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Abstract. As the accuracy of conventional classifiers, based only on a static partitioning of feature 
space, appears to be approaching a limit, it may be useful to consider alternative approaches. Interactive 
classification is often more accurate then algorithmic classification, and requires less time than the 
unaided human. It is more suitable for the recognition of natural patterns in a narrow domain like trees, 
weeds or faces than for symbolic patterns like letters and phonemes. On the other hand, symbolic 
patterns lend themselves better to using context and style to recognize entire fields instead of individual 
patterns. Algorithmic learning and adaptation is facilitated by accurate statistics gleaned from large 
samples in the case of symbolic patterns, and by skilled human judgment in the case of natural patterns. 
Recent technological advances like pocket computers, camera phones and wireless networks will have 
greater influence on mobile, distributed, interactive recognition of natural patterns than on conventional 
high-volume applications like mail sorting , check reading or forms processing. 

1. Introduction 

I am grateful for this wonderful opportunity to proselytize for some heretical notions. First, I will suggest 
classifying pattern recognition applications into types A, B, AB, and O, according to the pattern recognition 
methodology that suits each best. Type A consists of symbolic patterns, the glyphs and sounds used for 
encoding messages. Type B includes natural objects like flowers and faces that are not used primarily for 
communication. I will try to substantiate the claim that interactive computer vision, where the tasks leading 
to object recognition are assigned according to the relative competence of human and machine, is 
particularly appropriate for Type B applications. On the other hand, context and style based classification 
seems better suited to Type A applications. Learning and adaptation benefit every type. 

Section 2 outlines the considerations that led to the proposed taxonomy of recognition problems. Section 
3 summarizes our recent results on interactive classification of flowers and faces.  Section 4 and 5 present 
the corollaries of interactive classification: mobile and networked recognition. In Section 6 we recapture 
the notion of style, show that it can lead to more accurate classification of multi-source patterns when the 
test samples are partitioned by source, and contrast it to the better established methods based on language 
context. In the last section I list some areas where rapid progress may be possible. This is not a survey: 
however, the cited publications contain extensive references to invaluable prior work by others.  

2. Symbolic and Natural Patterns 

Prototypical examples of Type A applications are character, hand print, and speech recognition (OCR, ICR 
and ASR). The first operational OCR system was installed at Readers’ Digest in 1955. Eleven years later, 
at the 1966 IEEE Pattern Recognition Workshop in Puerto Rico, postal address readers, form processing, 
and spoken word recognition were among the most popular topics, and they remain so today. The early 
OCR systems were so expensive that they could not be justified unless they displaced 10-20 keypunch 
operators. Target rates were 1000-2000 characters per second. High throughput was necessary because our 
garrulous species spawns endless streams of print that we yearn to preserve for posterity. Type A 
applications share the following characteristics: 

• they deal with symbolic patterns that represent natural or formal languages; 
• any reader or speaker of the particular language can perform the classification manually; 
• they require high throughput because every message consists of many patterns; 



 

• many (millions) of samples are available for training; 
• formal models of context (morphological, lexical, syntactic, pragmatic [1]) 

and of style (typefaces, hand print, dialects [2, 3, 4]) have been developed; 
• the error/reject tradeoffs are well understood [5]; 
• the classes are well defined: there are exactly ten digits and, in Italian, 21 letters of the alphabet;  
• in feature space, the class centroids are located at the vertices of a regular simplex [6, 7, 8]. 

Examples of Type B include the recognition of birds, flowers and trees, many biometric applications, 
and biomedical pattern classification where the cost of preparing the samples often dominates the cost of 
recognition. Type B applications 

• deal with natural patterns which may have developed without the discriminability of symbolic patterns; 
• must be classified on demand rather than as part of a work-flow; 
• are recognized only by relatively few, highly trained experts (bird-watchers, foresters, physicians); 
• often have only small training sets because of the high cost of labeling; 
• seldom have established models of context or style; 
• because of the unpredictable cost of errors, require every decision to be checked by a human; 
• exhibit a soft, hierarchical class structure, subject to change. 

