or interview
results.

Once a table is in relational form, we know everything we can about it. We therefore
consider the relational paradigm as a possible target representation for paper and electronic
tables. In the words of Hurst and Douglas [27]:

“Once the relational structure of the table is known it can be manipulated for
many purposes. Smart editors can allow restructuring of tables on demand
to reflect different functional views, while keeping track of the underlying se-
mantics. Also, very different presentation formats could be generated. A
presentation of tables for, e.g., telephone interfaces to Web pages, ought to
reflect the information access structure of a table [60] rather than its physical
structure; we are working on automatically recasting tables as specifications
in information-seeking dialogs.”

Other formal paradigms for describing the structure of tables are the Table Syntax
[17, 16, 31, 32], the Structure Description Tree [55], and the Cohesion Domain Template
[27]. All three model only local horizontal and vertical adjacency relationships between
cells and aim at finding an appropriate tiling of the table. The foundations for a more
sophisticated scheme are laid in [26].

Haas models tables with OSM (Object-oriented Systems Modeling) [20], a formal
method of analysis developed by Embley, Kurtz and Woodfield that features an elabo-
rate graphical interface [13].

A useful target representation is the widely used spreadsheet numbering system [37, 38].
For example, the second leaf cell in the second column of a three-column table with a
single top level heading (A1) and three column headings (A1A2A1, A1A2B1, A1A2C1)
is called A1A3B1A2. The notation uses wild cards to reference entire rows or columns.
Green generates such a spreadsheet-like description from paper tables [16]. His test set
contained 60 300-dpi tables of three types.

Abu-Tarif vectorizes paper tables, then converts them first to X-Y trees [40], and
the X-Y trees to actual Excel spreadsheets using Excel macros [1]. The spreadsheet or
equivalent X-Y tree organization (of successive horizontal and vertical “cuts”) does not
contain the same level of semantic information as the relational paradigm, but such a
surface representation may suffice for some applications. Evidently, automated conversion
from DBMS to Spreadsheet requires fewer assumptions or specifications than the other
way.

Known (model-based) domain dependency relationships between cells can be exploited
for validating an interpretation. Some examples are given in [55].

The distinction between logical and physical structure is perhaps best formalized in
[54]. Wang defines an abstract table as an abstract data type, and its layout structure as
the presentation form of a table. The logical structure consists of entries and labels. Labels
are hierarchically divided into categories and subcategories, and each entry is associated
with one label from each of the categories. The organization of the labels is called a frame,
and the number of categories in the frame is the dimension of the abstract table. The size of
the table is the total number of entries. A concrete table is generated by applying a layout
specification (topological and style rules) to an abstract table, where “topology” is the
arrangement of tabular items in two dimensions, and “style” governs the final appearance
of the tabular components. Based on these constructs, Wang implemented X-Table, a
practical table composition in a Unix X-Windows environment.

Wang points out that the basic difference between relational tables and her abstract
tables is the logical dimension. A database table is two-dimensional with attributes in



one dimension and tuples in the other. To represent an abstract table with attributes in a
relational database, one must determine which category corresponds to attribute names,
which category corresponds to the primary keys, and which category corresponds to the
non-primary keys.

The object oriented dot notation labell.label2.label3.entry is used by both Wang and
Hodge to represent a path in the tree between headers and leaf cells. It is also the basis
of the Dewey Decimal System used in library catalogs.

None of the existing table interpretation systems bridge the gap completely between
layout and logical structure.

5 Table Data Collection

In spite of the prevalence of tables, it is not easy to obtain a corpus of table data that
would allow one to make reasonable predictions about the performance of a system in
any particular application. Because of the variability of table formats and structures,
processing only a few hundred or thousand tables is bound to give a very optimistic view.

Wang collected 886 tables from five sources and showed that X-Table could represent
the logical structure (except for footnotes) of 97% and the layout of 94% of these tables
[54]. Considering the size, complexity and versatility of X-Table, it seems unlikely that
any automated table processing system can achieve such results. However, this collection
of tables may serve as a good benchmark for non-model-driven systems.

A much more homogeneous collection of similar size (851 tables) is part of the Federal
Register database distributed on CD-ROM by NIST [14]. The CD-ROM includes over
4,000 page images scanned bi-level at 400 dpi, and also contains the corresponding ground-
truth extracted by combining the original typesetting data with OCR results. We are not
aware of any attempt to apply table-processing techniques to this data.

