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Abstract: Training on non-representative data causes any classifier to make many mistakes on new data. Retraining an OCR engine with 
labeled characters, obtained from routine post-editing, can reduce both the bias and the variance of the classifier, and therefore its error rate. In 
the absence of post-edits, the imperfect labels assigned by the classifier can be used instead. Although the theoretical foundations of decision-
directed adaptation are meager, adaptation has proved successful in diverse experiments. When the operational data can be partitioned into 
isogenous subsets, the classifier parameters should be adapted independently on each subset. However, if the same-source subsets are small, as in 
postal-code or bank-check reading, it is advantageous to classify more than one character at a time. Style-constrained classification allows 
training the classifier on fields shorter than the classification field. Systematic methods still remain to be developed for adapting language context 
to the operational data stream, particularly for semi-structured business forms. Only dynamic classifiers can hope to rival human performance on 
imperfectly printed, written, copied, or scanned documents. 
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要約：代表から外れたデータを学習させると，どんな識別器でも新データでは多くの誤認識が生じる。正解付けされた学習データ

を用いてOCRエンジンを再学習すれば，識別器の偏りと分散の両者、すなわち、誤認識率を減らすことが可能である。学習データ

を予め編集できない場合には、そのかわりに，識別器によって決められた（幾つかは誤りの可能性のある）不完全ラベルを識別器

適応化に使うことになる。この判定駆動型の適応化は，それに関する理論的基礎は貧弱ではあるが、種々の実験でうまくいくこと

が実証されている。取り扱っているデータを一つの元から生じたサブセット（例えば、同一筆者や同一フォント種のセットなど）

に分割できる場合には、識別器のパラメータをそれぞれのサブセット用に独立に適応させるべきである。しかしながら、例えば、

郵便番号や小切手読取りのように、もし同じ元をもったサブセットのデータ数が少ない場合には、一度に複数文字の文字列を識別

することが有利となる。スタイル制約型識別では、識別フィールドより短いフィールドで識別器をトレーニングさせることができ

る。特に準定型書式の読取りのためには，言語文脈情報を取扱い可能なデータストリームに適合できる体系的手法の開発がまだ残

されてはいるが、この動的識別器のみが、不完全な印刷・手書き・複写文書を読取れる人間の能力に対抗できる望みとなる。 
 
キーワード：動的識別器；準教師あり学習、教師なし学習；判定指向型適応；自己修正識別器；スタイル制約型フィールド識別；

弱制約データ；非代表学習データセット；言語文脈 
 
 
 
 
 



 

1. Introduction 

Statistical pattern recognition is based on the doctrine that the 
decision boundaries can be estimated from a representative training 
set. However, in many practical situations, a representative training 
set is not available. In this essay we explore the consequences of 
some scenarios where the learning process of the classifier 
continues while it classifies unknown samples. Although some of 
the notions we discuss are applicable – and may indeed originate – 
elsewhere, we focus on Optical Character Recognition where the 
notion of a labeled sample, represented as a point in feature space, 
is relatively unambiguous.  

We believe that improvements in OCR accuracy during the 
next several years will be due mainly to the replacement of static 
classifiers by dynamic classifiers that modify their decision 
boundaries to fit the operational data. A concomitant change in 
perspective is the shift from the classification of single characters to 
the classification of all the characters in a field, a page, or even an 
entire document, as in Document Image Decoding [1,2]. These 
notions are related, but distinct. 

There are at least four common situations where the training set 
is not “representative,” and where deriving additional information 
from operational data will be beneficial. We consider the following 
scenarios:  

1. The training set is unbiased, but it is too small, and therefore 
the estimates of the classifier parameters have high variance. 

2. The training set is biased, therefore any classifier based only 
on the parameters estimated from such a training set are 
suboptimal with respect to the data encountered in the field. 

3. The training set is globally unbiased, but inhomogeneous, 
whereas the operational data arrives in homogenous segments 
(fields, pages, or documents). Therefore classifier parameters 
estimated from the entire training set are biased with respect to 
any individual segment.  

