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Abstract—In many applications of pattern recognition, patterns appear together in groups (fields) that have a common origin. For

example, a printed word is usually a field of character patterns printed in the same font. A common origin induces consistency of style in

features measured on patterns. The features of patterns co-occurring in a field are statistically dependent because they share the same,

albeit unknown, style.Style constrained classifiers achieve higher classification accuracy bymodeling such dependence among patterns

in a field. Effects of style consistency on the distributions of field-features (concatenation of pattern features) can be modeled by

hierarchicalmixtures.Each fieldderives fromamixtureofstyles,while,withina field,apatternderives fromaclass-styleconditionalmixture

of Gaussians. Based on this model, an optimal style constrained classifier processes entire fields of patterns rendered in a consistent but

unknown style. In a laboratory experiment, style constrained classification reduced errors on fields of printed digits by nearly 25 percent

over singlet classifiers. Longer fields favor our classification method because they furnish more information about the underlying style.

Index Terms—Style, isogenous patterns, style consistency, style constrained classification, style-bound variant, style-shared variant,

Optical Character Recognition, font recognition, field classification, mixture model.
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1 INTRODUCTION

AN accomplished typeface designer makes use of only a
few well-matched typographic components—bowls,

stems, bars, finials, and serifs—to configure an entire
alphabet. Fine penmanship is also characterized by a certain
uniformityof strokes andspacing, although theoverall aspect
varies fromwriter to writer. The subtle relationship between
words and phrases that identify a particular author is yet
another instance of the notion of style.

Aesthetic considerations aside, messages from the same

source tend to share similar characteristics. Printers,

copiers, and scanners all leave their imprint on digitized

documents (Fig. 1). Even mediocre writers display a certain

predictable uniformity (Fig. 2).
The goal of the work reported here is to model “style”

mathematically and thereby develop a basis for more

accurate classification of a group (field) of digitized characters

from the same source. We do not assume that the source of a

field is known, only that all the patterns in the same field are

isogenous, i.e., they originate from the same source. The

problem is not without practical relevance: the feature-space

representation of any single postal address, bureaucratic

form, or printed article is bound to display some measure of

homogeneity due to isogeny.Human readers subconsciously

make use of this phenomenon [15].
Our work is rooted in established principles of statistical

minimum-error classification, as set forth in [7]. Expectation

Maximization (EM), used for estimating the parameters of

style consistent mixture models, is discussed and well
referenced in the new edition [8].1

In contrast to methods based on linguistic context (letter
n-grams [11], lexicons [6], [22], HMMs [14], and word-
matching [10]), style consistent classification (alias style
constrained classification) does not depend on the order of
the patterns. The notion of exploiting spatial context was
suggested in [13] and it was associated with the word style
in [23], [5], [4]. Style constrained classification is closely
related to font identification as practiced, for instance, in
[29]. However, none of these studies presents a unified
model of classification where feature distributions esti-
mated from training samples without style labels are used
to classify same-style fields. We presented such a model in
[19] and [20], drawing heavily on [16]. Some closely related
style models based on a single high-dimensional Gaussian
distribution per class were described in [27], [26], [24].

In Section 2, we formulate the mathematical apparatus
necessary to extend the optimal classification of feature
vectors with given class-conditional feature probability
distributions to the optimal classification of field feature
vectors given style-and-class-conditional probability distri-
butions. Although we assume that all fields are a priori
equally probable, we show how linguistic context, if
present, can be accommodated to advantage. We describe
alternative style hypotheses that lead to different assign-
ments of mixtures of Gaussian densities to each class and
style. Because the optimal classifiers are computation
intensive, we also propose a suitable approximation.

Researchers often illustrate differences between classifiers
by depicting decision boundaries in a two-dimensional
feature space. Style constrained classification requires at
least two patterns in a field; therefore, a two-dimensional
representation permits only one feature per pattern. Never-
theless, even a simple problem, with only one scalar feature,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 1, JANUARY 2005 1

. P. Sarkar is with the Palo Alto Research Center, 3333 Coyote Hill Road,
Palo Alto, CA 94304. E-mail: psarkar@parc.com.

. G. Nagy is with the Department of Electrical, Computer, and Systems
Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180.
E-mail: nagy@ecse.rpi.edu.

Manuscript received 4 Nov. 2002; accepted 21 May 2004.
Recommended for acceptance by L. Vincent.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 117702.

1. The EM iteration formulae for estimating mixtures of Gaussians
appeared in the first edition of [7], even before the complete EM
formulation appeared in [9].

0162-8828/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society



two classes, and two styles, gives considerable insight into the
nature of style constrained classification. Such a problem is
carefully formulated and studied in Section 3.We explore the
consequences of different class and style configurations and
of different hypotheses for the assignment of the Gaussian
distributions, illustrate the resulting classification bound-
aries in 2D, and tabulate error rates. These simulation
examples reveal when style consistent classification is
appropriate and when it is not.

