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Abstract 

 
Conventional classification algorithms have 

already reached a plateau at the trade-off imposed by 
the bias due to the structure of the classifier and the 
variance due to the limited size of the training set. The 
latter may be alleviated by exploiting known 
constraints, including class and style priors, language 
models, statistical correlations between spatially 
proximate patterns, statistical dependence due to 
isogeny (common source) of patterns, and even 
information-theoretic properties of the representations 
that have evolved for symbolic patterns intended for 
communication. Another development that may lead to 
new applications of pattern recognition is more 
effective human intervention. The interplay of human 
and machine abilities requires models that are both 
human and computer accessible.  

 

1. Beyond representative training sets 

The fundamental assumption behind most trainable 
classifiers is that the test set is statistically 
representative of the training set. How representative is 
representative? The test set and the training set should 
be as similar as if they had been randomly chosen from 
a single corpus of patterns. In practice this assumption 
is often unworkable because drawing a random training 
sample requires prior access to the population to be 
classified. Even if enough representative training 
patterns were available, it would be too costly to label 
them. 

We discuss two approaches to circumventing these 
limitations. The first is constrained recognition, and 
the second is explicit design for optimal human 
intervention. I will first discuss constrained recognition 
for high-volume tasks like OCR, where automatic 
classification is essential. Then I will discuss 
interactive recognition for low-throughput or sporadic 
applications, where accuracy is paramount. However, 

the two approaches are not incompatible: human 
intervention plays a part even in OCR. Note that the 
word "visual" in the title specifically excludes speech 
recognition and other signal processing applications, 
not because these ideas are inapplicable to them, but 
only to delimit the scope of discussion. 

2. Constrained recognition 

In addition to architectural differences among the 
data structures used to store and access decision 
boundaries, classifiers differ from one another by the 
type of information used to adjust their parameters. 
There has been much research, and significant recent 
progress, in "minimalist" pattern recognition, where 
the objective is to extract new information from sets of 
patterns represented by feature vectors (unsupervised 
learning [1,2]), from labeled vectors (supervised 
learning [3]), or from both labeled and unlabeled 
samples (semi-supervised learning [4]). The ultimate 
goal has been the development of universal 
classification algorithms based on arbitrary collections 
of feature vectors.  

In contrast, the goal of constrained recognition is 
explicit and formal algorithmic application of whatever 
domain-specific information is available. The classifier 
should make use of all available contexts, much as a 
human would. Instead of recognizing patterns in 
isolation, it should recognize interrelated groups of 
patterns (patterns of patterns). Furthermore, we expect 
dynamic classifier design to foster learning during the 
entire operational lifetime of the classifier by making 
use of feedback from downstream use of its output [5]. 
Examples of pertinent constraints, starting with some 
that are already widely exploited, are listed below. 
• The number and relative population of classes and 

subclasses (class and style priors) assume decisive 
importance with highly skewed demographics. Priors 
can be dynamically re-estimated according to strata 
defined by already extracted information, as in 
advanced form-processing systems [6]. 
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• Statistical dependence among the class labels of 
adjacent patterns (linguistic context) has been modeled 
at the morphological, lexical, and syntactic levels 
[7,8], Many Hidden Markov Models make use of 
language models. The underlying transition 
probabilities need not be estimated from the same 
training set as the OCR features, because linguistic 
content is seldom correlated with typeface or 
handwriting.  
• Statistical dependence among the features of 

adjacent patterns (due, for instance, to ligatures) occurs 
in handwriting (allographs), and in printed Arabic and 
Indic text. 
• Class similarities may be predictable: the digit 