4. The samples of the training set are the result of some unknown 
transformation of variables of a representative training set. 
Therefore the training set is entirely unrepresentative, but there 
exists some transformations of variables that can map the 
distribution of the training data to that of the field data. 

We propose methods to deal with the first three cases, and 
speculate freely about the fourth. We also mention briefly other 
types of  “context,” and applications other than OCR and DIA 
where such “opportunistic” approaches have met with success. This 
is not a survey, but a polemic. Additional evidence that lends 
support to our arguments can be found in the references cited. 

 

2. Supervised Operational Training 

When the training set is too small, statistical fluctuations result 
in unacceptably large variance of any parameters estimated from it. 
The common wisdom is that at least ten samples of each class are 
necessary for each dimension of the feature space. With a feature 
set of 100 features, and the ASCII alphabet of 88 characters, this 
translates to a training set of about 100,000 characters, provided 

that the samples are entirely homogeneous, i.e., there are no 
consistent typeface, writer, or transducer variations.  

The above rule-of-thumb underestimates the sample size for 
quadratic classifiers based on second-order statistics. With 100 
features, each covariance matrix has 4950 distinct parameters in 
addition to the class-conditional variances. For 88 classes, the 
requirement of ten samples per parameter (rather than per feature) 
yields about four million samples, still under the assumption of 
homogenous classes. It is therefore not surprising that the outcomes 
of comparisons of the accuracy of classifier types depend mainly on 
the trade-off between the complexity of the classifier structure and 
the size and composition of the sample set (which is loosely 
characterized by its VC-dimension [3]).  Regularization is a sound, 
well-established approach to avoid over-fitting the decision 
boundaries to the training set. In non-parametric classification, a 
validation set is employed for the same purpose.  

With very large training sets, it is difficult to improve on the 
nearest neighbors classifier, because there is little reason to believe 
that the Bayes error in practical OCR applications is very different 
from zero [ 4 ]. (Classifier comparisons sometimes exclude the 
Nearest Neighbor, because a direct implementation is prohibitively 
slow. Preprocessing, which trades off storage for runtime, can yield 
large speed-ups, and seems eminently practicable with current 
computers.) 

The simplest way to enlarge the training set is to make more 
effective use of ongoing processes.  Most applications cannot 
tolerate many errors. Therefore either the output of the classifier is 
proofread and corrected, or the reject threshold is set to ensure a 
tolerable rate of misrecognized characters, and the rejected 
characters are keyed in. Either way, most of the scanned characters 
that have passed through the OCR system eventually gain reliable 
labels.  

In current recognition engines, the classified character bitmaps 
are not retained, and the added or corrected labels are never 
attached to these bitmaps. We believe that future OCR systems 
should integrate training with post-processing, so that they will be 
continuously retrained with the characters actually encountered in 
the field. This will, of course, require even more robust training 
procedures than those currently used, because such training should 
take place during lulls in the operation, in the absence of expert 
personnel. As in the case of the semi-supervised training scenarios 
discussed below, it will be desirable to monitor the evolution of the 
system by rerunning periodically some standard data mix with 
known results. In case of egregious departures from the expected 
performance, the OCR system can automatically revert to a 
previous stable state. 

This approach to increasing the size of the training set appears 
to be more of a question of engineering design than a research 
problem. Aside from increasing the size of the training set, the 
proposed modus operandi would naturally ensure a more 
representative training set than is likely be provided by any other 
method of collecting samples. We understand that in some 
applications, the manual corrections are physically and temporally 
far removed from the OCR engine itself, and may even be under a 



 

different organizational entity. Nevertheless, we believe that current 
computer networks can link them seamlessly. 

 

3. Weak and Strong Style 

Style is induced when different subsets of the data (fields, 
pages, or documents) are produced by different sources (fonts, 
printers, scanners, writers, speakers). Subsets produced by the same 
source are called isogenous (fields, pages, or documents). We 
digress to explain the difference between two kinds of consistency 
or homogeneity that may appear in a document collection. Prateek 
Sarkar called them weak style and strong style [5]. The difference is 
illustrated in Figure 1.  