We validate our findings by comparing style constrained
classification with conventional “singlet” classification on
scanned alphabets of six different machine fonts. The
experimental design allocates equal resources to each
classifier.Aswehadexpected, style constrained classification
yields significant gains over conventional multifont classifi-
cation, though it cannot quite match the error rates obtained
bya style-specific classifier trainedon the same font as the test
field. We do not claim that this is a “real-life” test because we
use well-spaced character images with the same (large)
number of patterns from each class for training. A few simple
feature measurements were used to represent the character
patterns. Nevertheless, we believe that the results warrant
investigating the benefits of style classifiers for operational
products. Advances in computer speed or improved numer-
ical techniques should also eventually render our methods
applicable to speech recognition.

2 MATHEMATICAL FORMULATION OF STYLE

CONSISTENCY

We consider fields of L isogenous patterns, represented by
feature vectors xxxx1; xxxx2; . . . ; xxxxL. Each pattern, xxxxl, belongs to
one of C classes: cl 2 1; 2; . . . ; C. The object of classification
is to deduce the class of each pattern from the observed
feature vectors.

For each field, we define the field feature vector, x, as the
concatenation, ðxxxx1; xxxx2; . . . ; xxxxLÞ, of the constituent pattern
feature vectors. The concatenation of pattern classes is
called the field-class or field identity, c ¼ ðc1; c2; . . . ; cLÞ.

The essential aspect of a style-consistency model is the
statistical dependence among pattern-features in a field. In

contrast, in a singlet model, we assume that pattern-features
in a field are class-conditionally independent.

pðxjcÞ ¼ pðxxxx1; . . . ; xxxxLjc1; . . . ; cLÞ ¼
YL

l¼1

pðxxxxljc1; . . . ; cLÞ: ð1Þ

We can simplify further by assuming that the lth pattern-
feature, xxxxl, depends on the class of the lth pattern but is
independent of all of the other pattern-classes.

pðxjcÞ ¼
YL

l¼1

pðxxxxljclÞ: ð2Þ

There are known exceptions to the last assumption, such as

ligatures in print and handwriting (the shape of the “i” is
different after the “f” than after the “n” or “t” in the word
“definitions” in Fig. 1) and coarticulation in speech. In speech
recognition, context trees model feature densities in the

context of the field-class [12].
When each pattern-class can be rendered in different

styles, the resulting pattern-class conditional pattern-feature
probability is a mixture distribution. ForK styles, 1; . . . ; K

pðxxxxljclÞ ¼
XK

k¼1

�kpðxxxxljk; clÞ;

where �k is the probability of occurrence of style k. The

field-class conditional field-feature density is (substituting

above in (2))

pðxjcÞ ¼
YL

l¼1

XK

k¼1

�kpðxxxxljk; clÞ:

While the above formula accounts for multiple styles of

patterns, it does not model the consistency of style within a

field. Thus, different patterns in a field can be randomly

generated fromdifferent styles.We illustrate this in Fig. 3 (top

right). Our notion of style consistency is pragmatic, induced

by the observation of frequent co-occurrence. Thus, the top

three examples in Fig. 3b have been labeled style inconsistent

only because such combinations of font-variants are rarely

seen.
In our style-consistency model, field-features have

mixture distributions induced by styles, while, within a
field, all patterns come from the same style.
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Fig. 1. Variation of style in document images can be a result of the
printing and imaging processes. The text segment was scanned
(a) before and (b) after multiple photocopying.

Fig. 2. Handwriting styles depend on the training of the writer. Character
formation is “cursive” in the left example and “blocked” in the right.

Fig. 3. (a) Symbols of the English alphabet in various styles—each
character class has style-specific variants. (b) Notion of style consis-
tency in fields.



pðxjcÞ ¼
XK

k¼1

P ½kjc� pðxjk; cÞ ¼
XK

k¼1

�k pðxjk; cÞ: ð3Þ

The assumption is that the style of rendering of a field is
independent of the identity of the field being rendered
(P ½kjc� ¼ P ½k� ¼ �k).

2 Within each style, we assume that a
pattern-feature is independent of the class-labels of other
patterns in the field (compare to (2) for the singlet model).
The style consistent class-conditional field-feature prob-
ability can then be written as:

pðxjcÞ ¼
XK

k¼1

�k

YL

l¼1

pðxxxxljk; clÞ: ð4Þ

Equation (4) forms the basis of our model of style-

consistency and can be applied to different kinds of feature

distributions—discrete or continuous. In our implementa-

tion and experiments, we have used mixture distributions,

mixtures of Gaussians in particular.
For any style k and pattern-class c, the pattern-feature

probability is a mixture distribution.

pðxxxxjk; cÞ ¼
XJ

j¼1

�jðc; kÞpðxxxx; �jðc; kÞÞ; ð5Þ

0 � �jðc; kÞ � 1;
XJ

j¼1

�jðc; kÞ ¼ 1 8c; k:

J is the number of mixture components (variants) in the

distribution for each class and style. This number does not

have to be the same for every class and style, but it makes our

notation simpler. pðxxxx; �jðc; kÞÞ is the pattern-feature prob-

ability density conditioned on class c, style k, and variant j

with parameters �jðc; kÞ. The mixing parameters are �jðc; kÞ.
In our experiments, we use the three models as

explained below.
Style-bound variant (SB) model:

pðxxxxjk; cÞ ¼
XJ

j¼1

�jðc; kÞpðxxxx; �jðc; kÞÞ: ð6Þ

There are J �K variant distributions per class, each with a

different parameter set, �jðc; kÞ, and weight, �jðc; kÞ. Each
variant distribution is bound to a style and different styles

do not share parameters.
Style-shared variant (SS) model:

pðxxxxjk; cÞ ¼
XJ

j¼1

�jðc; kÞpðxxxx; �jðcÞÞ; ð7Þ

�jðc; kÞ ¼ �jðcÞ and pðxxxx; �jðc; kÞÞ ¼ pðxxxx; �jðcÞÞ:

Here, the variant distributions (and their parameters) do

not depend on the style. The parameters of the variant

distributions for each class are “tied” across styles and the

same set of variants are weighted differently to obtain the

distributions for K styles.
This model is suitable for heavily overlapping feature

distributions conditioned on the same class but different

styles. Fig. 4 illustrates such an example. In a style-bound

variants model, each variant distribution would belong

exclusively to one style. In a shared variants model, over-

lapping non-Gaussian class-style conditional distributions

are modeled as mixture Gaussians with different mixing

parameters for each style and class. The style separation, ds,

and class separation, dc, are introduced in Section 3.
Singlet (SN) model: Singlet modeling is the same as

modeling with only one style, with the appropriate number

of variants per class.
We now present the expanded equations for the three

models.

SB : pðxjcÞ ¼
XK

k¼1

�k

YL

l¼1

XJ

j¼1

�jðcl; kÞ pðxxxxl; �jðcl; kÞÞ ð8Þ

SS : pðxjcÞ ¼
XK

k¼1

�k

YL

l¼1

XJ

j¼1

�jðcl; kÞ pðxxxxl; �jðclÞÞ ð9Þ

SN : pðxjcÞ ¼
YL

l¼1

XJ

j¼1

�jðclÞ pðxxxxl; �jðclÞÞ: ð10Þ
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2. For simplicity of notation, we have omitted the random variables in
probability terms throughout. This should not perpetuate ambiguity since
we use different notations for the “values” of the random variables. Thus,
P ½c� is the probability of class c, while P ½k� is the probability of style k.

Fig. 4. Style-shared variants model. In each class, the same variant
distributions are weighted differently to model non-Gaussian class-style
conditional distributions.



We shall use the abbreviation SBðK; JÞ to denote a model

with K styles and J style-bound variants per class per style

(K � J variants per class). Let SSðK; JÞ denote a style-

shared variants model withK styles and J variants per class

and SNðJÞ denote a singlet mixture model with J variants

per class.
Since different models have different numbers of

parameters, they are not directly comparable. In practice,

since the variant distributions account for most of the

parameters, we compare different models that have the

same number of variant distributions. Table 1 shows that

the style-bound variants model is more economical in terms

of parameters than the style-shared variants model when

both use the same number of variants, KJ , per class.

However, the style-shared variants model can cover a

wider range of probability distributions. In particular, an

SSðK;KJÞ model can reduce to any SBðK; JÞ model as well

as any SNðKJÞ model with an appropriate setting of

parameter values. Consequently, classification performance

with the best SSðK;KJÞ model should be at par or better

than that with the best of all SBðK; JÞ and SNðKJÞ models.
Maximum likelihood (ML) classification with the singlet

model (2) selects the field-class that maximizes the objective

function:

fML;SNðx; cÞ ¼
YL

l¼1

pðxxxxljclÞ:

This function is the product of L terms with no shared

variables. Each term can therefore be maximized indepen-

dently. The ML field-classifier function then becomes

�ML;SN;fieldðxÞ ¼ arg max
ðc1;...;cLÞ

YL

l¼1

pðxxxxljclÞ

¼ ðc�1; . . . ; c�LÞ where c�l ¼ argmax
cl

pðxxxxljclÞ:

ð8Þ

The process is thus equivalent to ML classification of the

patterns, one at a time, and juxtaposition of the assigned

pattern-classes to obtain a field-class. This is why we call

this model the singlet model.

2.1 Maximum-Likelihood Style Constrained
Classifier

A maximum-likelihood style constrained classifier is ob-

tained from a style consistency model for the field-feature

probability.

�ML;SB;LOðxÞ ¼

arg max
ðc1;...;cLÞ

XK

k¼1

�k

YL

l¼1

XJ

j¼1

�jðcl; kÞ pðxxxxl; �jðcl; kÞÞ ð12Þ

�ML;SS;LOðxÞ ¼

arg max
ðc1;...;cLÞ

XK

k¼1

�k

YL

l¼1

XJ

j¼1

�jðcl; kÞ pðxxxxl; �jðclÞÞ: ð13Þ

We call the above classifiers label only (LO) or top-label

classifiers since they identify the top (most probable) label

of the field. This is to distinguish them from their

suboptimal approximations which identify the top field-

label and style, which we shall present in Section 2.2. Note

that the ML classifiers are easily transformed to the

respective MAP classifiers since the field-class probability

provided by a linguistic model is assumed to be indepen-

dent of the style of rendition of the field.

2.2 A Suboptimal Approximation for a Style
Constrained Classifier

A field of patterns collectively can furnish more information
regarding the style of rendition than a single pattern. The
longer the field, the better the resolution between different
styles and the less the chances of interstyle class confusions.
However, the number of field labels and, hence, the
computational cost of classification with label-only classi-
fiers, grows exponentially with the length of the field.