Type AB applications have some characteristics of both Type A and Type B. An example is genetic 
sequence decoding. We defer consideration of Type O. 

3. Interaction 

Almost all operational pattern recognition systems require some human interaction, at least at the beginning 
or end. We focus here on systems where human and machine take turns to reach a decision that assigns a 
particular object (a flower, tree, face, or skin lesion) to a particular class. 

There are essential differences between human and machine cognitive abilities. Humans excel in gestalt 
tasks, like object-background separation. They apply to recognition a rich set of contextual constraints 
gleaned from previous experience rather than from specific training and test sets. They have superior noise-
filtering abilities (particularly with respect to colored noise.) They can easily read degraded text on which 
the best OCR systems produce only gibberish. Computer vision systems, on the other hand, still have 
difficulty in recognizing “obvious” differences and “generalizing” from limited training sets.  

Computers, however, can perform many tasks faster and better. Computers can store thousands of 
images and the associations between them, and never forget a name or a label. They can evaluate 
geometrical properties like high-order moments whereas a human is challenged to determine even the 
centroid of a convoluted figure. They can compute wavelets and other kernel transforms to differentiate 
textures. Computers can quickly measure lengths and areas, count thousands of connected components and 
sort them according to various criteria (size, aspect ratio, convexity). They can flawlessly evaluate 
multivariate conditional probabilities, decision functions, logic rules, and grammars. In contrast, George 
Miller’s psychophysical experiments in the 1950’s revealed that humans have limited short-term memory 
(only ±7 items) and poor absolute judgment. 

We believe that the key to effective interactive recognition is a visible model to mediate human-
computer communication. The model is a geometric and topological abstraction of an object represented in 
a picture. It guides the machine to extract discriminative, localized intensity, color and texture features. The 
model mediates only a restricted set of information. It does not tell the computer anything about the rich 
perceptions that lead the operator to correct or approve the model, and it does not tell the human about the 
configuration of the resulting feature vectors in high-dimensional feature space.  

We have developed CAVIAR (Computer Assisted Visual Interactive Recognition) systems for some 
Type B applications [9 - 12]. Figure 1 shows examples of our flower and face models. These models are 
constructed automatically, and corrected interactively only when necessary. The line drawing superimposed 
on the picture lets the operator judge whether the computer-suggested model fits the unknown object. We 
restrict the model to isolated points and curves, because color and intensity are difficult to modify with a 
mouse or stylus. In effect, the user can point and drag, but not paint or shade. The model is only an 
abstraction: by itself, it is not sufficient for classification by either human or computer. Both must  



 

 
Fig. 1. CAVIAR-flower (left) and CAVIAR-face (right) visible models and graphic user interfaces. Because pupil 

o guide 

 

localization is so important in face recognition, an enlarged view is provided for this part of the visible model. 

have unlimited access to, and make use of, the entire pixel array. The purpose of the model is only t
the machine in extracting good features for classification. 

A model instance need not depict faithfully intensity, color, or texture edges. A poorly fitting model may 
suffice to classify an “easy” object. Conversely, even an accurate model may result in ambiguous features. 
(One consequence of the role of the model in our system is that there can be no “ground truth” for it. 
Several models, or none, may lead to features that cause the correct candidate to be ranked on top.) The 
computer displays, in addition to the visible model, a set of reference pictures ranked according to the 
posterior class probabilities of the unknown object. The operator can correct the model if the top-ranked 
classes are implausible and if there are obvious mismatches between the current model and the unknown 
object. The operator can also scroll the reference patterns (“browse”) to inspect candidates ranked below 
the top three. When an acceptable reference candidate appears on the display, the operator clicks on it to 
assign its class to the unknown object. Two CAVIAR graphic user interfaces (GUIs) are shown in Figure 1. 