 

 WEAK STYLE STRONG STYLE 

Source 1:  22/07/1925 25/07/1922 

Source 2:  25/05/1935 05/05/1925 
Source 3:  21/06/1943 02/06/1943 
Source 4:  03/24/1945 02/25/1942 

Figure 1. Weak style and strong style.   In weak style, within 
a field a given digit is either always bold, or always italic.  
In strong style, bold and italic are never mixed within a field. 

 

In weak style, the glyphs of each class (letters, digits, 
phonemes) of each style-consistent subset are generated by the 
same distribution. However, the mix of generators in the various 
subsets is arbitrary. Therefore different subsets (e.g. pages) exhibit 
arbitrary mixes of the individual class styles, even though within 
each subset every class appears to be homogenous. We believe that 
weak style rarely occurs in actual OCR applications, but we give it 
full consideration because it is easier to exploit than strong style. 
Strong style implies the presence of weak style, but not vice-versa. 

For a given body of data, a natural measure of the amount of 
weak style is the average entropy of the source-conditional style 
membership per class. Of course, the benefits of weak style 
increase with field-length. 

In strong style, only some class-styles can co-occur within the 
same subset. Therefore the occurrence of a pattern of a given class 
provides information about the appearance of patterns of other 
classes within the same subset. We show in the sequel that style-
constrained classifiers can take advantage of such statistical 
dependence between the features of different patterns in the same 
field or document. 

Because the difference between weak and strong style is subtle, 
we give a more detailed example.  Consider patterns of two classes, 
“A” and “B”. Let there be two styles of each, bold and italic: A, A, 
B, B. Let each isogenous field consist of three patterns each, 
described by a field feature vector x consisting of the three 
individual feature vectors, (x1, x2, x3). In our notation, plain capitals 
denote classes without specifying the style, and bold or italics 
specify the style. Without style, the field class AAB has a 
posteriori probability: 

p(AAB|x)  

= p(AAB|x) + p(AAB|x) + p(AAB|x) + p(AAB|x)  

+ p(AAB|x) + p(AAB|x) + p(AAB|x) + p(AAB|x).      (1) 

With weak style, the mixed “A”s are eliminated, and the 
distance of different field classes from one another is thereby 
increased: 

p(AAB | x) = p(AAB|x) + p(AAB|x) + p(AAB|x) + p(AAB|x)   (2) 

Strong style constraint offers further benefits. With a strong 
style constraint, we can assume that within a word bold A’s occur 
only with bold B’s, and italic A’s with italic B’s. (Of course, AB 
and AB would also constitute formally valid strong styles, but such 
a mix would be unusual in printed matter.) Now the field 
probability for AAB is: 

p(AAB | x) = p(AAB | x) + p(AAB | x).        (3) 

With strong style, the features are no longer class-conditionally 
independent: 

p(x1, x2, x3 | ω1, ω2, ω3) ≠  p(x1, | ω1) p(x2 | ω2) p(x3 | ω3). 

A strong style constraint means that the shape of any pattern in 
the field provides some information about the shape of any other 
pattern in the same field, even if the other pattern is of a different 
class. We still assume, however, that “noise” is independent from 
pattern to pattern, i.e., that there are random variations within each 
class ωi of each style s. Therefore the patterns are class-and-style-
conditionally independent: 

p(x1, x2, x3 | ω1, ω2, , ω3, s) =  p(x1, | ω1, s) p(x2 | ω2, s) p(x3 | ω3, s). 

The natural measure of strong style is the degree of statistical 
dependence between the features of patterns of different classes 
from the same source relative to the dependence between patterns 
from different sources. 

We note that none of the above takes into account effects 
arising from the position or order of the patterns in the field. The 
feature vector for a given class is expected to have the same 
distribution regardless of the features of the patterns preceding or 
following it, or of its ordinal position in the field. The first 
restriction neglects the effects of ligatures. The second means that 
we can reduce the number of field-class computations from 
sampling with replacement with order (nr), to sampling with 
replacement without order  ( n-1+rCr = n-1+rCn-1 ), where nCr is the 
binomial coefficient, n is the number of singlet classes, and r is the 
field length. Sampling is without replacement because each class 
can appear in a field any number of times. 