For a long field, we can assume that in (12) or (13) the

term corresponding to the true style of the field k ¼ k� will

dominate the outer summation which is over all styles. This

leads to an approximation of the label-only classifier, where

this outer summation is replaced by a maximum. This

approximation is, of course, suboptimal, but it leads to a

dramatic reduction in computation, because the maximiza-

tion over field-labels ðc1; . . . ; cLÞ can now be promoted in

order ahead of the maximization over styles, as well as the

product over pattern indices.

max
ðc1;...;cLÞ

XK

k¼1

�k

YL

l¼1

XJ

j¼1

�jðcl; kÞ pðxxxxl; �jðcl; kÞÞ

�� max
ðc1;...;cLÞ

max
k¼1...K

�k

YL

l¼1

XJ

j¼1

�jðcl; kÞ pðxxxxl; �jðcl; kÞÞ

¼ max
k¼1...K

�k � max
ðc1;...;cLÞ

YL

l¼1

XJ

j¼1

�jðcl; kÞ pðxxxxl; �jðcl; kÞÞ

¼ max
k¼1...K

�k �
YL

l¼1

max
cl

XJ

j¼1

�jðcl; kÞ pðxxxxl; �jðcl; kÞÞ:

ð14Þ

The approximation is thus equivalent to running K style-

specific singlet pattern-classifiers, and choosing the output

of the one that yields maximum field-feature likelihood

(weighted by the a priori style probability �k). We call such
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TABLE 1
Comparison of Number of Parameters in Style-Bound

Variants, Style-Shared Variants, and Singlet Models with
the Same Number of Variants per Class



a classifier a top label-style (LS) classifier because it picks out

the maximum-likelihood combination of field-label and

style. The resulting style-bound and style-shared variant

maximum-likelihood classifiers are:

�ML;SB;LSðxÞ ¼ ðck�1 ; . . . ; ck
�

L Þ; where

k� ¼ arg max
k¼1...K

�k �
YL

l¼1

XJ

j¼1

�jðckl ; kÞ pðxxxxl; �jðckl ; kÞÞ

ckl ¼ arg max
cl¼1...C

XJ

j¼1

�jðcl; kÞ pðxxxxl; �jðcl; kÞÞ;

ð15Þ

�ML;SS;LSðxÞ ¼ ðck�1 ; . . . ; ck
�

L Þ;where

k� ¼ arg max
k¼1...K

�k �
YL

l¼1

XJ

j¼1

�jðckl ; kÞ pðxxxxl; �jðckl ÞÞ

ckl ¼ arg max
cl¼1...C

XJ

j¼1

�jðcl; kÞ pðxxxxl; �jðclÞÞ:

ð16Þ

3 SIMULATION EXPERIMENTS

We present some simple examples of the style-bound-

variant model with scalar (one-dimensional) pattern fea-

tures, two classes, two styles, and one Gaussian variant per

class per style. For a field of length L:

pðxjcÞ ¼
X2

k¼1

�k

YL

l¼1

pðxxxxljcl;�cl;kÞ; ð17Þ

where each density function pðÞ is Gaussian with unit

variance and mean �cl;k. Each xxxxl is a scalar pattern-feature,

although we continue to use the bold xxxx notation for

consistency. With equiprobable styles (�1 ¼ �2 ¼ 0:5), for

a field of length L ¼ 2, (17) expands to:

pðxjcÞ ¼ 1

2
pðxxxx1jc1; �c1;1Þpðxxxx2jc2; �c2;1Þþ

1

2
pðxxxx1jc1; �c1;2Þpðxxxx2jc2; �c2;2Þ:

ð18Þ

Notice that the style consistency models avoid mixed-style

terms that appears in a similar expansion of the singlet

model:

pðxjcÞ ¼ 1

4
pðxxxx1jc1; �c1;1Þpðxxxx2jc2; �c2;1Þþ

1

4
pðxxxx1jc1; �c1;2Þpðxxxx2jc2; �c2;2Þþ

1

4
pðxxxx1jc1; �c1;1Þpðxxxx2jc2; �c2;2Þþ

1

4
pðxxxx1jc1; �c1;2Þpðxxxx2jc2; �c2;1Þ:

ð19Þ

Our objective is to measure the gains of modeling style

consistency for different configurations of the four variant

distributions. If two styles are identical in feature distribu-

tions or if, within each style, the classes have identical

distributions, then we expect no gains by modeling style

consistency.
We parameterize the means of the distributions in the

following way:

�1;1 ¼ 0;�1;2 ¼ ds;�2;1 ¼ dc;�2;2 ¼ dc þ ds; ð20Þ

dc denotes the within-style separation between classes,
while ds is the within-class separation between style-
variants (Fig. 4). Tables 2 and 3 present results of classifying
simulated fields of length 2.

When the interclass distance is 0, the two classes are

impossible to tell apart (Table 2) and none of the classifiers do

better than chance.3 When interstyle distance is 0, modeling

two styles is useless since the styles are the same and the LO

classifier is at par with the singlet classifier. The gains due to

the LO classifier are maximum when dc ¼ ds. This causes

distributions for (class 1, style 2) and (class 2, style 1) to be

identical, resulting in cross-style class confusions. Such a

condition is illustrated in Fig. 5, where the seven in the left-

hand style is identical to the one in the right-hand style. Most

of these confusions can be resolved with style information

furnished by the other pattern in the field.
Table 3 shows the results of the same experiment but

with the relative positions of �2;1 and �2;2 reversed.
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TABLE 2
Error Rates (%) for Different Relative Positions of Gaussians

Each cell shows singlet error rates below LO error rates. Each estimate
is based on 10,000 simulated fields of length 2.

