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Abstract

In many applications of pattern recognition, patterns ap-
pear in groups (fields) that have a common origin. For ex-
ample, a printed word is a field of character patterns printed
in the same font. A common origin induces consistency of
style among features measured on patterns. In the presence
of multiple styles, the features of co-occurring patterns are
statistically dependent through the underlying style. Mod-
eling such dependence among constituent patterns of a field
increases classification accuracy. Effects of style consis-
tency on the distributions of field-features (concatenation
of pattern features) are modeled by hierarchical mixtures.
Each field derives from a mixture of styles, while within a
field a pattern derives from a class-style conditional mixture
of Gaussians. An optimal (least error) style-conscious clas-
sifier processes entire fields of patterns rendered in a consis-
tent but unknown style, based on the model. In a laboratory
experiment style-conscious classification reduced errors on
fields of printed digits by nearly 25% over singlet classi-
fiers. Longer fields favor our classification method, because
they furnish more information about the underlying style.
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1 Introduction

Applications of pattern recognition often require the
classification of groups of patterns having a common origin
(isogenous patterns). For example, the character (bitmap)
patterns in the image of a printed word are isogenous. They
represent the same font, and are acquired by the same mech-
anism (print quality, degradation, scanner parameters). We
use the term field to refer to such a group of isogenous pat-
terns.

Patterns exhibit traits of their origin, thereby inducing
styles. Thus there are different styles of printed character

patterns (Figure 1), handwritten characters (owing to writ-
ers, and writing and digitizing devices), and speech pat-
terns (speaker, recording environment, recording device).
Though patterns may be produced in a multitude of styles,
patterns in a field exhibit consistency of style because they
are isogenous. Such consistency induces statistical depen-
dence between feature-measurements on different patterns
in a field. Modeling inter-pattern feature dependence can
improve classification of patterns [Sar00].

We present a probabilistic model for style consistency
in a field and demonstrate how the model can be used for
improving classification accuracy. We explain the style-
consistency model in Section 2. We discuss style con-
scious classification, and estimation of the model in Sec-
tions 3 and 4. In Section 5 we describe laboratory experi-
ments on classification of printed numerals.

2 Probabilistic model of style consistency

Let = represent feature-measurements on
patterns in a field. The concatenation of pattern-feature

vectors ( ) is called the field-feature vector ( ).

Let represent the identity (pattern-class) of the th pat-
tern of the field. The field-class, = , is the con-
catenation of pattern-classes. denotes the field-class
conditional field-feature probability.

In the presence of multiple styles, style-consistency in
a field induces statistical dependence among different pat-
terns in a field. In singlet models such inter-pattern-feature
dependence is not modeled, and the field-class conditional
field-feature probability can be expressed as a product:

(1)
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(a) Handwriting styles due to writers

(b) Printing styles (typeface, typesize)

(c) Styles due to printing, scanning mechanism

Figure 1. Fields of handwritten and printed characters in different styles

The final simplification in (1) is based on the assumption

that the th pattern-feature, , depends on the class of the
th pattern but is independent of all the other pattern-classes.

This assumption is violated, for instance, by ligatures in
handwriting and print (the shape of “i” is different in “six”
and “fix”), and co-articulation in speech. In speech recog-
nition, context trees model feature densities in the context
of the field-class [Jel97]. We shall adopt this simplifica-
tion, although it is not central to the discussion of style-
consistency, and may be avoided by more complex style-
consistency models.

In the presence of styles, the pattern-class conditional
pattern-feature probability is a mixture density induced by
different styles of patterns. For styles,

where is the probability of occurrence of style . The
field-class conditional field-feature density is (substituting
above in (1))

While the above formula accounts for the presence of
styles of patterns, it does not model the consistency of style
within a field. Thus different patterns in a field are free

to derive from different styles. The salient feature of our
style-consistency model is that although field-features have
mixture distributions induced by styles, within a field all
patterns come from the same style.

The assumption is that the style of rendering a field is inde-
pendent of the identity of the field being rendered (

).1Within each style we then apply the simplify-
ing assumptions as in the singlet model to obtain our model
of style-consistent class-conditional field-feature probabil-
ity.