 

4. Biased Training Sets and Adaptation 

Decision-directed adaptation is a simple approach to character 
recognition under the weak style constraint. It is easy to implement 
with any trainable classifier. It consists of two iterated steps. In the 
first step, a classifier trained on whatever training data was 
available classifies an isogenous (and therefore presumably 
homogenous) batch of data – say a page. In the second step, the 
classifier is retrained with this same batch of data, using the labels 



 

assigned by the classifier. Then we return to the first step, and 
reclassify the data with the retrained classifier. Surprisingly, the 
error rate will now generally be lower than in the first classification 
cycle! 

Fifty years ago, Goldstein et al. at MIT successfully applied a 
similar idea to the transcription of hand-sent Morse signals [6]. 
Here the length of the dots, dashes and three kinds of spaces varied 
from operator to operator, but for a given operator was relatively 
constant over a stretch of time. Another application, of much 
greater impact, was Robert Lucky’s development of adaptive 
equalization at Bell Laboratories in the sixties [ 7 , 8 ]. When 
telephone lines were first used for digital transmission, tapped 
delay-line filters decoded the waveforms into digital signals. But 
the waveforms were affected by slowly (compared to the 
transmission rate) varying cross talk, and electro-magnetic 
disturbances. Lucky constructed an ingenious circuit that kept the 
“eye diagram” open by taking advantage of the fact that most of the 
waveforms were correctly decoded to adjust the filter weights. In 
the decades since, "unsupervised" adaptation has been widely used 
in speech recognition [ 9 ] and in multispectral classification in 
remote sensing [10 ]. We used it recently in interactive flower 
recognition. 

 

Table I. Character error rates on handwritten numerals 
before and after adaptation. 100 Hitachi blurred directional 
features. Training covariance matrices not regularized. 

Character error rate (%),, 
Training set Test set Before 

adaptation 
After 
mean 
adaptation 

After 
mean  & 
covariance 
adaptation

SD3 2.2 1.9 0.8 SD3 

SD7 8.0 6.6 3.0 

SD3 3.7 2.7 1.1 SD7 

SD7 3.6 3.1 1.8 

SD3 1.7 1.5 0.6 SD3+SD7 

SD7 4.7 3.8 1.9 

 

In 1966, we showed that a “self-corrective” classifier could 
reduce the error rate of a multifont classifier by a factor of five 
when retrained to twelve individual fonts without any labeled 
samples of these fonts [11,12]. A skeptical Henry Baird replicated 
the results in 1994 on a much larger data set of 100 fonts of four 
type sizes produced by his pseudo-random defect model [13]. In 
these experiments, only the mean class vectors were adapted. 
Recently, Veeramachaneni devised a scheme to adapt not only the 
means, but also the variances [14,15]. He demonstrated smaller, but 
significant, reduction of the error rate on two NIS hand-printed data 
sets represented by local directional features [16] (Table I). 

We have also tried decision-directed adaptation with InkLink, a 
recognition system for on-line cursive writing [17,18]. InkLink is 

based on constrained localized polygram matching of one unknown 
word against many reference words, using a lexicon of valid words. 
InkLink avoids the explicit character segmentation required by 
character-based systems, and does not require a sample of each 
unknown word, as do word-based systems. The recognition is based 
on segments at least two letters long, because the feature 
representations of polygrams are much more distinctive than those 
of unigrams. The recognition of an unknown cursive word consists 
of the following steps: 

1. The expected location where the unknown matches the 
reference words is pre-computed (the number of features in 
every letter of each lexicon and reference 
word is estimated by least squares). 

2. The feature matches of the unknown against the reference 
words are found by string matching. 

3. The unknown is hypothesized as each lexicon word in turn. 

4. The hypothesis that corresponds best to the expected length 
and location of the matches is chosen. 

The improvement obtained by adding recognized words to the 
reference list is shown in Figure 2. The average error rate on three 
100-word test sets dropped from 28% to 7%, even though many of 
the added words were evidently mislabeled. Equivalently, with 
adaptation we obtained the same error rate with an initial set of 100 
reference words as without adaptation with 500 reference words. 
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Figure 2. Results of adaptation in InkLink. 