Paper tables are readily found in technical journals, in data books, and even in popular
magazines. Within a single journal or data book, there is some consistency of format and
structure. Compendia, such as a Physics or Chemistry handbook, which are edited by
dozens of specialized editors, exhibit a much larger variety of tables.

In the ASCII domain, Pyreddy and Croft report on a table extraction and retrieval
experiment involving 6,509 tables from a corpus consisting of six years of text from the
Wall Street Journal [42]. This data, professionally written and from a single source, is
likely to be unrealistically uniform, however. In DIA and OCR, researchers at DFKI
and ISRI among others found it surprisingly difficult to collect a representative collection
of business letters. Since the occurrence of tables in e-mail seems infrequent, we may
anticipate much greater difficulty in collecting a broad enough range of examples.

Organizations post on the Web quantities of tabular data in various formats, and
some offer subscriptions that provide time-critical data, like low-cost flight opportunities,
by e-mail. Again, assembling a statistically useful collection of tables from such sources is
not a trivial matter.

5.1 Table spotting

Table spotting really consists of two related tasks: detecting the presence of a table, and
delineating the table. (Do the first three text lines belong to the table in Figure 67) Both
are complicated by the lack of general agreement of just what constitutes a table, and how
much of the “secondary” information (e.g., title, caption, footnotes) belongs to the table.



In some examples, it may be equally appropriate to classify a region as table or text, as
demonstrated below:

table text
graphics table

Tables often constitute one of the designated categories, along with text, line-drawings,
half-tones, and references, in digital image analysis of technical material [39]. Large,
complex tables are easy to separate from the other classes, although some illustrations
can be equally accurately designated table or line drawing [22]. A method of measuring
the success rate of OCR systems to identify tables and thus avoid de-columnizing them is
described in [29].

The detection of tables in electronic text can be accomplished with a high degree of
accuracy with relatively simple techniques. The most important clue is the presence of
correlated sequences of spaces on consecutive lines [24]. A variety of heuristics found to
work well on a corpus of articles from the Wall Street Journal are described in [42]. The
results reported for this last study, measured on 100 documents containing a total of 50
tables, show a miss rate of 1.8% and a false-hit rate of 5.4% when measured on a per-line
basis.

A graph-grammar rewrite-rule based approach to spotting electronic tables in Post-
Script or Interpress is described in [43]. This approach seems a bit top-heavy and may be
more appropriate for general page layout analysis.

5.2 Table-similarity detection

The clustering of tables to be processed into similarity groups would allow decreasing the
amount of human interaction necessary for complete and accurate data extraction. While
mixed forms are routinely processed in the form processing industry, this is an essentially
model-driven approach where all form types are known ahead of time (except for a “reject”
category).

The grouping of tables according to similarity in format, structure and content is po-
tentially an interesting research project with little previous work reported in the literature
(except for [55]).

5.3 Table content and structure extraction

Research conducted to date differs as much by the choice of tables to investigate as by the
amount and form of the extracted information.

One of the first published papers [35] concentrates on locating the ruling-line structure
to extract the corner coordinates of all the cells in the table. In addition, the coordinates
of the bounding boxes of the text within each cell are found. No attempt is made towards
further semantic interpretation.

These notions based on a table grid and simple and compound cells are taken up again
in 1997 with little change except for an emphasis on horizontal and vertical profile analysis
[61]. Although the proposed methods are apparently incorporated in a commercial OCR
product and have been widely tested, no experimental results are presented. Here, too,
there is no attempt at interpretation.

Some recent work addresses electronic rather than paper tables. A small experiment
with 29 training tables and 4 test tables marked up in SGML is described in [27]. In a
slightly larger-scale study involving 50 ASCII tables taken from the Wall Street Journal,



9.4% of caption lines were mis-tagged as table lines, while 7.4% of table lines were mis-
tagged as caption lines [42]. No attempt was made to distinguish structure any finer than
this.

T-Recs (Table REcognition System), an elaborate program for the structural anal-
ysis of ASCII tables based on bottom-up clustering of words, is described in [30]. A
demo was available on the Web at the time this report was written (http://www.dfki.uni-
kl.de/da/kieni/t_recs/).

Table interpretation systems that we have already discussed are [22, 23, 55]. Work at
RPI on extracting useful information from scanned paper tables is reported in [1, 16, 25,
33].

6 User Interfaces and Interaction

The reading and understanding of tables has been subjected to a surprising amount of
study. Wang summarizes the three cognitive processes that are considered important in
interacting with a table [54]:

1. A comprehension process, needed for understanding the principle on which the table
is organized to grasp the underlying logical structure of the table.