"1" is likely to be misrecognized as the letter "l". 
Confusion matrices are fairly stable over feature sets, 
typefaces, and writers. This constraint is occasionally 
applied to reduce alphanumeric confusions in forms 
reading. 
• We have had some success in exploiting 

common-source constraints that give rise to statistical 
dependence among the features of (not necessarily 
adjacent) patterns in isogenous fields (style context) 
[9,10,11,12]. How Anne writes "4" may suggest how 
she writes "9".  A more general notion of visual and 
structural style is presented in [13]. 
• Restrictions on the maximum difference between 

the class-means of test patterns and the class-means of 
the training samples lead to decision-directed 
approximation [14,15,16,17]. This constraint 
expresses the confidence that the classifier will 
recognize most of the patterns in the test set, even 
though they are statistically different from the training 
set. If so, the classifier can be re-trained with the newly 
labeled patterns. When does "unsupervised" adaptation 
work? While some sufficient conditions have been 
developed, they are much too restrictive for pattern 
distributions observed in practice. Necessary 
conditions have not been found.  
• A common property of OCR feature spaces is that 

no linear combination of the mean vectors of a set of 
classes is located near the mean vector of any other 
class. Furthermore, the distribution of patterns about 
the class means is asymmetric: deviations away from 
the means of other classes (and from the mean of all 
patterns) tend to be larger than deviations towards 
other patterns. This affects outlier detection and may 
be the consequence of the evolution of scripts 
according to information-theoretic principles that 
preserve class-distinctions in the presence of noise 
[18]. It is less likely to hold for natural objects, such as 
multispectral crop signatures in remote sensing. 
• The correlation between a pair of features 

depends much more on the chosen pair of features than 
on the class or style of the samples over which the 

correlation is computed. This constraint justifies 
various covariance matrix regularization schemes that 
are useful when there are not enough samples to 
accurately estimate class-covariances, but enough to 
estimate the overall covariance matrix. 
• The order of the extracted features is preserved 

under elastic deformation of a sequence of patterns, as 
when handwriting is squeezed on approaching the right 
margin. Sequence-preserving inter-pattern relations are 
exploited in Symbolic Indirect Correlation (SIC). 
Nearest Neighbor classifiers are not directly applicable 
to unsegmented pattern sequences, but SIC is. Because 
such classifiers have high variance, they need many 
reference patterns. The development of algorithms that 
can perform the required comparison of bipartite 
graphs is only at a preliminary stage [19]. 

3. Interactive recognition 

All operational pattern recognition systems make 
some use of human intervention. But except in Image 
Database, human interaction is seldom mentioned in 
research publications. We usually report only that the 
classifier was trained and tested on a "ground-truthed" 
database of so many patterns, and that 90% or 99% of 
the test patterns were correctly classified, without 
mentioning how much time was expended on 
producing the ground truth, or what is to be done with 
the 10% or 1% errors. 

Even in operational systems, human intervention 
usually takes place only at the beginning and at the 
end. In OCR, for example, the scanned pages are 
usually inspected, and problematic pages are either set 
aside for manual data entry or rescanned with different 
settings. The segmentation of the document into text 
and non-text fields may also be inspected and 
corrected. At the other end of the pipeline, rejected 
words or fields are manually re-entered. In critical 
applications, either the entire output or a subset thereof 
(possibly selected by automated triage [20]) may be 
proofread in order to catch and correct OCR errors. 
Research on several other aspects of human 
interaction, listed below, would pay rich dividends.  
• Who is in charge? It is tempting to think of the 

human as providing on-call assistance to a fallible 
automated classifier. It is more productive, however, to 
focus on how a computer can help human recognition. 
If human accuracy is desired, we cannot depend on the 
machine's assessment of when it is likely to be wrong. 
Confidence measures based on the tails of probability 
distributions are inherently untrustworthy. Therefore it 
is essential to let the human retain the initiative 
throughout the entire classification process. The role of 
the machine is only to save time by performing routine 
tasks under close supervision. 
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• How can we take advantage of the differences 
between human and machine cognitive abilities? 
Humans apply to recognition a rich set of contextual 
constraints and superior noise filtering abilities to excel 
in gestalt tasks, like object-background separation. 
Humans are also good at judging whether two images 
represent the same class. But computers can store 
thousands of images and associations between them, 
never forget a name or a label, and compute geometric 
moments and conditional probabilities. These 
differences suggest that a system that combines human 
and machine abilities can, in some situations, 
outperform both. (And have also inspired research on 
the design of tasks that unfailingly favor humans [21]!)  
• The paramount design criterion for interactive 