We compared CAVIAR to machine alone and to human alone in experiments conducted on a 612-flower 
database [10] and on the FERET face recognition benchmark [12]. Table 1 summarizes the results. 

Table 1. CAVIAR compared to machine alone and to human alone 

Flowers Faces 
 Accuracy er flower Accuracy e per face  Time p Tim

Interactive 93% 12 sec    99.7% 7.6 sec 
Machine alone 32% ---    48.0% ---- 
Human alone 93% 26 sec ~100.0% 66.3 sec 

From this  tha me Type ns i classifi ore than twice 
as

 

table, it appears t on so  B applicatio nteractive cation is m
 accurate than automated classification (at least with our classification algorithms), and more than twice 

as fast than unaided naïve human subjects.  
In our CAVIAR-face experiments, 50 faces (“probes”) were classified to one of 200 classes (“gallery”) 

by naive subjects. Each subject classified a randomly selected set of 50 faces. The fraction of faces 
recognized correctly after each adjustment, and the time required, are shown in Table 2. For example, it 
takes 10.6 seconds to classify pictures that require two adjustments. Such pictures represent 15% of the 
total number of test pictures.  

It is seen that the automated rank-ordering algorithm ranks the correct reference picture in the top three 
about 50% of the time. These faces are classified very quickly. Only about 1% of the faces require more 
than five model adjustments. Subjects seldom use the browsing option because it is slow. (A larger display 
would speed up the process further by displaying, with sufficient resolution for easy identification, more 
than the top three candidates.)  



 

Table 2. Cumulative record of face recognition experiments. At each iteration, the 
operator can make an immediate decision (SELECT), modify the model (ADJUST), or 
look at more reference pictures (BROWSE). The times shown include the sequence of 
adjustments or browsing prior to classification. For example, after two adjustments, 

It  

85% of the faces are classified, in 5.0 seconds per face on average.   

eration 
# 

ADJUST  
% 

SELECT
% 

Ave. time
sec 

BROWSE 
% 

Ave. time
sec 

Classified
% 

0 48.7 50.3 2.3 sec 1.0 7.7 51.3 
1 28.3 19.7 7.7 sec 0.7 16.1 71.7 
2 15.0 13.3 10.6 sec 0.0 -- 85.0 
3 9.3 4.7 14 c 9  .4 se 1.0 42.6 0.7
4 3.7 5.3 16.6 sec 0.3 23.2 96.3 
5 1.0 2.0 19.6 sec 0.7 33.2 99.0 
6 0.7 0.3 42.0 sec 0.0 -- 99.3 
7 0.3 0.3 34.7 sec 0.0 -- 99.6 
8 0.0 0.0 -- 0.4 49.8 100.0 

T l  ota 95.9  4.1   
 

The rank-ordering mecha  is cho ccor e num of classe nd the n r of reference 
samples per class. For CA R-flow here we xperim with 1, or 5 re  samples per 
class, we use st-neighbors with 8 features [10 . For CAV -face, wh e we had only one reference 
sample per class, we used the Borda Count on small patch features near the eyes and mouth. The tes

• the top 

• roughout the process by letting him or her decide when to classify 

Mobile recognition systems with hand-held cameras offer obvious advantages for recognizing objects 
he interaction takes place with stylus or thumb on the photo display screen. 

ut on the same platform or through a wireless link to a nearby laptop or to 
the Internet. Figure  2 shows our Mobile-CAVIAR interface on a Toshiba pocket computer with a plug-in 

ectively. Note that this is neither classifier combination nor sensor fusion: it 
is 

e combined? 
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samples are added to the reference set after they are classified, thereby gradually improving the statistical 
estimates for automated model construction and for rank ordering. Despite the occurrence of misidentified 
samples and the lack of adequate theoretical justification, we have always found this type of adaptive 
learning extremely effective [14 - 17, 10] 

In summary, CAVIAR combines the following aspects that contribute to its accuracy and speed:  
• interaction throughout the classification process, rather than only at the beginning or end; 
• automatic correction and interactive modification of a simple, domain-specific visible model which 

guides automated feature extraction;  
pruning the reference pictures according to their similarity with the unknown, and displaying 
candidates for selection by the operator; 

• adaptive re-estimation of internal parameters; 
leaving the human wholly in charge th
an object, when to modify the model, and when to browse lower-ranked reference pictures. 

