
Indirect Symbolic Correlation Approach to Unsegmented Text Recognition

G. Nagy1, S. C. Seth2, S. K. Mehta3, Y. Lin2

1Rensselaer Polytechnic Institute, Troy, NY (nagy@ecse.rpi.edu)
2University of Nebraska-Lincoln (<seth, ylin>@cse.unl.edu)

3Indian Institute of Technology, Kanpur, India (skmehta@cse.iitk.ac.in)

Abstract

The new non-parametric approach to unsegmented
text recognition builds two bipartite graphs that
result from the feature-level and lexical comparisons
of the same word against a reference string which
need not include the query word. The lexical graph
preserves the relative order of edges in the feature
graph corresponding to correctly recognized
features. This observation leads to a subgraph-
matching formulation of the recognition problem. An
initial implementation proves the robustness of the
approach for up-to 20% noise introduced in the
feature-level graph.

1. Introduction

During the last twenty years, most recognition engines
for difficult to segment scripts have been built around
Hidden Markov Models (HMMs). Parametric
recognizers for unsegmented signals, like HMMs, are
hard to train. In contrast, non-parametric classifiers, like
Nearest-Neighbor, require only a labeled reference list.
In this paper, we provide preliminary results in support
of an entirely new method for non-parametric
classification of unsegmented text. Indirect symbolic
correlation is a general method for bringing lexical
context into the recognition of unsegmented signals that
represent words or phrases in printed form. It is
applicable wherever segments of lexically labeled
reference signals can be compared to unlabeled signals.
The signal need only preserve the ordering of the
alphabetic units within a word (and of words within a
phrase).

The method is general in the sense that it does not
depend on the signal representation or signal-matching
algorithm except for the above constraint. Indirect
means that the unknown signals can represent words for
which no labeled signals are available. Symbolic means
that the label of the unknown signal is determined by
comparing the signal-level matches with lexical
matches precomputed between the labels of the
reference signals and a lexicon of admissible words.
Correlation refers to both the signal-level and the
lexical tally of ordered matches, which is usually

accomplished by shifting one signal with respect to the
other.

The nature of the underlying features is immaterial for
the graph-level comparisons. Errors at the feature level
can be compensated by extending the reference signal
to increase the number of potential matches for each
segment of the unknown signal.

Indirect Symbolic Correlation promises far-reaching
benefits over HMM. It avoids parameter estimation
with unstable Expectation Maximization. It can use the
reference sample more efficiently than HMM, and
immediately incorporate new samples into the
recognition process.

2. Approach

In contrast with most pattern recognition methods,
which compare an unknown signal with a labeled
reference signal, we propose a graph-based comparison
of sequence comparisons. To illustrate the concepts,
consider an idealized example of cursive English script
with only a six-letter subset of the alphabet.

Unknown words must belong to a lexicon of acceptable
words. This list is available in some computer
representation, such as UNICODE symbols. Here the
lexicon consists of 9 words:

low, me, mole, mule, moll, mellow,

wool, loom, we.

Written samples of a subset of the lexicon are available.
These samples are correctly labeled. Such a sample is
usually called a training set, but here it is used only for
comparisons, and called the reference set. There are
five samples in the reference set. Every sample happens
to be a different word. The reference sample does not
need to be segmented at the word level; we show the
inter-word blanks only for the sake of legibility.

The script font of the reference set is intended to
suggest handwriting:

George Nagy
This file may not be exactly identical to the one appearing in the Proceedings (on CD-ROM only) of the Int'l Workshop on Document Image Analysis and Retrieval, Madison, WI June 2003.

3/12/03

DIAR-03 2

loom, mole, me, mule, moll.

The transcript of the reference set is also available:

loom, mole, me, mule, moll.

We wish to recognize an unknown word sample, such
as

mellow.

This word does not appear in the reference set, but
segments of the word, such as

m e me l ll o lo

will be similar to the corresponding segments of the
reference set. In fact, some of the segments (here only
individual letters) appear multiple times in the reference
set. With a large reference set, there will be more
matches that are multi-symbol. It is precisely the
number of redundant comparisons that increase with the
length of the reference set, which is the strength of this
method. Even if many of the matches fail to be
recognized, or there are false matches, adding samples
to the reference list will reduce the error rate.

If one knew exactly where each match occurred then
one could immediately identify each symbol, and hence
the unknown word. However, the position of the
matches cannot be known unless both the reference
words and the unknown pattern are segmented at the
character level. It is known from experience that
accurate segmentation prior to recognition is a nearly
impossible task in OCR.

