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Abstract—The bitmap obtained by scanning a printed pattern depends
on the exact location of the scanning grid relative to the pattern. We
consider ideal sampling with a regular lattice of delta functions. The
displacement of the lattice relative to the pattern is random and obeys a
uniform probability density function defined over a unit cell of the lattice.
Random-phase sampling affects the edge-pixels of sampled patterns.
The resulting number of distinct bitmaps and their relative frequencies
can be predicted from a mapping of the original pattern boundary to the
unit cell (called a modulo-grid diagram). The theory is supported by
both simulated and experimental results. The modulo-grid diagram may
be useful in helping to understand the effects of edge-pixel variation on
Optical Character Recognition.

Index Terms—Spatial sampling, random phase sampling, digitization,
optical character recognition, document defect models, scanner
models, modulo-grid diagram, locales.
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1 INTRODUCTION

DIGITIZATION 1is the process of spatial, intensity, and temporal
quantization of an analog pattern. Printed patterns are scanned
into digital images by spatial and intensity quantization. High-
contrast (essentially black and white) images such as text for Opti-
cal Character Recognition, and line drawings are often scanned in
binary mode. Binary scanning can be modeled as a sequence of the
following steps.

1) The analog intensity pattern is convolved with the point-
spread function (PSF) of the sensor.

2) The resulting “smoothed” signal is spatially sampled.

3) Finally, the samples are quantized to 0 or 1 by comparing
them against a preset threshold.

The order of the last two steps can be swapped without altering
the result. We do this in our model to conveniently isolate the spatial
sampling step. Our model for scanning is illustrated in Fig. 1 for a
1D signal. (We shall liberally use one-dimensional illustrations
throughout the paper, but all of our results apply to 2D.)

Here, we study only the spatial quantization aspect of digitiza-
tion, and predict the variability of pixel configurations under uni-
form random-phase sampling of printed patterns. This variability is
the result of the uncontrollable displacement of the sampling grid
relative to the page. Unlike other types of noise in scanners, random
phase noise is an intrinsic consequence of finite sampling resolution.
In OCR (Optical Character Recognition), where the smallest patterns
(periods, commas, quotation-marks) are typically represented by
only a few pixels at common point-sizes (8-10 pts) and sampling
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Fig. 1. Our model of digitization of an analog pattern illustrated in 1D.
Two different digitizations resulting from displacement of the sampling
lattice are shown.

resolutions (200-400 dpi), random-phase noise may be the limiting
factor in the recognition of high-quality print. Even in larger pat-
terns, thin strokes, such as the top serif of the numeral “1” or the
horizontal bar of a Times-Roman “e,” may be adversely affected.

An example of the effect is shown in Figs. 2 and 3. The latter
presents the different pixel configurations (bitmaps) obtained by
digitizing a black disk (for example, a period) of diameter equal-
ling 1.2 sampling intervals. The disk gives rise to four different
digitized configurations. If the location of the sampling grid is
uniformly distributed (as is the case in practice), then the various
patterns occur with the relative frequencies shown in Fig. 3.

The type of information shown in Fig. 3 bears on the following
OCR problems:

1) Minimum sample size for adequate representation of a set of
patterns.

2) Minimum sampling resolution for the recognition of a fam-
ily of patterns, such as a typeface of given point size.

3) The design of OCR-features that are less sensitive to edge-noise.

4) The construction of pseudorandom defect models for OCR.

5) The reconstruction of the original (analog) pattern from a set
of digitized samples.

6) Reducing OCR errors by multiple scans of a page.

We hope that the theory presented here eventually opens up ways
of addressing these OCR issues.

Our principal tool for obtaining the information shown in Fig. 3
is the modulo-grid diagram shown in Fig. 2. It is obtained from the
original pattern by overlaying the pattern boundaries in each cell
of the digitizing grid on the unit cell. In the sequel, we demon-
strate that the modulo-grid diagram decomposes the spatial dis-
placement space into regions of isomorphic digital representations
of a given pattern. Furthermore, the areas of these regions corre-
spond to the relative frequencies of the digital patterns.