4. Mobile Recognition  

outside the office or home. T
The computation can be carried o

camera and a Wi-Fi card [18]. 
One of the most interesting aspects of mobile systems is their potential capability to improve 

classification accuracy because the operator can immediately take additional pictures of a difficult object. 
Classification can then be based on several pictures by merging relevant information. However, we don’t 
yet know just how to do this eff

more akin to 3-D model construction from multiple views, except that the objective here is classification 
rather than representation. Some of the problems awaiting solution are listed below [18]. 

• When is a single picture of the object not enough, and another required? 
• What viewpoint, scale, or illumination is best for a second or third picture? 
• Should the computer or the human decide? If the former, how should it specify the desired picture? 
• At what level(s)  (pixel, feature, classifier) should the information from multiple pictures b



 

• Several views of an object would require these views to be represented in the reference set. What would 
ng/reference samples? 

n 

de  and 
co

be an appropriate sampling scheme to ensure this during enrollment of traini

Although PDA cameras still lag stand-alone digital cameras in terms of optical and digital resolutio
(and convenience features), the greatest limitation of handheld systems compared to PC recognition 
platforms is their limited screen size, which prevents simultaneous display of several objects in adequate 

tail (multiple zooms are disorienting). It is clear that camera-phones will soon have enough storage
mputing capacity, as well as appropriate operating systems, for interactive recognition. However, the 

display size limitation will be even more stringent – current cell phones have display sizes ranging from 
96x64 to 128x160 pixels. Some expect that it will be overcome by wireless access to large public displays 
[19], but we can hardly expect a public display to pop up whenever we wish to recognize a flower or a face. 
Furthermore, cell phones lack a direct pointing device: fitting a visible model with arrow keys is clumsy  

        
Fig. 2. M-CAVIAR graphic user interface. The model does not have to be perfect to rank the unknown in the top 3 

5. Pattern recognition networks 

Interactive pattern recognition may be ready to benefit from the kind of distributed computing envisioned 
by the creators of the ARPANET 30 years ago. Experts anywhere on the Internet can, in principle, interact 

l. Just as bird watchers and wildflower enthusiasts band together 
for collective judgment, dermatologists at dispersed locations will be able to pool their expertise to 
with any image through its visible mode

diagnose difficult skin lesions. The interaction may take place in parallel, or in a hierarchy where the more 
difficult pictures percolate to the more qualified experts. 

As mentioned already, one advantage of human interaction is that newly labeled specimens can be safely 
added to the training or reference database, thus improving the performance of the automated model 
construction, feature extraction, and rank ordering. We don’t yet know whether a democratic CAVIAR will 
be more accurate than a CAVIAR operated by a Designated Expert. In any case, the larger sample size 
resulting from many persons collecting pictures, correcting models, and assigning class labels should 
benefit overall performance [20].  