(2)

Equation (2) forms, for us, the basis of style-consistency
modeling, and can be applied to different kinds of distri-
butions, discrete or continuous. In our implementation and
experiments we have used mixtures of Gaussian distribu-
tions.

For any style , and pattern-class , the pattern-feature

1For simplicity of notation we have omitted the random variables in
probability terms throughout. This should not perpetuate ambiguity, since
we use different notations for the “values” of the random variables. Thus

is the probability of class while is the probability of style .
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probability is a mixture distribution.

(3)

where is the number of mixture components
(variants) in the distribution for class , style .

class style variant is the
class, style, and variant conditional feature density function.

denotes one or more parameters of the density func-
tion , and are the mixing parameters.

In our experiments we use the following models.
Style-bound variant (SBV) model: The class and style

conditional distribution is of the form

(4)

where the number of variants is fixed (for simplicity) for all
classes and styles, . There are variant
distributions per class, each with a different parameter set,

, and weight, .
Style-shared variant (SSV) model: The class and style

conditional distribution is written as

(5)

where for simplicity. Here the variant dis-
tributions (and their parameters) are not dependent on the
style. However, for each class the same set of variants are
weighted differently to obtain the distributions for styles.
Note that for a fixed number of variants the SSV model is
more general than the SBV model, albeit at the cost of more
parameters.

Singlet (SNGL) model: Singlet modeling is the same as
modeling with only one style, with the appropriate number
of variants per class.

We shall henceforth confine our discussions to SBV and
SNGL models only. Please refer to [Sar00] for experiments
and discussions on SSV models. The expanded formulae
for the SBV and SNGL models are:

SBV

(6)

SNGL (7)

Table 1. Comparison of SBV and SNGL mod-
els

SBV( , ) SNGL( )
Variants per class
Style probabilities 0
Variant weights

=2 Variants per class 2 2
=1 Style probabilities 1 0

Variant weights 0 1
=2 Variants per class 4 4

=2 Style probabilities 1 0
Variant weights 2 3

In Table 1 we use the abbreviation SBV( , ) to denote
an SBV model with styles, and variants per class per
style ( variants per class). SNGL( ) denotes a
singlet mixture model with variants per class. Since
different models use different numbers of parameters, they
are not directly comparable. In practice, since the vari-
ant distributions account for most of the parameters, we
can compare different models that have the same number
of variant distributions. When we set , the style-
consistency model SBV( , ) and singlet model SNGL( )
have exactly the same number of variant distributions per
class, and the same number of parameters. Our experimen-
tal design for printed digit recognition is based on this ob-
servation.

3 Style-conscious classifiers

A maximum likelihood (ML) field-classifier is a function
that maps an input field-feature vector, x, to a field-class,

, according to the formula:

ML,field (8)

Inserting the singlet model (1) into (8) we obtain the for-
mula for the ML singlet classifier (9).

ML,SNGL,field

ML,pattern ML,pattern (9)

The simplification was obtained by observing that to maxi-
mize , a product of terms with no shared variables,
we can maximize each term independently. The process is
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thus equivalent to ML classification of the patterns, one at
a time, and juxtaposition of the assigned pattern-classes to
obtain a field-class. This is why we call this model the sin-
glet model.

A maximum likelihood style-conscious classifier is ob-
tained by inserting a style-consistency model for the field-
feature probability.

ML,SBV,LO

(10)

We call the above classifier a label only (LO) or top-label
classifier since it identifies the top (most probable) label of
the field. This is to distinguish it from the following sub-
optimal approximation which identifies the top field-label
and style.

A suboptimal approximation: For a field of length
there are competing field labels for each of which the
likelihood function has to be computed for comparison in
(10). Thus the computational cost of classification with
label-only classifiers grows exponentially with the length
of the field. For a long field, assuming that in (10) the term
corresponding to the true style of the field will dom-
inate the outermost summation over all styles, we can re-
place this summation by a maximum. This approximation
is, of course, sub-optimal, but leads to a substantial reduc-
tion in computation. It is equivalent to running style-
specific pattern-classifiers, and choosing the output of the
one that yields maximum field-feature likelihood (weighted
by the a priori style probability ). We call such a classi-
fier a top label-style (LS) classifier, since it picks out the top
field-label and style.