A qualitative discussion of this phenomenon, emphasizing the
correlated nature of the resulting edge-noise in OCR, appeared in
[11]. Nadler mentioned the effects of random-phase sampling on
scanned characters in a 1972 survey paper and illustrated it in a
recent textbook on Pattern Recognition [12]. Ingold estimated the
difference expected between different scans of the same pattern
and devised a method of constructing ternary templates that are
insensitive to edge noise [6]. Pavlidis investigated conditions un-
der which the connectivity and shape of bilevel patterns are pre-
served under digitization. To this end, he formulated a “compati-
bility condition” that restricts the minimum size and maximum
boundary curvature of both foreground and background compo-
nents of the analog pattern as a function of the sampling interval
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Fig. 2. The modulo-grid diagram for a disk whose diameter equals 1.2
sampling intervals.
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Fig. 3. The four bitmaps that can be obtained by sampling the circular
disk shown in Fig. 2 and their corresponding occurrence probabilities.

[16]. The spatial sampling effect is also familiar to digital typogra-
phers [17].

Analysis of the effect of sampling in one dimension and simu-
lation results, highlighting possible applications to OCR, were
presented in [18] and [13]. The modulo-grid approach to spatial
sampling was originated by Havelock [4], [5], who was interested
in the precision of localization of terrestrial objects by remote
sensing as a function of image resolution, object shape and signal-
to-noise ratio. He defined the concept of a “locale,” which is pre-
cisely a union of regions of the modulo-grid diagram that yield
isomorphic bitmaps. Related work on the subpixel localization of
edges and circles, and on the design of optimal fiducial marks, was
presented by O’Gorman et al. [14], [15].

The contribution of the current paper is the formal proof of the
correspondence between the regions of the modulo-grid diagram
and the distinct digitizations, and between the area of the regions
and the frequency of the digitized patterns.

The modulo-grid diagram is presented in Section 2. Section 3
presents our main results in the form of two theorems. Section 4
contains some examples that illustrate possible applications to
OCR, and Section 5 mentions possible generalizations and some
unsolved problems.

2 THE MODULO-GRID DIAGRAM

When a bilevel spatial pattern is sampled with a lattice (or grid) of
delta functions, the result depends on the positioning of the grid
relative to the pattern itself. For the sake of simplicity, we consider
first sampling in one dimension. If we have a uniform 1D sam-
pling lattice of delta functions, then a simple black stroke of length

2.3 sampling intervals
o 7 7 1 o o 1 7 o o

Fig. 4. Sampling a black stroke 2.3 sampling-intervals long may yield a
bitmap of three or two black pixels.

—»—o N+ BN

0 1 125 1.875 25 4.125 5

‘ K Modulo operation

0 125 25 5 875 1.0 pogulo-grid

| [ — | diagram
..000110.. ..000100..  ..010700.. ..011100.. ..001100..  Resulting bitmaps

Fig. 5. A 1D pattern of black strokes, and the corresponding modulo-
grid diagram. The bitmap associated with each region is also shown.

equalling 2.3 sampling mtervals can digitize to a bitmap of either
two or three pixels (Fig. 4)

Let us now consider a more complex bilevel 1D pattern, such as
the one shown in Fig. 5. When the grid is slid along the pattern, the
bitmap changes only when one of the sampling points crosses over
an edge of the pattern. Sampling a 1D pattern of black and white
strokes could produce as many distinct bitmaps as the number of
edges (four in this case) in the pattern [18]. Further, since the sam-
pling lattice repeats with a period of one sampling interval, it
should be possible to obtain all the possible bitmaps by sliding the
grid by no more than a sampling interval.

This relationship between the analog pattern boundary and the
digital configuration can be captured by what we call the modulo-
grid diagram. For a 1D pattern, the modulo-grid diagram can be
constructed in the following manner. Overlay the grid at arbitrary
position over the pattern, and register the pattern in the grid coordi-
nate system. For each edge in the pattern, located at x, insert a mark
in the interval [0, 1) at x mod 1.” The mark at 0.5 in Fig. 5, for exam-
ple, is due to the edge at 2.5. The marked interval [0, 1) forms the
modulo-grid diagram.

To understand how the modulo-grid diagram works, move the
grid with respect to its original location. As the origin of the grid
moves in [0, 1) every time it crosses over a mark within the
modulo-grid diagram, some sampling point crosses over an edge
in the pattern, and vice-versa. Each interval between adjacent
marks in the modulo-grid diagram thus represents a region of
identical pixel configuration. Since the digital representation does
not change within a region, the length of a region is proportional to
the frequency of occurrence of the corresponding pixel configura-
tion. Owing to the periodicity of the lattice, the modulo-grid dia-
gram wraps around and the two end regions give rise to isomor-
phic bitmaps.