 

A typical network interaction session of our  wireless ethernet (802.11b) link through TCP/IP sockets is 
shown in Figure 3. Whenever the PDA sends data, it blocks execution flow till it receives a response from 
the server. After interpreting the required type of service according to the header data of the byte stream, 
the
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Fig. 3. Communication sequen A and the server for identifying a test sample {adapted from [18]) 

6

 too slow for Type A applications, so we must resort to other means to improve 
ion paradigm. Because they normally convey messages, symbolic patterns tend 

to  appear together in groups (fields) that have a common origin. A printed message is usually a field of 

e 

 appropriate server routine is invoked. Each user interaction requires a response from the server to 
update the display, but the only long message is uploading a new picture to the host computer. With current 
GSM, TDMA or CDMA cell phone links, this would take several seconds even if the picture were first 
compressed. However, the third generation cellular networks already being deployed will have more than 
sufficient bandwidth. 
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. Style and Context 

Interactive classification is
the conventional classificat

character patterns printed in the same font. Each font makes use of only a few well-matched typographic 
components—bowls, stems, bars, finials, and serifs. Printers, copiers and scanners leave individual imprints 
that differentiate documents from different sources. Hand printing and cursive writing are characterized by 
a certain writer-dependent uniformity of strokes and spacing. Therefore the feature-space representation of 
any single postal address, bureaucratic form, or printed article displays a measure of homogeneity due to 
isogeny (common origin). We say that isogeny induces style in features measured on patterns (cf. Fig 4a). 

It is possible to model “style” mathematically and thereby develop a basis for more accurate 
classification of a group (field) of digitized characters from the same source. The features of patterns co-
occurring in a field are statistically dependent because they share the same style. Effects of styl



 

consistency on the distributions of field-features (concatenation of pattern features) can be modeled by 
discrete, hierarchical, or continuous mixtures of Gaussian variables. Based on such a model, a style-
constrained classifier can be constructed to recognize entire fields of patterns rendered in a consistent but 
unknown style. In experiments on printed alphabets and on National Institute of Standards and Technology 
(NIST) hand-printed test sets, style constrained classification reduced errors on fields of digits by nearly 25 
percent over singlet classifiers [2, 3]. We are currently trying to develop style-constrained SVMs that 
should yield even lower error rates when the underlying densities are not Gaussian. 
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Fig. 4. (a)  Style l he first pattern in tter l, and the identical 
first pattern in th umeral 1. ( Language ding text disambiguates 
the identical glyphs in either 

g order of the patterns. Instead of modeling the dependence between the 
features of patterns in a same-source field, it models the dependence between their labels (Fig. 4b). For use 
in 

n financial documents also have their 
ow

it, 
wi

ey are modeled with graphical Bayesian networks [25]. 

s. The manifold applications of character and speech recognition are already well 
rch on style based recognition of fields of characters or even entire documents is much 

more convenient than on interactive recognition, because it does not require interaction with human 

ven though none of the new waves of 
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Language context has been exploited in OCR and ASR far longer than style. Unlike style, textual 
context depends on the readin

classification, morphological, lexical and syntactic conventions are converted into letter n-gram 
frequencies, word frequencies, and word transition probabilities. A vocabulary of 60,000-100,000 words 
provides very thorough coverage of English text, but three or four times more entries are needed for highly-
inflected languages such as Italian or Hungarian. Specialized lexicons are needed for mail sorting, 
telephone directories, technical handbooks, part-number catalogs, and other non-narrative compendia. 
Nowadays such information can be readily obtained from the Web. 

Specialized syntactic conventions dictate the placement of punctuation marks and the construction of 
abbreviations, citations, legal and courtesy amounts on checks, and postal addresses. Mathematical 
formulas, chemical structure diagrams, and arithmetic redundancy i

n rules. These rules have been compiled in style guides ranging from a few pages for technical journals 
and mailing instructions to manuals of hundreds of (web) pages. Markov models provide an efficient and 
trainable alternative to formal parsing. Although several books have been published on the appropriate 
design and layout (i.e., syntax) of tables, tables have proved singularly resistant to correct interpretation.  

In the last decade, segmentation, context, and shape based classification have been successfully 
integrated into algorithms that search a trellis of trial segmentations with transitions dictated by context. 
The weight given to shape information vs. contextual information depends on the application. In the lim

th no prior shape information but perfect shape consistency, the recognition problem is equivalent to 
decoding a substitution cipher [21 - 24]. 