2. A search process, needed for locating the relevant information within the table.

3. An interpretive and comparative process, needed to answer specific questions after
the relevant information has been obtained.

Any automated table interpretation system will make some errors. In most applica-
tions, these errors need to be corrected by the user or operator. The errors are necessarily
unpredictable, therefore a flexible user interface is required to correct them. In fact, the
user interface must be powerful enough to enter any table from scratch, because the auto-
mated system may fail at any point. Consequently, it makes sense to begin the development
of an automated table interpretation system by implementing a completely manual table
composition system, and gradually automating the easiest and most repetitive functions.

The user interface may address the logical structure or the physical structure. Accord-
ing to Wang, three types of operators are necessary to manipulate the logical structure of
an abstract table:

1. change logical dimension
2. reorganize the label structure of categories
3. update labels and entry values

Wang defines 18 operations for these purposes and claims that this set is both com-
plete and non-redundant. A much larger and more complex set of rules is required for
topological and style specification of the concrete table. While Wang’s X-Table is a ta-
ble composition system rather than a table interpretation system, the complexity and
variability of composition is bound to be reflected in the interpretation.

6.1 Graphical query interface

We conjecture that a well-designed interface may be used for addressing queries to a set
of (hidden) tables even without elaborate table understanding routines. The key here is



exploiting the user’s understanding of the expected form and content of the tables. The
amount of table processing necessary is an open question, but is sure to be less of a hurdle
for electronic tables than for paper tables.

Rus and Subramanian describe a sophisticated, agent-based system that extracts tab-
ular information (e.g., stock prices) from Usenet newsgroup postings and presents the
results to the user as, say, a time-series chart [46]. Such an approach has undeniable
appeal, although it is not clear how difficult it would be for an average user to construct
queries in this environment, nor is it obvious what kind of impact recognition errors, which
are unavoidable, would have.

Rao and Card’s Table Lens is a collection of visualization techniques for rendering
certain kinds of tabular information graphically, thereby making it possible to fit more on
a given display [44]. The FOCUS interface developed by Spenke et al. facilitates browsing
large object-attribute tables (tables with hundreds of rows and/or columns) through a
fisheye method and also supports dynamic queries [48]. Neither of these systems addresses
badly formed input.

The interface for interacting with the results of table processing will undoubtedly need
to be extremely flexible and forgiving of failures. Some combination of a rich (but simple)
query language along with powerful support for navigation via browsing stands the best
chance of success in our opinion.

Moreover, the interface must be designed to convey feedback back to the system so
that errors in recognition may be identified and possibly recovered from. Almost none
of the work we have seen addresses the question of correcting residual errors from table
processing. Green measures the number of mouse clicks required to correct errors [16]. Ko-
rnfeld and Wattecamps describe using a programming-language-like debugger that allows
an operator to locate and correct errors [31].

6.2 Awudio interface

Walker et al. describe a spoken language interface (SLI) for general e-mail navigation [53].
The emphasis is on (man-machine) dialog issues — no mention is made of using document
structure to facilitate information access (other than the standard notion of filing related
messages in the same folder). DeHaemer et al. examine automated speech recognition
(ASR) for spreadsheet tasks [11]. They found that, at the time, keyboard input was more
efficient than ASR, but that users were still interested in the idea of a voice interface for
such activities.

For an audio interface to tables in e-mail, there are two extreme scenarios with every-
thing in between. The two boundary points are:

1. A minimal table format recognition program that just recognizes most of the leaf cells
and grids the table, and a sophisticated interactive navigation and query interface.

2. A full-fledged autonomous table interpretation system that lets the user access only
the data and structure already extracted from the table.

We believe that the first alternative may be superior with regard to the amount of
functionality achievable with any reasonable expenditure of resources. The development
of a minimal table spotting and gridding system would require only a few weeks of work,
whereas none of the automated systems that have been attempted (some of which are
based on many person-years of work) appears to achieve usable performance. Further
effort would be far better spent in improving the interactive navigation/query interface.



The major rationale offered for this claim is that the recipient of the table is likely to
have a very good model of the structure and semantics of any table he or she may want
to deal with. Such a model immensely facilitates extracting information. A general table
processing system (as opposed to a batch system targeted to specific tables) would lack
any such model.

We believe that for most tables likely to be communicated by electronic mail, the user
would be able to ascertain its structure with very few probes. A probe might be “read
me the top row” or “read me the leftmost column,” or “give me the contents of the (2,2)
cell.” Once the user understands the structure of the table, more complex operations can
be readily specified at the physical level.