Extending the concept to two dimensions leads to a unit cell
(Fig. 6) in place of the unit interval, and the “marks” are replaced
by segments of the pattern boundary. An example of a 2D modulo-
grid diagram for a circular disk pattern was shown in Fig. 2. The
diagram is formed by taking segments of the pattern’s boundary
contour that lie in each of the “grid cells” and retracing these seg-
ments at their coordinates, modulo one, with respect to both axes.
The regions are demarcated by the boundary segments.

If we now slide the grid around, with its origin confined to the
unit cell of the modulo-grid diagram, each time the origin crosses
over an edge from one region to another, a sampling point at some
location moves in or out of the pattern, and vice versa. Different
bitmap configurations, therefore, correspond to different regions in

1. We are using the image processing terminology of “bitmap” and
“pixel” in anticipation of the transition to two dimensions.
2. xmod 11is defined as x —| x |.
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Fig. 6. Examples of sampling grids.
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Fig. 7. Digitizations of a circular disk resulting from different grid positions.

the modulo-grid diagram. The converse is not necessarily true as
shown at the end of Section 3. Thus the modulo-grid diagram
yields only an upper bound on the number of possible bitmap
configurations for a given pattern.

In the following section, we develop a mathematical platform
for discussing the various concepts presented here and present
two theorems that summarize our contribution.

3 2D SPATIAL SAMPLING THEORY

Let 3 be the set of all subsets of Euclidean space R? that are closed,
bounded, and regularized,” and whose boundary consists of only a
finite number of disjoint simple continuous closed curves. The
“regularization” condition excludes sets that contain isolated and
dangling lines and points from 3 [10], so that the formalization is
not complicated by abstractions.

We define an 1nten51ty pattern as a function f(x), x € R’, that is
zero everywhere in R except in a region X € 3. X is called the
support of f and represents the pattern foreground where f(x) # 0,
and R™ — X represents the background where f(x) = 0. We shall con-
sider only bilevel intensity patterns where the f(x) = 1 in X. In our
scanning model (Fig. 1), the thresholded intensity is a bilevel pat-
tern.

In some applications, the original analog pattern is bilevel. If
we can digitize without convolution (as in rasterizing an outline
computer font) or if the point spread function is essentially a delta
function, then f(x) is the same as the original bilevel pattern. Con-
volution by a PSE followed by thresholding causes f(x) to be a
thickened or thinned version of the printed pattern.

Spatial quantization of an analog pattern is a mapping of f(x)

from its support X to a dlscrete set of ordered pairs {(x, f(x)) : x € a
discrete set of points in R }. In practice, a sampling grid or lattice is
overlaid on R space and f(x) is measured at the grid intersections.

In the case of bilevel patterns, however, specifying the set of grid
intersections that lie within the support X of the pattern com-
pletely defines the spatial quantization. Disregarding f(x) under-

3. Aregularized set is a set that equals the closure of its interior.

scores the separation of spatial quantization effects from ampli-
tude or intensity quantization, which we do not discuss in this
paper4 Henceforth we shall refer to X as the spatially-analog pat-
tern or simply analog pattern.

Let u, v be a pair of basis vectors for R A sampling grid, G(p),
“positioned” at a point p, is defined as

G(p) =8
where Z is the set of all integers. Fig. 6 shows examples of grid
configurations. The grid positioned at the origin, G(0), from now
on is simply denoted as G. Associated with G is a unit cell, C.

ig=kju+kyv+p, k, ke Z}

={cic=wu+wv, 0sw;<1,0<w,<1}.
The shaded areas in Fig. 6 show the unit cells for the correspond-
ing grids.

Digitization of X by grid G at position p is then defined as the set

D,=XNG(p)

Since any grid, as defined above, can be converted to a square
lattice and back by linear transformations on R’, we restrict our
discussion to square grids.