2.1. Match Graphs

Figure 1 shows the two bipartite graphs that result from
the feature-level and lexical comparisons of the same
word against the reference string. The top graph (G’)
shows error-free matching of the feature string of the
unknown word (“mellow”) against the stored reference
feature string. The bottom graph (G) shows the same
comparison at the lexical level.

We next compare the signal-match graph G’ to the
lexical graph G. G’ represents the correspondence of
matching segments between the features of the
unknown signal and a reference signal. G represents the
lexical correspondences between the labels of the
reference signal and a specific word of a potentially
very large lexicon. New words are recognized because

their constituent parts are matched by portions of the
reference signal, and the order of the matches is
unscrambled through the lexical comparison of the
reference labels with the lexicon. An entire set of
graphs similar to G are precomputed, one for each word
in the lexicon. The unknown pattern is identified with
the label of the lexical graph that best matches the
signal graph G’.

The discretization at the feature level is arbitrary
because different letters may have different widths. At
the lexical level, each character has a count of 1.
Although the numbering is different, ideally the
sequence of matches is the same in the two
comparisons of the same word. However, the lexical
transcripts preserve only the relative order of the
features, not their linear scale. We must therefore adopt
a graph-theoretic approach for sequence comparisons
instead of vector space operations.

Recognizing the unknown sample requires finding a
word in the lexicon that has an identical (or similar)
sequence of matches as that of the unknown word with
the reference feature string. In other words, when the
match function is error-free, the string match set Xmellow
is order-isomorphic to the signal match set X'q, whereas
the string match set of a different word, such as Xwool, is
not. In Figure 1, the lexical comparison for “wool” is
listed without showing its lexical graph.

The notion of order isomorphism can be interpreted as
follows. The matches (2, 4) and (3, 0) in the string
match set have the same order relation as the matches
(6, 11) and (10, 0) in the signal match set. Thus,
identifying (2, 4) with (6, 11) is compatible with
identifying (3, 0) with (10, 0). (The corresponding
graph edges are shown in bold in Fig. 1.) If every pair
of pairs is compatible, then the two sequences are order
isomorphic.

2.2. Order Isomorphism and Permutations

The order isomorphism problem can be restated as
finding common patterns in two permutations.
Graphically, a permutation of integers 1 to n can be
represented as a bipartite graph, e.g. the permutation (2
4 1 3 6 7 5) of 1 to 7 will have the representation shown
in Figure 2.

In general it is not necessary to use contiguous set of
numbers to describe a permutation as long as we keep
in mind the natural ordering of the numbers. So the
same graph can also be represented by (5 11 3 8 16 20
14).

DIAR-03 3

mellow
 012345678901234567890

Signal Graph G’

 ..
 0123456789012345678901234567890123456789012345678901234567890123456

 loom mole me mule moll
789

 loom mole me mule moll
 0123456789012345678901

Lexical Graph G

 012345
 mellow

Lexicon L {low, me, mole, mule, moll, mellow, wool, loom, we}

Unkown q(t) mellow
Ref. Signal r(t) low me mole mule moll
Ref. String rs low me mole mule moll

X’(q) {(0,7), (0,9), (2,11), (6,11), (10,0), (15,0), (19,11)…}
Xmellow {(0,2), (0,3), (1,4), (2,4), (3,0), (5,0), (6,4), (7,2), …}
Xwool {(0,3), (1,1), (1,2), (2,1), (2,2), (6,1), (6, 2), (7,3), ...}
f(q) mellow

Figure 1: example of feature-level and lexical comparisons.

3/12/03

DIAR-03 4

7

7

654321

654321

Figure 2: Permutation represented as a bipartite graph.

 g2 g1 e2 e1 a2 a1

7 6 5 312 11

ihg f e dc b a

765 4 3 2 1

Figure 3: Conversion of a bipartite graph to permutation.

 Given two permutations T = (T0, T1, …, T n-1) and

P = (P0, P1, …, Pm-1) (corresponding to graphs G1
and G2 respectively). Find the longest sequence of
pairs, <Ti1,Pj1>, <Ti2,Pj2>, …, <Tik,Pjk>, with the
following properties:

Both our signal and lexical graphs are bipartite but not
always permutations because a node can have zero or
multiple edges incident on it. However, we can convert
them to permutations by splitting nodes with multiple
edges and eliminating nodes with zero degree, as
illustrated in the example in Figure 3.

(a)
and 1,-nj2j10

 ,1210
<<<≤

−≤<<<≤
L

L mikii

The conversion process preserves the order
isomorphism because the left-to-right order of edges
encountered (at the top or bottom) does not change.

(b) Permutations T’ = (Ti1,Ti2,…,Tik) and P’ =
(Pj1, Pj2,…, Pjk) are isomorphic.