7 Potential Applications

7.1 Large-volume, homogeneous table conversion

An example of an application in this area is the work done at AT&T/Lucent on the
conversion of telephone billing statements to a usable form [47]. Although the tables
may vary in format and content, all contain similar types of data that is compatible with
an existing database. The database itself can be used to facilitate and validate data
extraction from the tables [15]. This application is very similar to forms processing and
could probably make use of advanced existing commercial software developed for this
purpose.

The authors of the above paper emphasize the importance of a well-designed Graphical
User Interface (GUI) to allow customization of the table-processing tools for specific for-
mats. The use of table templates eliminates the need for elaborate structure hypotheses,

and the success of the approach depends mainly on thorough preprocessing and accurate
OCR.

7.2 Large-volume, mixed table conversion

This is a preliminary step for data mining from sources that are available only as paper
or electronic tables. This application may require table spotting and table-similarity
detection in addition to content and structure extraction.

Note that a successful approach to table understanding could be used to facilitate what
is regarded as traditional information retrieval. The answers to certain kinds of queries
seem most naturally expressed in tabular form. Consider, for example, the following ad
hoc topic (#219) from the TREC 4 evaluation [50]:

“How has the volume of U.S. imports of Japanese autos compared with exports
of U.S. autos to Canada and Mexico?”

A document relevant to such a query will likely contain a table comparing auto im-
ports/exports over time or by country.

7.3 Individual database creation

This is a filing application for data that arrives in e-mail, by post, or is discovered on the
Web [56]. The individual sets up some goal-oriented digital filing system and populates
it with items that arrive at unpredictable times. The tables are processed either as they
arrive, or batched for more convenient interactive processing. An important consideration
here is minimization of the original set-up time and level of skill required.



7.4 Tabular browsing

Interactively extracting specific information from a large table is somewhat similar to
addressing queries to a database with a language like SQL. Wang gives examples where
the results of a query consist of highlighting specific cells in a table. She also mentions the
possibility of creating subtables in response to a query, which is similar to view generation
in a database [54].

7.5 Awudio access to tables

In the EMU project [49], it may be desirable to detect and access newly received tables in
e-mail by telephone. Access may take the form of an abbreviated reading or summarization
of the table, a query-answer interface directly to the table, or conversion of the table to
a database and access through an existing audio-database interface (if one were to exist).
A protocol for direct access to tables was devised for “talking books” for the blind [45]. It
requires repeating the appropriate table heading before each content cell is voiced, which
can be a slow and painful process.

7.6 Table manipulation

Existing tables often need to be reformatted, combined, or modified for specific target
audiences. Such manipulation may take place at the level of format, using a word proces-
sor, page-composition language, or spreadsheet, or at the deeper level of the underlying
database. The latter can use independently-developed facilities for view generation and
database output formatting. This application is mentioned in [27, 54].

7.7 Table modification for display

A relatively superficial but perhaps important type of modification is that required for
displaying an existing table at a different resolution than originally intended. In addition
to accommodating small-format displays such as a personal digital assistant (PDA), one
may wish to modify a page-width table to single-column width. Additional headers must
be inserted to divide long tables to fit pages. A research issue here that may draw on
database concepts is the division of tables into a set of equivalent tables (c¢f. “Large
Tables” in [54]).

In this section we have attempted to break down applications into as many discrete
categories as possible. It may or may not be advantageous to develop a table-processing
framework that can handle several of these applications in a unified way.

8 Conclusions

We have identified several classes of potential applications for table processing and some
research problems on which little work has been reported so far. We have also formed
opinions of the relative difficulties of the tasks involved. The applications are:

e Large-volume, homogeneous table conversion
e Large-volume, mixed table conversion

e Individual database creation

e Tabular browsing



e Audio access to tables
e Table manipulation
e Table modification for display
The next step would be to analyze these applications to determine their commonalities

and differences.
The new research problems appear to us to be:

e Query mechanisms for freeform electronic tables

¢ Audio navigation and access to a gridded table

Subdividing a table into a set of equivalent tables

Spotting tables in electronic mail

Clustering tables into similarity groups

Converting a paper or electronic table into an abstract representation

Effects of “noise” in tables and correction of errors introduced in processing
e Performance evaluation of both table conversion and table query
The ways in which the applications and problems interrelate are depicted in Figure 2.

Unless we make headway on performance evaluation, including acquisition of statistically
adequate test material, it will be difficult to evaluate progress on any of the other tasks.