TABLE 3
Error Rates (%) for Different Relative Positions

of Gaussians (with Inversion)

Each cell shows singlet error rates below LO error rates. Each estimate
is based on 10,000 simulated fields of length 2.

3. Classification by chance (random class assignment to patterns) would
yield 75 percent field error for fields of length 2. The error rates reported here
are estimated by simulation.



�1;1 ¼ 0;�1;2 ¼ ds;�2;1 ¼ dc þ ds;�2;2 ¼ dc: ð21Þ

Here, the gains are maximum when dc ¼ 0, which causes
(class 1, style 2) to be identical to (class 2, style 1), and (class 1,
style 1) to be identical to (class 2, style 2) in distribution.
Consequently, the pattern-class conditional pattern feature
distributions are identical for the two pattern classes. There-
fore, the singlet classifier classifies by the “toss of a coin.” The
LO classifier does better only because it does not admitmixed
style fields.

Fig. 6 plots the absolute gain (over singlet error-rate) and
relative gain (absolute gain as percent of singlet error-rate) in
error rate for LO and LS classifiers, with varying interclass
distance, while the interstyle separation is fixed at 2� (no
inversion). Thegain rate (absolute gain inerror rate) ishighest
when dc equals ds ¼ 2�. The relative gain, however, keeps
increasing with the interclass distance, indicating that a high
fraction of singlet errors can be corrected by style constrained
classification if the inherent separation between classes is
good. In practice, the benefit will, of course, depend on how
well we can model the tails of data distributions. The figure
suggests that the LS classifier is a good approximation to the
optimal LO classifier.

3.1 Performance on Same-Class and
Mixed-Class Fields

For Gaussian variants with small interclass or interstyle
separation, style constrained classifiers tend to perform
worse on same-class fields than singlet classifiers. But, they
gain more on mixed-class fields than they lose on same-
class fields, thus improving the overall error-rate. When
class separation is high, style constrained classifiers yield
gains for both same-class and mixed-class fields.

For the two-class problem, with fields of length two,
erroneous classification of same-class fields lowers the
overall gain due to style constrained classification. Both
more classes, and longer fields, result in diminishing
probabilities of same-class fields and, therefore, favor style
constrained classification.

3.2 Decision Boundaries

Some of the differences between different classifiers can be
visualized by observing the differences in classification
boundaries that they induce. In Fig. 7,wepresent thedecision
boundaries of different classifiers for the same simple model
as in the previous simulations. The pattern-feature is scalar
and the field length is 2. Therefore, the field-feature is
bivariate, allowing us to plot field-feature distributions and
the classification boundaries obtained by simulation.
We show the decision boundaries only for the LO and
LS classifiers. A singlet classifier always classifies each
pattern independently of the other and produces decision

boundaries that are parallel to the axes. In all five examples,
the singlet decision boundaries are identical, splitting the
illustrated feature space into four equal quadrants.

In each subfigure the locations of the means of the class-
style conditional Gaussian distributions are marked along
the axes. The locations of style and field-class conditional
means are plotted (see the legend) for each of the four field-
labels and two styles. Within each optimal decision region,
we also plot the iso-probability contours for the probability
density conditioned on the corresponding field label. These
contours illustrate how mixtures of independent distribu-
tions model the statistical dependence in field-feature
vectors. The numbers in percentage under each subfigure
indicate the aggregate error rate and, within parentheses,
the breakdown for same-class fields and mixed-class fields,
respectively. The singlet (SN) error rates are the bench-
marks for evaluating our classifiers.

When classes and styles are well separated, as in Fig. 7a,
the LS approximation closely resembles the LO classifier, as
we would expect. Both classifiers are quite different from
whatwewould expect from a singletmodel. As the interclass
distance shrinks, as in Figs. 7b and7c, differences between the
two emerge. In Fig. 7c, the distributions for (class 1, style 2)
and (class 2, style 1) are identical. When styles are not very
pronounced because the style-separation is small, the LO and
LS boundaries approach singlet boundaries, as in Fig. 7d.

When different classes have similar distributions within
the same style, style constrained classification is not very
effective. Fig. 7e corresponds to dc ¼ 4 and ds ¼ 2, but with
inversion. Most singlet errors result from the confusion
between the two classes within style 2. These errors cannot
be corrected by style-consistency modeling and the LO, LS
boundaries match the singlet boundaries—parallel and
perpendicular to the axes.

3.3 Degree of Style Consistency

If there are no significant differences in style between fields of

data, the singlet classifier canperformnearly aswell as a style

constrained classifier. To analyze the effect of the degree of

style consistency, we generated style-consistent data accord-

ing to the following distributions, where Gc;jðxxxxÞ is the unit-

variance Gaussian density function with mean �c;j:
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Fig. 5. A situation where style consistency alone can help resolve the
dichotomybetween “7” of the left-hand style and “1” of the right-hand style.