A pattern digitized by a sampling grid at different locations
may give rise to isomorphic digital patterns. For example, patterns
(b) and (c) in Fig. 7 correspond to sets:

{(~0.8,-0.8), (~0.8, 0.2), (0.2, -0.8), (0.2, 0.2)} and
{(=0.5,-0.5), (-0.5, 0.5), (0.5, —0.5), (0.5, 0.5)},

respectively. However, they are equivalent in terms of pixel con-
figuration.

Let T(D, t) = {d + t: d € D} denote set D translated by t. Two digital
patterns D and D’ are isomorphic if 3t € R* such that T(D,t) =D’ The

equivalence relation is denoted as D=D’.

4. The effects of spatial and intensity sampling are sometimes re-
lated. Fine intensity quantization can compensate for the perceived
effects of coarse spatial quantization. This is exploited in “antialiasing”
on computer displays.
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Fig. 8. Modulo-grid operation in 2D.

Note that digitizations, by definition, carry information re-
garding the location of the grid-origin, unlike bitmaps that we ob-
tain from scanners. This makes it necessary to keep in mind the
relationship between bitmaps and digitizations: A bitmap is a
translation-invariant representation of a digitization, and all iso-
morphic digitizations correspond to the same bitmap.

On the other hand, a pattern may be digitized into distinguish-
able bitmaps by different translations of the grid. Fig. 7 shows two
different bitmaps resulting from sampling the same analog pattern.
As we have mentioned earlier, our tool in analyzing these varia-
tions is the modulo-grid diagram. We can now define the modulo-
grid operation for a point p with respect to a unit cell C, “p mod
C” (Fig. 8), as:

pmod C = (p; —LpyJu + (p, —Lp, v, where p = pyu + p,v.
It is easily shown that D, = Dypo4c- So we only need to consider
grid locations within the unit cell C.

Let X’ denote the boundary of a given analog pattern X.” The
modulo-grid diagram, introduced in our earlier discussion, is for-
mally defined as the result of superimposing the boundary X" over
the unit cell C: Xé =
tion creates a planar map of boundary segments in C, which parti-

{(prp=xmodC, xe Xb}. Such a superimposi-

tions C into nonoverlapping, open, connected sets m;, bounded

by points in X”. Each such set is called a region. We have for i # j,

N m= @, and C - Ur; = X(h:. In Fig. 9, Xb is a circle, and Xg con-

sists of circular arcs in the unit cell. Here, there are nine regions ;.

Two points, p and p’ € C, are said to be in the same locale if and
only if digitizations by G(p) and G(p’) yield the same bitmap. For-
mally, a locale is a maximal set of points A such that

ppeAeD,=D,.

For the disk pattern and the grid shown in Figs. 2 and 9, each re-
gion enclosed by the curve-segments in the modulo-grid diagram
belongs to a single locale, as Theorem 1 will show.

In the following, we formally prove that each region belongs to
a single locale. First, we introduce a lemma, the notation for which
is illustrated in Fig. 9.

LEMMA 1. If p, p’ € m, then VX" € G(0), either (X" + p) and (x"+ p’)
are both elements of X or are both elements of X = R -X.

PROOF. Since p, p” € m; and x; is a connected open set by defini-
tion, there exists a continuous path L that starts at p and
ends at p” such that L c 7; [1]. Consequently,

LNnx.=0. 1)

Let us define the curve L' = {x" + x: x € L} for any x" €

G(0). L’ is a continuous path connecting (x"+ p) and (x" + p’).
Fig. 9 illustrates the proof for a particular value of x". It fol-

5. X'= X — X’ where X’ is the interior of X.
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Fig. 9. lllustration for Lemma 1.

lows thaty e L" = (y — x*) € L. We claim that L" N X' = g,
i.e., L* does not include any point on the pattern boundary.
Indeed if this were not the case, then there must exist some y
el nX.

But then, (y mod C) = (y — x") € X(hj (since y € Xh) and
(y-x")e L(sinceye L*), Consequently, (y - x') € L N Xg.
This contradicts (1).

The presence of a continuous curve L between (x* + p)
and (x" + p’), which never cuts the boundary X' , implies by
the Jordan Curve Theorem that (x* + p) and (x* + p’) are
either both in X or both in X . O

Theorem 1 states formally that all grid positions in a region are
in the same equivalence class or locale, as suggested in Section 2.
The proof follows the reasoning that in moving from a shift of p to

a shift of p’, none of the points in the digitizing grid G moves in or
out of the pattern.