pattern classification must be the minimization of 
human labor for a given level of recognition accuracy. 
Since the accuracy of a well-designed interactive 
system is governed by human accuracy, the system 
needs to be fast enough only relative to human reaction 
time, which can be measured in billions of machine 
cycles. Interaction is profitable where higher accuracy 
is required than is currently achievable by automated 
systems, but when there is enough time for limited 
human interaction. In such problem domains, the 
fundamental research question is when, where, and 
how to interact [22]. 
• Direct interaction with images was demonstrated 

recently in the narrow domains of face and sign 
recognition. However, it was confined to pre-
processing, i.e., establishing the pupil-to-pupil baseline 
[23] or text bounding-box [24,25]. Effective 
interaction is required throughout the classification 
process, rather than just at the beginning and the end. It 
appears that the most appropriate channel for 
interaction is a parameterized domain-specific visual 
model [26]. Such a model is an abstraction of the 
overall shape of an object and of its most 
discriminative constituents. For a face, it may be the 
contours of the head, chin, temples, eyes and nose. For 
flowers, it could the petals and leaves. Such a model is 
meaningful to both the human operator and to the 
computerized feature extraction system. Fitting it to an 
unknown object requires only weak segmentation, if 
necessary assisted by human gestalt perception, rather 
than familiarity with the distinguishing features of the 
classes. Either man or machine can accomplish it, with 
varying degrees of success. We have not, however, 
found any previous work advocating iterative image-
based interaction to bridge the "semantic gap [27]."  
• Content-based image retrieval vs. object 

classification. The evaluation criteria for image 
retrieval are usually precision and relevance, while for 
objective classification they are accuracy or 
recognition rate. The most advantageous methods of 

interaction are not necessarily the same in broad 
domains, like a personal photo collection or a tourist 
web site, as in narrow domains, like flower or face 
recognition. In the broad domains of content-based 
image retrieval, relevance feedback has been found 
effective [28]. Interaction is, however, necessarily 
limited to the choice between acceptable and 
unacceptable responses, because no effective way has 
been found so far to interact with arbitrary images 
without a domain-specific model. In object 
recognition, as opposed to exploratory data analysis 
[29], direct interaction with features is unlikely to pan 
out because our conception of the disposition of 
patterns in a high-dimensional space is likely to be 
poor.  
• Model-based feature extraction. To rank-order 

candidate classes, features should be extracted 
algorithmically from the image according to the current 
model of the object, which may be as simple as a 
coarse approximation of its boundary. The user should 
be able to interact with the image anytime that he or 
she considers the computer’s response unsatisfactory. 
The interaction extracts some features (i.e., 
discriminatory model parameters) directly, and 
improves the accuracy of other extracted features 
indirectly, by improving the fit of the computer-
proposed model. Eventually the user selects the 
appropriate candidate from the ordered reference 
images. 
• Learning from interaction. The computer must 

make subsequent use of the parameters of the 
improved models to improve not only its own 
statistical model-fitting process, but also its internal 
classifier. Classifier adaptation can be based on human 
confirmation of the final identification, which is likely 
to be almost error-free. The automated parts of the 
system will gradually improve, and decrease the need 
for human intervention. As an important byproduct, the 
operator’s judgment of when interaction is beneficial 
will also improve. Experiments on flower and face 
recognition demonstrate both phenomena [30]. 
• Mobile systems. Personal digital assistants 

(PDAs) with touch-sensitive screens and even camera 
phones now have enough processing power and storage 
to support interactive recognition. They offer the 
enormous advantage of being able to take additional 
pictures of an object during the classification process. 
• Open Mind Initiative. Interactive recognition 

systems networked to each other can benefit from 
distributed data collection and interaction by multiple 
operators. Mobile systems could operate in a wireless 
client-server mode, with the classification performed 
on a server with access to many such systems. 
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4. Conclusion 

We expect, with perennial optimism, that in the years 
ahead vastly enlarged classification contexts, and 
judicious application of close-coupled human 
intervention, will lead to significant expansion in the 
application of visual pattern recognition systems. 
These techniques are synergistic: each improves the 
benefit from the other. My talk will highlight relevant 
examples drawn from OCR, forms processing, botany, 
physiognomy, and dermatology.  
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