Fig. 6. Absolute and relative improvements in field error-rate as functions

of interclass distance dc, for fields of length 2.



pðxxxxjclass1; style1Þ ¼ �G1;1ðxxxxÞ þ ð1� �ÞG1;2ðxxxxÞ
pðxxxxjclass1; style2Þ ¼ ð1� �ÞG1;1ðxxxxÞ þ �G1;2ðxxxxÞ
pðxxxxjclass2; style1Þ ¼ �G2;1ðxxxxÞ þ ð1� �ÞG2;2ðxxxxÞ
pðxxxxjclass2; style2Þ ¼ ð1� �ÞG2;1ðxxxxÞ þ �G2;2ðxxxxÞ:

The two styles were set to be equiprobable (�1 ¼ �2 ¼ 0:5).

The above corresponds to the SS(K ¼ 2; J ¼ 2) model. The

variant means were assigned as follows:

�1;1 ¼ �4 �1;2 ¼ �2 �2;1 ¼ 2 �2;2 ¼ 4:

When the parameter � is set to 0, the two styles are distinct

because only variants G1;1 and G2;1 occur together in fields

of style 1, while only variants G1;2 and G2;2 occur together in

fields of style 2. When � ¼ 0:5, however, the two styles

become identical. The four variants of two classes can

randomly intermix with each other in a field. As � goes

from 0 to 0.5, we have a continuum from two styles to a

single style, the latter having an equivalent singlet model.

In Table 4, we show the effect of style-consistent modeling

on classifier performance along this continuum. We list the

field-error rates (field length = 2) of the singlet classifier

SN(J ¼ 2) with known parameters, the style constrained

classifier SS(K ¼ 2; J ¼ 2)-LO with known parameters, and

the style constrained classifier SB(K ¼ 2; J ¼ 1)-LO with

parameters estimated by Expectation-Maximization. Note

that the SB(K ¼ 2; J ¼ 1) model has only one (Gaussian)

variant per class per style and is therefore appropriate only

when � ¼ 0 and is otherwise handicapped in comparison to

the style-shared-variant model. The class-pattern-condi-

tional marginal distributions remain the same for all values

of � and, therefore, the singlet error rate remains the same.

Variations are due only to estimation error.4
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Fig. 7. Classification boundaries (between field-classes) resulting from different classifiers, with different within-class style separation, ds, and within-

style class separation, dc. (a) ds ¼ 2, dc ¼ 6. (b) ds ¼ 2, dc ¼ 4. (c) ds ¼ 2, dc ¼ 2. (d) ds ¼ :5, dc ¼ 6. (e) ds ¼ 2, dc ¼ 6 with inversion.

4. In all simulation experiments, error rates have been estimated by
classifying pseudorandomly generated data. Though all experiments are
run on large data sets, error rates deviate slightly from expected values or
from other seemingly identical/equivalent experiments. These should be
viewed as estimation errors, rather than anomalies.

TABLE 4
Style Constrained Classification along a
Continuum from Two Styles to One Style

y Computed with the best EM estimate for SBðK ¼ 2; J ¼ 1) model.



3.4 Field Length

Applications such as OCR and speech recognition require
classification of longer fields. This is an advantage because
longer fields help to resolve styles and, therefore, favor style

constrained classification. In Table 5, we compare the field-
error rates of singlet and style constrained classifiers for
different field lengths for Gaussian distributions. The
distribution used is SBðK ¼ 2; J ¼ 1Þ, with dc set to 6 and

ds set to 2, according to (20).
Within-style confusions cannot be corrected by style-

consistency modeling. Since in such cases, feature distribu-
tions are similar for two or more classes within the same
style, one has to look for other forms of context (e.g.,
linguistic context) to resolve such confusions.

3.5 Comparison of LO Classifier and the
LS Approximation

The LS classifier is a suboptimal approximation to the
optimal LO field-classifier, as presented in Section 2.2. With
large separation between styles, it is a good approximation

and yields almost the same gains as LO classification. Even
otherwise, information regarding style can be augmented
by longer fields. In Table 6, we show how the LS classifier

approaches the LO error rate with increasing field length.
The experiments were run with our SB(K ¼ 2; J ¼ 1)

model with unit-variance Gaussians. The means are placed

according to (20) with ds ¼ 2 and dc ¼ 4. Each error rate was
estimated by classifying 100,000 fields.

The processing time for both singlet and LS classifiers
grows linearly with the number of patterns in the field. The

runtime of the LO classifier increases exponentially over the
fixed overhead (for reading data, parameters, and writing
output) because, for each field, it explores all 2L possible

field-classes to pick one. A smart search through this
exponential search space is reported in [17].

3.6 Modeling Broad Styles

In our style-consistency model, we assume that there is
statistical dependence between co-occurring variants of
different classes, i.e., the variant of class “A” appearing in a
field depends on which variant of class “B” appears in the
same field andvice versa.We call this a strong style consistency
assumption. If, in the aggregate of many styles, most or all
combinations of different variants of classes occur, then the
benefits of strong style consistency modeling are less. A
classifier can still take advantage of consistent rendering,
within a field, of samples of the same class (weak style

consistency assumption). This canbeachievedbyadapting the
classifier to the specific style of the test field, provided the
field is long enough [3], [28], [2], [25], [18].