Application Research Problem
Large-volume, homogeneous conversion ] . ]
Large-volume, mixed conversion . . . . .
Individual database creation . ] . . . . .
Tabular browsing . ] ] ] ] . . °
Audio access to tables . ] . . . . . .
Table manipulation . . . ° °
Table modification for display . . . . °
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Table 2: Applications and research problems in table processing and their interrelations.

Although the logical interpretation of paper and electronic tables is similar, the over-
head of image processing and OCR makes the former a much more difficult task. Most
work to date is based on table geometry, i.e., processing the graphic elements of the ta-
ble. Very little has been reported on combining such image processing with the results of
character recognition of the cell contents. Current OCR systems often de-columnize tables
because superficially they look like multicolumn text. No test on a large, heterogeneous
corpus, has been reported, and few researchers consider the need to provide a mechanism
for the correction of residual errors from automated processing.

More recently, the trend has shifted to the easier problem of electronic table conversion.
Several commercial organizations advertise their capability of converting electronic tables
to various forms, including spreadsheets. Some advertise conversion of tables in raster



image form. We do not know what kind of a benchmark would allow testing of their
claims.

Simple electronic tables, whether ASCII, PDF, RTF, SGML, HTML, XML, LATEX,
Tbl, or other, can probably be converted with moderate effort to an abstract form with
over 90% accuracy. Spotting large tables in electronic documents is relatively easy, but
delineating them precisely is more difficult. A limit on achievable accuracy is imposed by
the ambiguity inherent in these tasks.

The derivation of information from a table could be accomplished by converting the
table to a relational database or equivalent and formulating queries in SQL. Alternatively,
queries can be answered by direct interactive access to a preprocessed table. Such prepro-
cessing need not be much more elaborate than division into rows and columns.

However, tables do not generally contain sufficient information for conversion into a
database, although they can be converted into an abstract table or spreadsheet. To add
the necessary semantics, a model of the table is required. The model can be derived
from an existing database corresponding to similar tables, or it can be provided by the
user /operator. The user can either provide the model explicitly, or implicitly by correcting
errors. Except for large volumes of similar tables, it appears sensible to take advantage
of the user’s understanding of the context of the table: endowing a table-understanding
system with such context is difficult.

The economics of table processing is another important point that has often been
ignored. Clearly, an investment in table processing must bring with it benefits that exceed
the expenses involved. If it is always easier to recover the desired information through
some other means (by browsing, say, or via a simple keyword query), then table processing
serves no purpose. The formulation of such a model would be invaluable, and may very
well provide insight into where we should apply our efforts to obtain the greatest possible
return.

We conclude by noting that the vast majority of papers published to date have con-
centrated either on the problems associated with low-level analysis of printed tables, or
on guidelines for table presentation, with comparatively little work on the topic of mak-
ing tabular information useful (other than for highly specialized applications). What has
changed to make this an interesting question to consider? The unprecedented explosion
in the amount of information people are confronted with each day. Whereas large-scale
databases were once the province of a select few, nowadays anyone with Internet access
and an e-mail account is inundated with vast quantities of unstructured (or at best loosely
structured) data. Automated table processing presents one promising way of recovering
useful, familiar structure making it possible to realize more of the benefits of universal
data access.
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A Table Examples

In this appendix, we present a number of examples of paper and electronic tables.