THEOREM 1. Vi, p, p’€ m; = D, =D,

PROOF. Let x € D, This means that x € G(p) and xe X. From x e
G(p), we have x = X"+ p, where x™ € G(0).
Let x” be defined as (x + p” — p). Evidently, x" = (x* + p”)
€ G(p’). Furthermore, x = (x" +p)e X=> (x" +p)=x"e X
by the premise of this theorem and Lemma 1. Therefore,
x"€ G(p") N X =D,
Thus, we see that x € D, = x"= (x + p"—p) € D};. Lemma 1
can be similarly used to show thatx ¢ D, = x" = (x + p’ - p)

€ D, Thus, T(D,, p’ — p) = D,y and consequently, D, =D,.00

In Theorem 2, we show that if all grid positions are equally likely,
then the number of distinct, probable bitmaps induced by a pattern is
bounded above by the number of regions in its modulo-grid diagram.

THEOREM 2. If the position p of the sampling grid G(p) is a random
variable that is uniformly distributed in probability over the unit
cell C, then the number of different bitmaps induced by a pattern
X € S that can appear with nonzero probability is bounded above
by the number of regions r; in the modulo-grid diagram of x°

6. Our assumptions regarding the nature of a pattern are more strin-
gent than is required for the proof of Theorem 2. In fact, it is sufficient if
the pattern has a boundary contour of Hausdorff dimension less than
two [3].
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Fig. 10. The grid location at a boundary point produces a new bitmap.

PROOF. Since X € 3, X’ has a Lebesgue measure of zero. Since X'

maps onto X, the Lebesgue measure of X_ also equals
zero. Under the assumption of uniform distribution, the
Lebesgue measure of a set equals its probability measure.

Thus all digitizations Dy such that q € Xé, put together ac-

count for a zero probability of appearance. All probable iso-
morphic digitization classes therefore correspond to grid
displacements p that lie within the regions. By Theorem 1,
two different bitmaps, being nonisomorphic, cannot belong

to the same region ; and, hence, the result. O

COROLLARY 1. The relative frequency of each distinct bitmap, under the
assumption of uniformly distributed grid-shifts, is proportional to
the area of the corresponding locale.

The upper bound in Theorem 2 is valid only in a probabilistic
sense because grid positions on the boundary of the pattern may
actually correspond to new bitmaps. For example, the grid location
shown in Fig. 10, which is on the boundary, results in a bitmap
which is different from bitmaps generated at any other grid loca-
tion.

Theorem 2 proves that the number of regions is an upper
bound for the number of locales and, therefore, the number of
bitmaps, for a given analog pattern. Since the modulo process is
periodic in nature, the unit cell can be wrapped around. Topologi-
cally, the modulo-grid diagram forms a pattern on a torus: The top
and bottom sides, the left and right sides, as well as the four cor-
ners, respectively, are equivalent. This is evident in Fig. 11, where
the bitmap corresponding to each region is printed on the modulo-
grid diagram. For a given pattern, different positions of the grid
yield different modulo-grid diagrams. These are however topo-
logically identical when treated as a torus.

We can get a tighter upper-bound by counting as one, the re-
gions that merge together on wrapping around. However, even
regions that are not contiguous on the torus can belong to the same
locale, as noted by Havelock and illustrated by the example in Fig.
11. In this example, the two regions corresponding to the bitmap of
a single black pixel are not contiguous on the torus. On the other
hand, the tighter upper bound may be reached (as in the case of
the disk in Fig. 9). Fig. 12 shows how the tighter bound increases
with increasing size of a pattern, relative to the sampling interval.
The dips in the number of locales correspond to the degenerate
cases where the disk diameter equals the distance between any
two grid points. Degenerate cases are not difficult to construct. A
rectangular pattern with sides parallel to the grid axes can yield at
the most 4 bitmaps on scanning regardless of its size.