ML,SBV,LS where (11)

Note that all maximum likelihood field classifiers are
also easily transformed to the respective maximum a pos-
teriori (MAP) classifiers since the field-class probability,

, is provided by a model (such as a
linguistic model) that is assumed to be independent of the
style of rendition of the field.

MAP,field (12)

Arial
Avant Garde

Bookman Old Style
Helvetica

Times New Roman
Verdana

Figure 2. Examples of bitmaps of the 10 digits
from 6 different fonts

4 Estimation of model parameters

If patterns in a training set are labeled by class and style,
the style consistency model can be trained by partitioning
the sample set by class and style. Parameters of class-style
conditional distributions and mixing parameters can be es-
timated from samples of the corresponding partition (may
require an iterative method for the mixture distributions).
Style-probabilities can be estimated by computing the rela-
tive frequencies of patterns from each style.

However, training with style-labeled patterns (style-
supervised training) is often impractical. Training samples
are often not labeled by style. For patterns such as hand-
written characters styles may not be well defined (it is dif-
ficult to partition 1000 writers into 4 styles). Even when
style labels are available (e.g., font-labels for printed text) it
may be necessary to model fewer styles than present in or-
der to obtain good parameter estimates from a finite sample.
Last, but not least, pre-assigned style labels (such as font-
labels) may have little bearing on the feature-measurements
used for classification. We model style-consistency in
pattern measurements. Style-unsupervised training of our
model, such as maximum likelihood estimation (MLE) via
an Expectation-Maximization (EM) algorithm [Sar00], al-
lows us to characterize styles in a way that bears on the
observed distribution of pattern-features.

5 Experiments on machine printed digits

We designed laboratory experiments to demonstrate the
application of style-consistency modeling to Optical Char-
acter Recognition (OCR). Data were obtained by printing
the digits 0 - 9 in six different fonts at 6-point size, on a
600 dpi Apple LaserWriterSelect, and scanning them into
bilevel images at 200 dpi on a HP flatbed scanner. Samples
of digit bitmaps are shown in Figure 2.

The pattern-feature vectors comprised four central mo-
ments, , , , , computed for each bitmap.

(13)
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Table 2. Error rates (%) of different classifiers
for printed digit data

Best of 6 mono-font classifiers 43.5
Multi-font singlet classifier (1 Gaussian per class) 34.2
Multi-font singlet classifier (6 Gaussians per class) 19.8
Multi-font style conscious classifier (fields of length 2) 16.5
Multi-font style conscious classifier (fields of length 4) 14.9
Font-specific classifier (1 Gaussian per class per font) 14.2

where is 1 if the pixel at column , row of the digit
bitmap is black, and 0 otherwise. and are the width
and height of the bitmap in pixels. is the centroid
of the bitmap, i.e., .

For these experiments, we have tried to keep the gen-
eration process for pattern samples (printer, paper quality,
scanner parameters) unchanged, so that we can expect that
different styles derive only from fonts. For training, 14430
digit patterns (all fonts and equally represented) were ar-
ranged in iso-font fields of length 13. The field-classes cy-
cled through the digits (0123456789012, 3456789012345,

). 2500 new patterns per font (all classes equally repre-
sented) were then randomly permuted and partitioned into
iso-font fields of length to obtain test-samples. Two test-
sets were created corresponding to =2 and =4.

The following classifiers were trained:

6 mono-font classifiers: Singlet classifiers with 1
Gaussian variant per digit-class were trained for each
font, from font-labeled digit samples. [10 variants per
classifier].

Multi-font singlet classifier (1 Gaussian per class): [10
variants].

Multi-font singlet classifier (6 Gaussians per class): A
singlet classifier with 6 variants per class, allowing for
the possibility of a separate variant for each font: [

variants].

Multi-font style conscious classifier: A 6-style SBV
classifier with 1 Gaussian per class-style, obtained by
style-unsupervised training (EM algorithm [Sar00]):
[ variants].