In the presence of many styles, it may be impractical to
model each style because of requirements on the training
sample size andbecause of computational complexity.On the
other hand, if the field-feature distributions show broad
clusters of styles, style-modeling can prove useful. For
example, broad styles may be induced by gender (pitch) for
speech, nationality (training) ofwriters, or type-style of fonts.

Increasing the number of styles (parameters) often leads
to progressively better approximation of style-consistent
distributions. We report an experiment where data was
generated according to the SBðK ¼ 10; J ¼ 1) model with
unit variance Gaussian variants.

The means of the Gaussians were �c;k ¼ ðc� 1Þdc þ k for
class c ¼ 1; 2 and style k ¼ 1 . . . 10. Thus, for dc ¼ 10, the
means were at 1; 2; . . . 10 for class 1 and, correspondingly, at
11; 12; . . . 20 for class 2. Table 7 reports the results of
approximating the distribution with our EM estimates for 1,
2, 3, 4, 5, and 10 styles. Label-only and singlet classifiers with
an equal number ofGaussian variants per class are compared
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TABLE 5
Variation of Field-Error Rates with Field Length

TABLE 6
Performance Comparison of LO and LS Classifiers

TABLE 7
Field Error Rates (in Percent) for Fields of Length 2, when a Style-Consistent Distribution Is Approximated with Fewer Styles

An underlying distribution with 10 styles and one variant per class per style is approximated 1) by style-consistent distributions with K styles (one
variant per class per style) and 2) by K variants-per-class singlet distributions.



by the respective field error rates (in percent) on classifying
fields of two patterns. The results indicate diminishing
returns with increasingK.

4 EXPERIMENTS ON MACHINE PRINTED DIGITS

We performed controlled laboratory experiments to de-
monstrate the application of style-consistency models in
classifying machine-printed digits.

4.1 Data

The 10 digit classes “0” through “9” were printed in six
different 6 point fonts on a 600 dpi laser printer and bilevel
image samples were obtained by scanning at 200 dpi. The
printer toner and scanner settings were unchanged during
sample generation so that it was reasonable to presume that
the major stylistic differences were due to fonts. Examples of
enlarged digit images in the six fonts are shown in Fig. 8. We
obtained 500 images per font per digit class or 30,000 images
in all.

Four central moments—M00, M20, M02, M11—were
computed as features for each digit image.

Mmn ¼4
XW

x¼1

XH

y¼1

bðx; yÞðx� x0Þmðy� y0Þn: ð22Þ

bðx; yÞ is the value of the pixel at column x, row y of the digit
bitmap, whose width and height are W and H pixels,
respectively. The “value” of a pixel is considered 1 if the
pixel is black (foreground), 0 otherwise (background).
ðx0; y0Þ is the centroid of the bitmap.

4.2 Experimental Design

The printed digit data was divided into two equal samples
(250 patterns per digit class per font). The first sample was
used for training and the second for testing in each of the
experiments.

Font-specific training. The training sample was sub-
divided according to font and 250 feature vectors per font
per class were used to estimate the parameters of font and
class conditional distributions. Each such distribution was
modeled as Gaussian with a diagonal covariance matrix.

Multifont training and testing. For the purpose of
these experiments, we used known font information only
to construct isofont training and test fields. Font-labels of
these fields were discarded. Singlet models with
G Gaussians per class, SN(J ¼ G), were compared to

style-models, SB(K ¼ G; J ¼ 1), that had the same num-
ber of Gaussians per class. The Expectation-Maximization
(EM) algorithm was used for style-unsupervised training.
The details of the algorithms are explained in [16].

Training fields. Training fields of length 13 were formed
with samples from the same font. The field classes of training
fields were chosen by cycling through the 10 classes. Thus,
training field-classes were 9876543210987, 6543210987654,
etc. Only 14,430 of the 15,000 patterns in the training sample
were actually used for training (due to the method used to
scramble digit patterns to form fields). The choice of 13 as the
field-length guaranteed the co-occurrence of every class in
each field. Further, since field length (13) and the number of
classes (10) are relatively prime, the cycle of field-class labels
was long. The object of this scheme was to take advantage of
the large number of samples per font (style) and test the
estimation algorithm with an assortment of field-classes.

Test fields. The test patterns from each font were
permuted randomly and then sliced into fields of length 2
or 4. All 15,000 digits in the test sample were used for
testing, classification being performed twice (7,500 fields of
length 2 or 3,750 fields of length 4).

Althoughwehaveused fixed length fields for training and
testing for simplicity, our model and algorithms for classifi-
cation and estimation apply directly to fields of varying
length.

4.3 Results

Table 8 presents a summary of the results of our
experiments. All error rates refer to pattern-error rates
rather than field-error rates, i.e., we count the number of
digits, not digit-fields that are mislabeled. Each monofont
classifier (1 Gaussian per class) was applied to all the test
data, and the best of them yielded 43.5 percent errors. When
the single Gaussian per class was trained on samples of all
fonts, the error rate dropped to 34.2 percent—an effect
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Fig. 8. Examples of bitmaps of the 10 digits from six different fonts.

TABLE 8
Error Rates (%) of Different Classifiers for Printed Digit Data



called generalization. On allowing six Gaussians per class to
model the six fonts in a singlet classifier, the error rate
decreased further to 19.8 percent.