TABLE 1
A BRIEF SURVEY OF GEOMETRIC PAGE-LAYOUT ANALYSIS METHODS
No. Author Year Approach Features
1 | Wahl et al. [11] 1982 Run length smoothing Time consuming and skew sensitive
2 | Nagy etal. [12] 1984 | X-Y tree cut Skew sensitive; Assumes rectangular blocks
3 | Wang etal. [13] 1989 Run length smoothing and recursive Newspaper analysis; Sensitive to skew
X-Y cut
4 | Fujisawa et al. [14] 1990 | Top-down Japanese patent documents
5 | Fisheretal. [15] 1990 Run length smoothing and connected | Identifies text and nontext zones; Skew sensitive
component extraction
6 | Pavlidis et al. [16] 1991 Column oriented projection Identifies text and nontext regions; Accommodates mod-
erate skew
7 | Baird [17] 1992 | Global-to-local strategy Accommodates different languages; Skew correction;
8 | Jainetal. [18] 1992 | Gabor filtering Multichannel texture features from gray-scale images;
Time consuming
9 | Lebourgeois et al. [19] 1992 | 8x 3 window filtering Unconstrained documents; Skew not considered
10 | Pavlidis et al. [20] 1992 Horizontal smearing and bottom-up Accommodates small skew; Fixed parameters
11 | Akindele et al. [21] 1993 | White space tracing Polygonal blocks; Only text zones considered
12 | Amamoto et al. [22] 1993 Morphological operation on white Identifies horizontal and vertical writing; Skew not consid-
space ered
13 | litner et al. [23] 1993 | White space and minimum spanning Language and orientation free; Large computation
tree
14 | O'Gorman [24] 1993 k-nearest neighbor clustering Can handle arbitrary orientation with high accuracy; Large
computation
15 | Antonacopoulos et al. 1994 | Contours from white tiles Finds nonrectangular and skewed regions; Error in clas-
[25], [26] sifying large fonts
16 | Zlatopolsky [27] 1994 Connected component extraction Multiple skewed document; Sensitive parameters
17 | Doermann [28] 1995 | Wavelet multiscale analysis Segments nonblock-nested pages; Gray-scale image
processing; High computational complexity
18 | Drivas et al. [29] 1995 | Connected component grouping Skew correction with a time consuming algorithm
19 | Haetal. [30] 1995 | Connected component-based projec- | Faster than pixel-based projection profile; Skew sensitive
tion profile
20 | Sylwester et al. {31] 1995 | trainable X-Y cut Relatively robust; Skew and noise free
21 | Tang et al. [32] 1995 | Modified fractal signature Handles documents with high geometrical complexity;
Gray-scale image processing; Time consuming
22 | Jain et al. [33], [34] 1996 | Masks and neural network Handles documents with multiple languages; Gray-scale
image processing; Time consuming
23 | Kise et al. [35] 1996 | Background thinning Skewed nonrectangular layout; Bounding box is not very
tight
24 | Liu et al. [36] 1996 | Adaptive top-down and bottom-up Nonrectangular regions; Skew free
25 | Yamashita et al. [37] 1996 | Run length smearing and adaptive Less sensitive to font size and spacing; Skew free
thresholding

Figure 2: A table with considerable text comparing document layout analysis methods.?

2From “Document Representation and its Application to Page Decomposition” by A. K. Jain and B.
Yu, IEEE Transactions on Pattern Analysis and Machine Intelligence, March 1998, pg. 297.



Figure 3: A handwritten table showing a personal schedule.?

I
NEW YORK
STOCK

EXCHANGE

NYSE INDEXES

- NEW YORK (AP) — Ciosing New
York Stock Exchange indexes:

Close Chg.
Comp .. 61049 —0.19
Indus :
Transp
Utility ..

1,743 1,829
563 568

Unchanged

Total issues 3,582
New highs .. 58
New lows ... 90

DOW JONES AVERAGES
NEW YORK (AP) — Final Dow
Jones averages vesterday:

STOCKS

Open High Low Last Chg,
Ind 9902.28 1000595 9796.99 9890.51 —~13.04
Trn 3337.44 3376.11 324221 3275.68 —62.80
Ut 30391 30648 30013 30322 —0.72
Stk 3030.50 3061.77 2985.30 3014.68 —16.16
30 Indus ..
Tran
utils .
65 Stk ..

BONDS
DJ AIG Futures

10 industrials X
10 Pubtic Util 10263 +0.70
20 Bonds ... .

Finance ..

WHAT THE NYSE MARKET DID
Yester- Prcv.
day

Advanced 1,240 mss*
Declined ..

STOCK SALES
Approx final total
Previous day
Week ago ..
Month ago
Year ago ..
Two years ago
Year to date ...
To date one vear ago
To date two years ago .. 28,938,520,

BOND SALES
Approx final total $13,626,000
Previous day $14,377,000
Week ago $12,090,000
Month ago $11,232,000

Year ago .
Two vears ago
Year 1o date ... 5759 113,000
To date one year ago ... $1,050,662,000
To date fwo years ago .. 51,431,008,000

MOST ACTIVE NYSE STOCKS

NEW YORK (AP) — Sales, closing
price and net change of the 15 most
active New York Stock Exchange
issues trading at more than $1:
Name Volume  La: Chg.
AmOnine s .. 30,279,300 130 4103
US Filter

Tycolnt .