 
The distinction between the various types of statistical dependence underlying correlated features, styles, 

and language context is clarified when th

7. Applications 

Type A Application
known. Further resea

subjects. We believe, however, that it too is inspired by human recognition. Indeed, the automatic 
recognition of isolated printed and hand-printed letters or digits is at least as accurate as human recognition. 
It is only when we are faced with a coherent sequence of patterns designed to deliver a message that human 
recognition is still far superior. Style and context can narrow the gap. 

 
Type B applications. I believe that the time is right for developing interactive, mobile pattern recognition 
applications. I am excited about their potential impact on education, e



 

technology – 16mm movies, radio, television, time-sharing, personal computers, laptops, web-teach – has 

an

were obtained at high resolution and with specialized lighting, and these databases 
co

vy, insect bites; 
utaneous anthrax, smallpox, plague, tularemia. 

hen the patient is too embarrassed to seek  help, or 
 in impoverished rural areas). The 
: Does it itch? How long have you 

ha

 built the first CAVIAR. Hamei Jiang collected pictures of fruit, stamps, coins and 
arly CAVIAR experiments. Greenie Cheng and Laura Derby photographed many 

flowers and helped build the database. Borjan Gagoski recruited subjects, conducted the 30 flower 

lived up to its educational expectations. The necessary mobile wireless computing platforms (PDAs and 
cell phones) are already widespread among the school-age population. Education – from elementary to 
graduate school – involves many visual recognition tasks. At various stages of our academic careers, we 
learn to identify flowers, trees, rocks, insects, clouds, paintings, statues, architectural styles. Applications to 
industrial training – recognizing electrical and mechanical components and assemblies – may also be worth 
exploring. Interactive computer-aided recognition could enhance learning almost as much as visiting a 
zoological or botanical garden or a museum with an expert personal tutor. Group dynamics can be added by 
networked recognition, either with nearby classmates or students and teachers at the antipodes. CAVIAR-
like instructional systems will be considered successful only if, after a period of use, they can be discarded. 

Visitors who saw a demonstration of CAVIAR have suggested several applications: searching for new 
medicinal plants in the jungle; identifying endangered cryptic cats (like jaguars) caught in photo-traps in 
Costa Rica; fruit and vegetable checkout in supermarkets; assisting farmers and foresters to identify pests 

d crop diseases; helping to learn the artistic style of painters in art history classes; assessing the value of 
collectibles (spoons, coins, stamps, porcelain dolls) using home web cams (to draw customers to 
advertising  websites). 

Among medical applications, the recognition of skin lesions seems particularly appropriate, because they 
are often diagnosed by inspection. Large dermatological atlases are available on the Web, but the most of 
the posted photographs 

ntain only one or two examples of each disease. Collecting appropriate data with a mobile platform 
entails restrictive ethical considerations and will require close collaboration with medical researchers. 
Anyone of the following types of visible skin conditions appears ripe for experimentation: 

• Cosmetic dermatology, scar assessment, beauty-aids; 
• Infectious and contagious diseases with spots: measles, chickenpox, rubella; 
• Rashes: hives, eczemas, psoriasis; 
• Burns; cuts, frostbite; 
• Sexually transmitted diseases; 
• Poisonous plants and bugs: poison i
• Bio-terrorism agents: c

A personal diagnostic system may be appropriate w
when medical personnel is not available (on battlefields or expeditions, or
same platform can help collect ancillary information in complete privacy

d it? Do you feel lethargic? Did you eat fish recently? Close-ups and pictures of healthy areas of the skin 
can be taken with different sources of illumination for comparison. If the severity of the condition warrants 
it, or if a confident diagnosis cannot be reached, the system may also request its owner to forward 
electronically both the pictures and the ancillary information to the appropriate health maintenance 
network. Paramedical personnel or physicians not specialized in dermatology could use CAVIAR-derma 
for continuing health care education. 
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