Note that while the variant distributions in a model
account for most of the parameters, the last two classi-
fiers have exactly the same number of parameters (includ-
ing style-probabilities and mixing parameters – see Ta-
ble 1). Thus it is fair to compare the classification accuracy
of the two classifiers to demonstrate the benefit of style-
consistency modeling.

Table 2 lists the percentage of test-patterns misclassified
by each classifier. Each of the six mono-font singlet classi-

fiers was applied separately to the entire test set, and the best
of them was in error on 43.5% of the samples. The multi-
font singlet classifier with the same number of variants, but
trained on all fonts, generalizes better and has an error rate
of 34.2%. On allowing six variants per class to model
the six styles, a singlet classifier can perform much bet-
ter (19.8%) indicating the multi-modal nature of the class-
conditional distributions.

However, font-specific classifiers perform even better on
the average (14.2%). This benchmark for style-conscious
classification was obtained by applying, to each test field,
the specific mono-font classifier corresponding to the font-
label of the field. In practice, however, the style-label of a
field is not available to the classifier. Our style-consistent
top-label (LO) classifier lowers the error rates from the sin-
glet rate (19.8%) towards the benchmark (14.2%). When
classifying fields of length two and four, the error rates are
16.5% and 14.9% respectively. Longer fields favor style-
conscious classification because more patterns can furnish
more information about the style of the field.

6 Discussion and conclusion

We have presented the motivation, a terminology, and a
mathematical formulation for style-consistency modeling.
Consistency of style is represented in our hierarchical mix-
ture model for the field-class conditional field-feature prob-
ability; each field of patterns is rendered in a single style,
and within a field each pattern-feature is generated inde-
pendently according to a class-and-style conditional distri-
bution. The parameters of the model can be estimated from
fields of iso-style patterns even if they are not labeled by
style.

It has been known for long in pattern recognition com-
munities that style-specific classifiers yield higher classifi-
cation accuracy than multi-style classifiers. Methods have
been presented to identify fonts of documents [ZI98], and
to classify handwriting styles based on global characteris-
tics [BVSE97]. Tenenbaum and Freeman suggest a method
for factorizing patterns into style and content [TF97]. We
do not attempt to identify features that describe styles, but
concentrate on the effect of styles on field-feature probabil-
ity distributions. A suboptimal style model is presented in
[BSM99].

Others have demonstrated methods and foundations for
adapting classifiers to sufficiently long fields of characters
[NJ66, BN94, XN99, Cas86, Bre01]. The advantage of
adaptation lies in the potential ability to generalize to a pre-
viously unseen style. The strength of our method lies in
unsupervised training to a large number of styles and po-
tential application to possibly short style-consistent fields
such as hand-written entries in forms, or speech-segments
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in directory assistance calls.
Optimal style conscious classification is exponential in

the length of the field and is impracticable for long fields.
The sub-optimal approximation is however only times
as expensive as singlet classification, where is the num-
ber of styles in the model. The above comments on time-
complexity apply only to the number of comparisons for the
respective maximization steps. Feature-measurement for
each pattern, and computation of variant conditional prob-
ability density functions induce identical computational
overheads for style-conscious and singlet classifiers that
have the same number of variants.

In our experiments on machine-printed digit classifica-
tion, style-consistency modeling reduces classification er-
rors by nearly 25%. While error rates presented here do
not represent the state of the art in digit recognition (we use
only simple features - the first four central moments, and
our Gaussian variants admit only diagonal covariance ma-
trices), our experiments do demonstrate the benefit of style-
consistency modeling to pattern classification, and home-
grown data allow us to compute and compare the perfor-
mance of other “comparable” models.

In other experiments conducted on hand-written digit
patterns, relative improvement due to style-consistency
modeling held up at lower error rates (errors reduced from
5.5% to 4.6%) [Sar00]. Our mathematical framework ap-
plies readily to continuous and discrete valued features,
where variants are represented by probability density func-
tions and probability mass functions respectively. Style-
consistency modeling may also be useful in other applica-
tions such as compression.
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