If, instead of ignoring the font label of each test field, we
apply the appropriate monofont classifier, we achieve an
error rate of 14.2 percent. This represents a lower bound on
the error rate achievable with our features and classifiers.
With a style constrained classifier, where we do not assume
knowledge of the parent font, we expect to achieve a
performance better than singlet classification, but worse
than the above font-specific classifiers. This is confirmed in
our experiments as we obtain error rates of 16.5 percent and
14.9 percent for style conscious classification of fields of
length 2 and 4, respectively. Longer fields favor style
constrained classification because more patterns in a field
yield stronger evidence of the true parent style of the field.

Note that the high error rates (in absolute terms) can be
attributed to the simplistic feature set used for classification
(the first four central moments). Nevertheless, the experi-
ments demonstrate the concepts and utility of style
constrained classification. While we concentrate on classi-
fication accuracy, we would like to point out that modeling
style consistency leads to a better description of the data in
general that may be useful for other tasks, such as
compression. In support of that we report, in Table 9, the
overall data-likelihood at the end of EM iterations. Both the
singlet and style-bound variant models compared in the
table use exactly the same number of parameters in each
case. The style-bound variants model always achieves better
cumulative data-likelihood, indicating a better fit to data
than the singlets model. For a more formal analysis of
model selection, let us consider the case for G ¼ 6. A
hypothesis that style modeling adds unnecessary complex-
ity can be rejected by examining the log likelihood-ratio of
ð1:32� 1:20Þ � 105 ¼ 0:12� 105 on the basis of either the
generalized likelihood ratio test (GLRT) ([1, p. 229]) or
Bayes Information Criterion (BIC) [21]. The likelihood ratio
can also be used as a measure of style consistency in data.5

5 SUMMARY AND CONCLUSION

When patterns are isogenous, the common origin leaves its
style imprint on the patterns, resulting in style consistency.
An appropriate style specific classifier yields a higher
classification accuracy than an omnifont classifier. Even
when the parent style of a field of patterns is not known, the
knowledge of style consistency in the field can be used to
improve classification accuracy over singlet classification.
We present a system of notations, a hierarchical mixture
model of style consistency, anddevelop the formulae for field
classification.

We model style consistency expressly on the basis of
pattern co-occurrence in the space of classifier features.
Since no special style-indicator features have to be
designed, we can estimate style models directly from
pattern co-occurrence data. This is especially useful for
styles that are difficult to enumerate, as in hand-print or

image degradation. Also, distinct styles are relevant only if
they induce significant differences in the distributions of the
features that are actually used in classifying the patterns.

We model strong style consistency, allowing us to
improve classification accuracy of short fields by enforcing
consistency across classes of patterns; adaptation methods
presented in pattern recognition literature require long
fields to adapt to the parent style.

Through experiments and simulations we demonstrate
several properties of style constrained classification. Our
probabilisticmodel of style consistency reduces the error rate
in machine-printed digit classification. Longer fields favor
style constrained classification because they furnish more
information about the parent style. When errors are domi-
nated bywithin-style confusions, style constrained classifica-
tion yields less improvement. Though we focus on
classification, applications such as compression may benefit
from style consistency modeling because it enables better
statistical characterization of data (higher cumulative data
likelihood), while using the same number of parameters as a
singlet model.

The machine-printed digit recognition experiments pre-
sented in this paper were designed to be simple (only four
moments used as pattern features) and carefully controlled
(font was the source of stylistic differences) to highlight the
salient features of style constrained classification and our
model of style consistency. The error rates do not reflect the
state-of-the-art in isolated digit recognition; they help us
illustrate our points. Similar experiments on hand-printed
digits (with style-unsupervised training) yielded a 25 percent
reduction of errors [16], but, because of the lack of style
labels, we could not compare the error rate of the style
constrained classifier with that of a style-specific classifier.

A practical problem associated with optimal (label-only)
classification is that computational complexity grows
exponentially with field length. Label style (LS) classifica-
tion is a suboptimal approximation that has worked quite
well in our experiments. This approximation provides a
bridge between optimal style constrained classification
(good for short fields) and adaptation to the parent style
(good for long fields). Sarkar [17] presents an algorithm that
enables optimal classification with exponential worst-case
complexity but excellent empirical average complexity.

“Ideal” features are style insensitive but discriminate
among classes. Style indicator features would be at the other
extreme, namely, class insensitive. In practice, features are
between these extremes: Adding more features can improve
recognition accuracy so that further improvement with
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5. The style-bound variants model does not admit the singlet model as a
special case - a requirement for the GLRT as stated in Bickel and Doksum.
However, the class of shared-variants models SS(6,6) (6 styles, 6 Gaussians
per class) admits both the style bound and singlet models as special cases.
Such a model of style, even after penalizing it for 30 extra parameters that
are trivially set to match the style-bound model, passes, with high
confidence, both the GLRT and BIC tests for selection over a singlet model.

TABLE 9
Log-Likelihood of Training Data under Different Models



style-conscious classification is less. More features do not
help with our pathological example of ones and sevens
where style is the only discriminator. In applications where
training (and test) data come in isogenous groups, modeling
style consistency can help us exploit co-occurrence informa-
tion that would otherwise be wasted.
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