Summary of theoretical results: Given an analog pattern and a
sampling grid, the modulo-grid diagram reveals information re-
garding both the number of different bitmaps and their frequen-
cies when the pattern is digitized. Each region of the diagram cor-
responds to a specific bitmap (Theorem 1), and its area is propor-

Sampling
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u
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Enlarged modulo-grid diagram
and the bitmaps for the different regions

Fig. 11. An analog pattern on a grid, and its modulo-grid diagram
showing the regions that yield the same bitmap.
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Fig. 12. The number of different bitmaps that an analog pattern (circular
disk in this case) can yield on sampling plotted against the radius of the
disk. The numbers were obtained by computer simulation. Since the
pattern size here is relative to the sampling interval, this also reflects on
the rise in the number of possible bitmaps from the same analog pat-
tern as the sampling rate increases.

tional to the probability of occurrence of that bitmap (Corollary 1
of Theorem 2) under random-phase sampling.

4 EXPERIMENTAL VERIFICATION

The correlated nature of edge noise in scanned character bitmaps
was observed and reported by Nagy as far back as 1968 [11]. Zhou
and Lopresti observed that simply scanning a document page
thrice with the same scanner and taking a vote among OCR results
reduced recognition errors by 30 percent [19]. Since other scanning
parameters were the same, this pointed to variable alignment of
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Fig. 13. Sample bitmaps of 12 pt. e. (a) Printed and scanned. (b) Generated by random phase sampling and some additive noise. (c) Generated

by random bit flipping of bitmaps in (a).

the page with respect to the scanner grid as a major factor in OCR
performance.

The random phase sampling effect should be considered in the
design of pseudo random defect models [18]. Fig. 13 presents a
mixture of scanned and simulated bitmaps of es. The simulation
procedure for (b) consisted of random phase sampling of an ideal
character (as given by the high-resolution outline font of the char-
acter), coupled with a very small amount of additive moise.7 The
random bit flipped characters, as in (c) are not representative of
scanning degradations and are easily distinguishable from the
bitmaps in (a). Independent threshold variations (“sensitivity” in
the model described in [2]) and the edge-dependent bit-flipping
model of [8] do not induce correlated edge noise. As a consequence,
they often produce bitmaps with “hairy” edges and other unusual
edge distortions that do not resemble scan-degraded images.

We present two experiments which give more convincing dem-
onstrations of this effect in scanned characters. In each experiment,
four sets of 1,000 bitmaps of e were used. The four sets of data
were obtained by:

7. Additive noise models the variations in sensor sensitivity and
threshold circuitry that come into play when the point-spread function
has nonzero diameter. These effects, unlike that of random-phase sam-
pling, result in uncorrelated bit-flipping.

200 200
100 100
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24 2 240 2
0 Scanned 60 Phase shift only 60
200 : : : 200 : :
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240 280 240 280
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Fig. 14. The distribution of area (the number of black pixels) in a set of
1,000 bitmaps of 12-point Computer Modern Sans Serif e. The position
of a vertical bar indicates the value of the area, while its height is pro-
portional to the number of bitmaps with that area. Only the random
phase-shift model captures the bimodal nature of the distribution shown
by the real scanned sample set.

1) simulated sampling of an ideal e with independent additive
noise effect only,

2) simulated sampling of an ideal e with the effect of random
grid shifts only,

3) simulated sampling combining the above two effects, and

4) actual scanning (using a flat bed scanner) of printed es.

In the first experiment (Fig. 14), the distribution of a simple
feature (viz. the number of black pixels in the bitmap) was com-
puted for each set of data, and the results compared against each
other. While the distribution for the first set of bitmaps is nearly
Gaussian, owing to the (unwarranted) independence assumption,
the methods incorporating the random-phase effect can capture
the bimodal nature of the distribution seen in real scanned samples
(data set 4).

In the second experiment, we computed boundary chain codes
for each set of data. We matched each chain code with that of a
canonical reference character and plotted the distribution profile of
string edits along the chain. Fig. 15 presents the results. As ex-
pected, independent additive noise alone results in a uniform error
distribution profile. But the model using random grid shifts shows
peak error locations that match up well with real scanned charac-
ters. This result emphasizes the correlated nature of edge-pixel
noise that results from random grid translations.