 

It is not clear that such a scheme can be successful with 
classifiers that attempt to estimate decision boundaries directly, 
such as Support Vector Machines [ 19 ], or that make use of 
discriminative training [ 20 , 21 , 22 , 23 ]. An obvious idea is to 
improve retraining of the classifier by feeding back only the 
patterns accepted with high confidence. Obvious as it is, this idea 
has failed whenever it was tried.  Patterns near the boundary, that 
are only slightly more likely than not to be correctly classified, are 
obviously important. This observation suggests that we will be able 
to extend adaptation to high-performance classifiers and training 
methods. 

 



 

5. Inhomogeneous Data and Style-Based Classification 

As we have already noted, in most OCR applications, the input 
data is naturally divided into quasi-homogenous subsets. In hand-
printed forms processing – where we include postal addresses, bank 
checks, and gyro forms – it is safe to presume that each form 
originates from a single writer. Machine-printed pages generally 
contain only one, or a few, typefaces and sizes. Less obviously, the 
data may be partitioned by the printer, scanner (including analog 
fax), or copier that played a role in the production of any single 
page or document. Even linguistic aspects may be source-
dependent. It therefore makes sense to consider classification 
methods designed for isogenous documents, i.e., for applications 
where the input stream is partitioned into single-source documents. 
Different techniques may be applicable depending on the average 
number of patterns per document: in transcribing an archival 
journal, we can count on thousands of samples of each font and size, 
but in postal zip-code reading, we can hardly expect multiple 
occurrences of each class on any one envelope.  

Adaptation works well when there are many instances of each 
class. When there are only a few, style-constrained classification is 
the only way to go. Style-constrained classification is a type of field 
classification. Conventional field classifiers are trained on samples 
of each field class, therefore the number of classes necessary for 
training increases combinatorially with field length. To avoid this 
exponential growth of the training set, we can exploit the unique 
property of Gaussian random variables that their joint behavior is 
specified entirely by their second order statistics. For example, the 
covariance matrix of three random variables (x, y, z) can be 
constructed entirely from the covariance matrices of (x, y), (x, z), 
and (y, z), because the elements of the triple covariance matrix are 
only the covariances of the variables taken in pairs. This holds even 
if x, y, and z are vectors rather than scalars. The significance of this 
observation is that a Gaussian field classifier for fields of arbitrary 
length can be trained with only pairs of samples. This decreases the 
size of the required training set enormously. It can also be shown 
that style-constrained classification makes more efficient use of the 
data than font recognition followed by single-font classification. 

Depending on the application, we can postulate either a discrete 
number of strong styles, or an infinite number of continuous strong 
styles. In the discrete case, each style is defined by its mean vector 
and its covariance matrix. In the continuous case, the mean vector 
itself has a Gaussian distribution. Sarkar has derived the optimal 
classifier for the discrete case [24,25, 26, 27], and Veeramachaneni 
for the continuous case [28]. Because the optimal classifiers are 
slow, we have also devised heuristics that rely on the style 
consistency of overlapping pairs of characters [29]. 

 

Table II   Field error rate (%) on NIST hand-printed digits. 
Field length L=2 L=5 

Test data w/o style with style w/o style with style 
SD3 1.4 1.3 3.0 2.5 

SD7 2.7 2.4 5.3 4.5 

 

Table II shows an example of the reduction of error rate due to 
style-constrained classification. The writers in the training set and 
the tests are mutually exclusive. 

To summarize, style-conscious classification improves the 
accuracy on isogenous fields compared to style-free classification 
(analogous to Equation 1), by exploiting either weak style 
constraints (Equation 2), or strong style constraints (Equation 3). 