STANDARD & POOR’S
NEW YORK (AP) — Standard and
Poor’s stocl:‘ indexes vesterday:
ow

Lli'

S&P 100 ... 653.19 648.44

P 500 . 1303.84 1294, 26 1297 Ol —2 2!
MldCan .. 363.76 359.82 360.80 —1.51
Indust ... 1565.341552.88 1556.42 —2.67
Transpt ... 716.73 707.36 708.28 —8.45
Utilities ... 245.12 243.81 243.99 —0.96
Financial . 142.66 141.59 14222 —0.15
SmallCap . 160.66 158.57 158.70 —1.71

Figure 4: Tables of daily financial results.*

%From the Library of Congress archive

of the Alexander Graham Bell

http://memory.loc.gov/ammem /bellhtml/bellhome.html.
*From The Trenton Times, March 23, 1999, pg. D2.

family papers,
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40
39 39
88 88
81 81
T 7
85 85
36 36 36
91 91 91 9
79 79 7979
76 76 76 76
29 29 29 29
& &,y AN
90 90 90 92 90
92 92 92 92 92
89 89 89 689 89
83 63 83 83 88
78 78 78 78 78
80 80 80 80 80 80
3 3 3 5 30 30
33 33 33 35 33 3B
6 6 6 6 6 6
27 27 21 2 2 =N
4 4 4 4 4 4
28 28 28 28 28 28
3 35 S5 36 365 85
82 82 82 82 82 82
MM TTTMTNTNT M
3 8 3 83 3 8 3 3
5 5§ 6 6B 5§ 5 6 5
32 32 32 32 32 32 32 B2 32
41 41 41 41 41 41 41 41 41 41 41
42 42 42 42 42 42 42 42 42 42 42 42
26 26 26 26 26 26 26 26 26 26 26 26 26 26
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
11 1 1 1 1 1 21 1 1 1 1 11 1 1 1 1
Jun Jul Aug Sep Oct Nov Dec|Jan Peb Mar Apr May Jwn Jul Aug Sep Oct

1917 1918

Figure 5: A table showing the stationing of U.S. Army Divisions in France during WWIL.5

LUCENT TECHNOLOGIES TODAY
For the People of Lucent Technologies
Friday, February 12, 1999

*xk STOCK WATCH  ***

TODAY"S  YESTERDAY"S  YESTERDAY"S

OPEN CLOSE CHANGE
Lucent 100 13/16 101 1/16 + 3 13/16
Ascend 73 5/8 74 7/8 + 2 3/8
AT&T 87 1/2 88 3/16 + 2 3/8
Alcatel 21 7/8 22 + 13716
Ericsson 26 1/4 26 3/8 + 1 5/16
Motorola 67 1/2 67 1/4 + 1 13716
DJIA 9367.32 9363.46 + 186.15
NASDAQ 2375.99 2405.55 + 96.05
*** NEWS IN A NUTSHELL *** *** LUCENT HERITAGE ***
* New software tool On Feb. 17, 1998, Lucent
* America"s most admired announced that it would
* Switch lands in winter games acquire Hewlett-Packard®s
* Students visit Bell Labs local multipoint distribution
* World of Science Seminars service wireless business
* Client feedback survey and launch a new Wireless

Broadband Networks Division.

Ak xRsRxkx | UCENT IN THE NEWS — Fossorscokssorsokssors

STUDENTS VISIT BELL LABS -- Hosted by Lucent Korea,
elementary school students from Korea visited Bell Labs
in New Jersey to explore its advanced science and
technology. Lucent Korea provided the six-day tour for
the students to encourage their education in science.
[Naeway Economic Daily (Korea), 2/12]

Figure 6: One (or perhaps two?) tables embedded in ASCII text.”

SFrom The Visual Display of Quantitative Information by Edward R. Tufte, Graphics Press: Cheshire,
CT, 1983, pg. 141. Note the subtle partition between the regions governed by the first-level headers
(footers), “1917” and “1918.”

"From Lucent Technologies Today, February 12, 1999.