Since variable phase alignment between pattern and grid af-
fects only the edge pixels, the effects of bitmap variability may be

1000
500
0 i | ||xll
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1000
500

120
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Fig. 15. The random phase-shift model shows a strong correlation with
the actual scanning process in terms of the location of string edits in
chain codes of random bitmap samples of a given character (12-point
Helvetica e), when compared against the chain code of a prototype.
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Fig. 16. Spatial sampling variation seen in text images digitized for low resolution displays like computer screens. The image in (a) was picked off the
web. A part of it has been magnified in (b) to show the pixel configurations. The character samples in (c) were generated by Adobe Photoshop.

less important for higher sampling rates or, equivalently, bigger
type-sizes. However, the experiments show that the effect is
prevalent in bitmap samples of standard type-sizes and sampling
resolutions, and demonstrate that random-phase sampling noise
can account for much of the variation observed in scanned char-
acter bitmaps.

We have not attempted to provide a quantitative evaluation of
the importance of noise due to spatial quantization relative to
other sources of noise. Our primary goal was simply to call atten-
tion to an often neglected source of noise. Furthermore, hypothesis
tests proposed to evaluate individual parameter settings in
pseudo-random defect models, such as that described in [7], can-
not be used precisely because the postulated measure of the simi-
larity between two patterns cannot differentiate between corre-
lated and uncorrelated sources of noise. More global tests, such as
advocated in [9], are classifier-dependent.

Though our motivation has been the analysis of bilevel scan-
ning, random-phase noise does not pertain exclusively to either
bitmaps or optical scanning. A new area in which the issue of spa-
tial sampling variation may play a prominent role is the processing
of text embedded in in-line images in World Wide Web documents
(Fig. 16). Text images embedded in a Web page are often generated
through a drawing software (e.g., Adobe Photoshop), by quantiz-
ing an abstract, high-level description of an image (e.g., PostScript
description) with respect to the origin of the drawing window, at a
given resolution (typically 72 dpi). The exact same character in the
same font can be quantized differently depending on where it is
placed in the image. Fig. 16c shows different ways a letter “e” is
quantized by Adobe Photoshop. Because of the low samphng
resolution (72 dpi), and because such text is generally free of de-
gradations commonly seen in scanned text such as optical blur and
speckle, spatial sampling variation becomes a major source of
noise for the text image.

5 CONCLUSION

We have applied the notion of locales to printed characters, estab-
lished an upper bound on the number of distinct bitmaps that can
be generated by displacements of the scanning grid with respect to
an analog pattern under ideal conditions, and computed the fre-
quency of occurrence of each bitmap under uniformly random
grid displacements. These extensions of Havelock’s ideas open up
several interesting areas of investigation. While researchers in re-
mote sensing and computer vision (such as Bruckstein, Havelock,
and O’Gorman) are interested primarily in the location of objects,
particularly edges, to subpixel accuracy, in OCR the objective is
accurate recognition of the character regardless of its location.

The dependence of the number of distinct bitmaps on the size
of the patterns, with additional allowances made for additive
noise, provides a basis for establishing an acceptable sample size
for training OCR classifiers.

Predicting, rather than just counting, all possible bitmap repre-
sentations of a printed character as a function of the spatial sam-
pling rate leads to the minimum sampling resolution that guaran-
tees a given Hamming distance between bitmaps of characters of
different classes. A more difficult problem is determination of the
effect of random-phase sampling noise on the types of features
used in OCR. Although OCR system designers have for decades
attempted to construct features that are resistant to edge noise,
there is now hope of introducing quantitative considerations into
the design process.

Our work improves the foundation for pseudo-random defect
models. Such models are enjoying increasing popularity for gener-
ating large sets of identified character bitmaps, but there has been
little success so far in estimating their underlying parameters.
Random phase sampling appears to reproduce accurately the ob-
served variation among characters scanned from the same source.
Conversely, it should be possible to reconstruct an analog pattern
optimally from a set of digitized samples that differ primarily with
regard to the grid displacement. This might be useful in creating a
digital font from a scanned sample of conventional print in a rare
typeface or script (e.g., Tibetan).

Finally, we note that the formal treatment can be extended to
multilevel amplitude quantization (as in gray-scale OCR) and to
higher spatial dimensions (3D voxel models used in range maps
and ’comography).8 We conclude that the correspondence between
locales and distinct bitmaps offers a rich field of study that extends
well beyond the applications proposed in earlier papers.
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8. The generalized modulo-grid diagram for a pattern having a finite
number of gray levels can be obtained by considering several supports
X, X,, ..., each corresponding to a particular gray level, and inscribing
all the boundaries in the unit cell.
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