 

6. Weakly-Constrained Data 

It is not necessary for the training data to be statistically 
directly representative of the test data. We may, instead, consider a 
labeled training set {x,z} with "marginal" probability density pX(x), 
and a test set {y} with probability density pY(y), where y = g(x). 
The deterministic transformation g(•) could be a rotation or scaling 
of the feature space, or even some nonlinear transformation.  If g(•) 
is a global transformation, that has the same effect on all the classes, 
then it can be specified by relatively few parameters. Furthermore, 
if the transformation is independent of the class structure, then it 
can be discovered from a relatively few unlabeled test samples. It 
can be shown that very few labeled samples suffice to identify well-
separated distributions, i.e., to determine whether a particular 
distribution represents A or B [30]. 

What kind of transformations do we expect? We expect that 
even after the transformation, samples of a given class will be 
closer to other samples of the same class (when measured with an 
appropriate metric) than to samples of other classes. We will be 
surprised if the mean of any class in feature space (with origin at 
the grand mean of all the samples) is a linear combination of the 
means of any other classes. There are both theoretical and 
experimental reasons to believe the classes are distributed on the 
surface of a hypersphere [ 31 , 32 ] and that their means are 
approximately equidistant, forming a regular simplex. We also 
suspect that the covariance matrices are determined much more by 
the feature set than by the nature of the patterns, and therefore the 
individual covariance matrices are only perturbations of the grand 
covariance matrix. 

Nevertheless, it is certainly true that a 180 degree rotation takes 
6 into 9, or p into d.  And b and d, or p and q,  are nearly reflections 
of each other. Therefore given only a pair of such distributions, it 
would be impossible to decide which is which. Such symmetries 
disappear, however, when we consider all ten digits, or all the 
letters of the Latin alphabet.  

In spite of the nearly universal use of the Gaussian distribution 
for parametric multivariate classifiers, we do not believe that it is a 
good representation of most symbolic glyphs. Even when within-
class variances are very different, we have never been able to find 
any 1-D projection of feature space where patterns of the class with 
the larger mean appear on either side of the mean of the other class. 
Our experiments indicate that projecting the samples of one class 
on the 1-D subspace that contains the mean of that class and the 
grand-mean of all the classes yields a very asymmetric distribution. 
The tail of the distribution is much longer away from the grand 
mean. This is intuitively pleasing, because both the human reader 
and a classifier ought to be able to tolerate large variations in the 



 

shape of a character, provided that such variation does not make it 
resemble patterns of other classes.  

The expected tight constellations of classes in feature space do 
not take into account outliers that don't belong to any class. Such 
patterns can be generated not only by writers, printers, scanners and 
copiers, but also by mis-segmentation before the classification stage. 
While readily tolerate outliers, it is only recently that classifier 
resistance to outlier tolerance has been seriously investigated in 
OCR [20-23]. A small number of outliers should not affect the 
global estimate of the transformation that maps the training set into 
the test set, or vice-versa. 

 
 
 

 
 
 
 
 

 
 
Figure 3. Four classes in two different 2-D feature spaces 

 

Consider the example in Figure 3, which is a schematic 
representation of four numeral classes in two different feature 
spaces. The two features spaces are based on two different sets of 
features: for example, one could be Fourier coefficients, and the 
other could be pixel n-tuples [33]. There is little if any overlap 
between the training and test samples of any class. Is it 
inconceivable that we can train a classifier on samples in Feature 
Space (a) and modify it to classify samples in Feature Space (b)? 

 

7. Language Context 

Language context is based on the observation that only a tiny 
fraction of all possible sequences of symbols ever appear. Of the 
over 300 million six-letter combinations of the 26 English letters, 
the most common 100 words (stop words) account for over 50% of 
ordinary text. Furthermore, fewer than 100 sequences of any six 
words would make sense. Therefore in principle most errors can be 
readily detected, and many can be corrected.  