How Different Groups Voted for President
Based on 12,782 interviews with voters at their polling places. Shown is how each group divided
its vote for President and, in the p ge of the to each
group.
CARTER-FORD
CARTER REAGAN ANDERSON in 1976
Democrats {43%) 66 26 6 77-22
Independents (23%) 30 54 12 43-54
Republicans {28%) 1 84 4 9-90
Liberals (17%) 57 27 11 70-26
Moderates (46%) 42 48 8 51-48
Conservatives (28%) 23 7 4 29-70
Liberal Democrats (9%) 70 14 13 86-12
Moderate Democrats (22%) 66 28 6 77-22
Conservative Democrats (8%) 53 41 4 64-35
Politically active Democrats (3%) 72 19 8 —
Democrats favoring Kennedy
in primaries (13%) 66 24 8 —
Liberal Independents (4%) 50 29 15 64-29
Moderate Independents (12%) k2l 53 13 45-53
Conservative Independents (7%) 22 69 6 26-72
Liberal Republicans (2%} 25 66 9 17-82
Moderate Republicans (11%) 13 81 5 11-88
Conservative Republicans (12%) 6 91 2 6-93
Politically active Republicans (2%) 5 89 6 -
East {32%) 43 47 8 51-47
South (27%) 44 51 3 54-45
Midwest (20%) 41 51 6 48-50
West (11%) 35 52 10 46-51
Blacks (10%) 82 14 3 82-16
Hispanics (2%) 54 36 7 75-24
Whites(88%) 36 55 8 47-52
Female (49%) 45 46 7 50-48
Male (51%) 37 54 7 50-48
Female, favors equal rights
amendment (22%) 54 32 1" —
Female, opposes equal rights
amendment (15%) 29 66 4 —
Catholic (25%) 40 51 7 54-44
Jewish (5%) 45 39 14 64-34
Protestant {46%) 37 56 6 44-55
Born-again white Protestant (17%) 34 61 4 —
18 - 21 years old (6%) 44 43 " 48 -50
22 - 29 years oid (17%) 43 43 11 51-46
30 - 44 years old (31%) 37 54 7 49-49
45 - 59 years old (23%) 38 55 6 47-52
60 years or older (18%) 40 54 4 47-52
Family income
Less than $10,000 (13%) 50 4 6 58-40
$10,000 - $14,999 (14%) 47 42 8 55-43
$15,000 - $24,999 (30%) 38 53 7 48- 50
$25,000 - $50,000 (24%) 32 58 8 36-62
Qver $50,000 (5%) 25 65 8 —
Professional or manager (40%) 33 56 9 41-57
Clerical, sales or other
white-collar (11%) 42 48 8 46 -53
Blue-collar worker (17%) 46 47 5 57-41
Agricuiture (3%) 29 66 3 —
Looking for work (3%) 55 35 7 65-34
Education
High school or less (39%) 46 48 4 57-43
Some college {28%) 35 55 8 51-49
College graduate (27%) 35 51 1 45-55
Labor union household (26%) 47 44 7 59-39
No member of household in union (62%) 35 55 8 43-55
Family finances
Better o than a year ago {16%) 53 37 8 30-70
Same (40%) 46 46 7 51-49
Worse off than a year ago (34%) 25 64 8 77-23
Family finances and political party
Democrats, better off
than a year ago (7%) 77 16 6 69-31
Democrats, worse off
than a year ago (13%) 47 39 10 94-6
Independents, better off (3%) 45 36 12 —
Independents, worse off (3%]) 21 65 n —
Republicans, better off (4%) 18 77 5 3-97
Republicans, warse off (11%]) 6 89 4 24-76
More important problem
Unempioyment (39%) 51 40 7 75-25
inflation (44%) 30 60 9 35-65
Feel that U.S. should be more forceful in
dealing with Soviet Union even if it would
increase the risk of war (54%) 28 64 6 -
Disagree (31%) 56 32 10 —
Favor equal rights amendment (46%) a9 38 1"
Oppose equal rights amendment (35%) 26 68 4 —
‘When decided about choice
Knew all along (41%) 47 50 2 44-55
During the primaries (13%) 30 60 8 57-42
During conventions (8%) 36 55 7 51-48
Since Labor Day (8%) 30 54 13 49-49
In week before election {23%) a8 46 13 49 -47
Source: 1976 and 1980 election day surveys by The New York Times/CBS News Poll and
1976 election day survey by NBC News.

Figure 7: A table analyzing voter preferences in the 1980 U.S. Presidential Election.®

8From The Visual Display of Quantitative Information by Edward R. Tufte, Graphics Press: Cheshire,
CT, 1983, pg. 179. Tufte notes: “This type of elaborate table, a supertable, is likely to attract and intrigue
readers through its organized, sequential detail and reference-like quality. One supertable is far better
than a hundred little bar charts.”
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ice coding schemes. '”

10US VO

A wide, wrapped table giving the performance of vari

Figure 8

From “A New Federal Standard Algorithm for 2400bps Coded Voice.” Note the extra, inexplicable
(in this context) box surrounding the performance and rank figures for the entry in the middle of the first

//www.plh.af.mil/ddvpc/24results.htm.

part of the table. http