We have demonstrated that if the bitmaps of scanned text are 
clustered, and each letter is replaced by a unique cluster number, 
then the resulting substitution cryptogram can be readily solved 
with a language model. In the early days, our language model was a 
table of bigram frequencies, and we needed several hundred words 
to decode the cryptogram [34,35]. By the late seventies, we were 
able to store a few hundred common words, and we could decode 
texts of less than one hundred words [36,37]. Anybody’s aunt can 
decode a substitution cipher of a dozen words, and so can George 
Hart’s algorithm [38]. But these algorithms are brittle. We have 
only demonstrated the principle: even our recent algorithms cannot 
tolerate upper-lower case confusions, and have trouble with clusters 
that split or merge classes [39]. Yet a human reader would have 
only a little difficulty with text where all the ‘e’s  (about 10% of the 
letters) were replaced by ‘c’s. Beyond morphological (valid letter n-

grams), lexical (valid words), and syntactic (valid combinations of 
words), we must also exploit semantic (does it make sense?) and 
pragmatic (goal dependent) constraints [40,41,42]. 

We have noticed that in the ISRI (Information Science 
Research Institute, University of Nevada, Las Vegas) competitions, 
OCR systems with aggressive lexical context correction often 
introduced egregious mistakes [43]. It is well known that using too 
large a lexicon, without word frequency data, is as bad as using no 
lexicon at all. There is no question that adapting the language 
model to the current input stream could result in significant 
reduction of the error rate on plain text. However, we anticipate the 
most interesting developments not in reading plain text, but in 
forms reading (including postal addresses and financial forms). The 
context here often resides in some specialized and perhaps private 
database, not in a public dictionary. The problem that must be 
solved is how to extract specialized syntactic rules from a dynamic 
database, and how to weight items of varying relevance to the 
current document. Solutions must exist, because very few forms are 
ambiguous to knowledgeable readers.  

9 ? 
4 6 

5 
(b)(a) 

 

8. Conclusions 

We believe that the future belongs to pattern recognition 
systems that continue learning after they leave the factory. At the 
very least, OCR systems must be informed of every error they make, 
so that they can adjust their decision boundaries. But it is not 
enough to let them know when they make errors: they also need to 
know when their decisions are right. When classifiers are idle, they 
should put their time to good use by reviewing the millions of 
patterns that they have already encountered. 

Decision-directed adaptation is a powerful methodology. 
Although we have no solid theory to explain when it works and 
when it does not, we can be sure that any improvement in the basic 
recognition engine will be amplified through adaptation. Its success 
is simply a reflection of the fact that most classifiers are trained 
according to statistical principles; therefore the increase in the 
number of correctly labeled patterns will generally outweigh the 
much smaller increase in the number of mislabeled patterns. We 
have observed that more than 50% error in some classes can be 
reduced significantly by adaptation, provided that confusions 
between two classes are not symmetrical. Decision-directed 
adaptation can be applied with any classifier that is built 
automatically from a set of training samples. However, it has only 
been demonstrated experimentally to work well only on parametric 
classifiers with relatively few parameters. The possibility of a run-
away classifier can be limited by close monitoring of recognition 
errors on a standard data set on which acceptable results have been 
previously obtained. 

When the number of samples in each isogenous field is too 
small to allow adaptation, we can take advantage of the fact that 
how a particular pattern is printed, written or spoken reveals 
something about the appearance or sound of every other pattern 
produced by the same source. Under reasonable assumptions of 
either a discrete number or a continuum of styles, style-constrained 
recognition yields optimal classification. Its benefit compared to 



 

field-classification is that it does not require training samples of 
every possible field label. It is also provably superior to font or 
writer identification. In contrast to adaptation, the cost of style-
constrained classification is high. It should therefore be used only 
on fields where simpler classifiers cannot produce dependable 
results. 

The benefits of using linguistic context at the morphological, 
lexical and functional (as in forms recognition) levels are well 
established. We have shown that even low-level linguistic context 
is powerful enough to recognize text without any restriction on 
character shape other than that the same letter will be represented 
by the same shape, and different letters will be represented by 
different shapes. So far context has been exploited only statically, 
with stored letter n-gram frequencies, lexica, and grammars.  
We expect further benefits from systematic adaptation of syntactic 
and semantic context to documents and to collections of documents.  

Some OCR systems have reached accuracies compared to those 
of an indifferent reader. But they are not nearly as accurate as an 
interested reader with a stake in the message and a background of 
relevant information. We must strive to endow our OCR machines 
with motivation and knowledge comparable to those of the most 
assiduous reader. 
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