A sub-permutation is a subsequence of the permutation
sequence. So (11 3 16 14) is a sub-permutation of (5 11
3 8 16 20 14). It is easy to observe that the graph
associated with a sub-permutation is a sub-graph.
Actually, there is a one-to-one correspondence between
the sub-graphs and sub-permutations.

where, T′ (equivalently P′) is the desired permutation.
The pair of permutations will be said to represent the
best matching permutation. In the sequel, without loss
of generality, we will assume that m . n≤

Returning to our example in Figure 1, we obtain a
compact permutation corresponding to X′q in steps as
follows:

Now the order isomorphism problem can be restated as
follows: Given two permutations, G1 and G2, not
necessarily of the same size, find the largest common
sub-graph of G1 and G2, where the size of a
permutation graph is the number of its edges.

7) 2 1 6 5 4 (3)11 0 0 11 11 9 7(32121 ⇒

Similarly, the permutations for Xmellow and Xwool will be
(3 5 6 7 1 2 8 4) and (7 1 4 2 5 3 6 8). It can be verified
that the best matching permutation between X′q and
Xmellow is of length 7 (all of X′q) whereas the best

We will first restate the problem in the language of
permutations:

DIAR-03 5

 Root

 (x,-) (x,c) (x,b) (x,a)

(y,b) (y,-) (y,c) (y,-) (y,-) (y,a) (y,b) (y,c) (y,-)

Figure 4: A host tree used for matching of permutations.

matching permutations between X′q and Xwool is of
length 5 (e.g. the sub-permutation (3 4 5 6 7) of X′q).

3. Algorithm

Our algorithm systematically generates sequence of
pairs that satisfy condition (a) by traversing a host tree
(see Figure 4) in the depth-first order. Note that a node,
such as (x, -), in the tree denotes a null matching. For
every generated pair, condition (b) is checked for using
the following observation about permutations:

Observation: Given two permutations A= (a1,a2,...,ak)
and B = (b1,b2,...,bk), let t be the number of integers

to the left of which are greater that , and be

the number of integers to the left of which are

greater than . Then A and B are isomorphic iff =

, for all q.

q

qa

qb

qa

qb
qs

qt

qs

This observation also implies that if (a1,a2,...,ak) and
(b1,b2,...,bk) are isomorphic then so are their
corresponding sub-permutations. In particular,
(a1,a2,...,ar) and (b1,b2,...,br) are also isomorphic for any
r k. Now our approach would be to generate the host-
tree from top to bottom (in depth-first order) and never
generate a node that gives a sequence corresponding to
non-isomorphic initial sub-permutations.

≤

The example in Figure 5 shows the pruned host tree for
permutations T = (6 3 2 5 1 7 4) and P = (1 5 3 4 2).
In this tree we also did not generate nodes that would
have resulted in a shorter than a valid sequence found
earlier. Single integer in the parentheses is the length of
the sequence associated with that leaf node.

The pruning of the above tree occurs at the nodes
marked as no gain. The host tree is pruned at no gain 1
because already three “-” pairs are formed and there is
no possibility of getting a sequence of length greater
than 2. In the no gain 2 case, a sequence of length 4 has

already occurred and since a parent of this node has a “-
”node, no sequence of size 5 will occur in this sub-tree.
In the no gain 3 case, 1 has been matched with 5 and
there are only 3 more integer after 5 in T so the
sequences in this sub-tree can not be of length more
than 4 and we already have seen a sequence of length 4.
Thus, the resulting longest isomorphic sub-
permutations in the example are T’ = (2 5 7 4) and P’ =
(1 3 4 2).

The order-isomorphism problem can be shown to be
NP-complete by reducing the pattern matching for
permutations problem [1] to it. Our algorithm, however,
is practical as long as the sizes of the two graphs are not
too large.

4. Experimental Design

We report on preliminary experiments on a synthetic
data set for the signal graphs designed to evaluate the
proposed approach under the following assumptions:

(a) The signal graph represents the result of a

bigram-matching process
(b) The matching process is relatively reliable --

although it may miss or misclassify some
bigrams, it can identify a large fraction of
them correctly.

In a related lexicon-based, indirect symbolic approach,
El-Nasan et al. [2] used bigram occurrences as the basis
for unsegmented text recognition. The approach
proposed here imposes a stricter matching criterion than
bigram occurrences: the bigrams should not only be
common between the two words but also occur in the
same order in the two graphs. This additional constraint
can result in significantly shorter reference set.

Selection of Lexicon: We use the same 1000-word
lexicon from the Brown Corpus [3] as used by El-
Nasan and Nagy. The corpus contains 43,300 unique
words in lower case letters, apostrophes, and a few
quotation marks. The percentages of words with a

DIAR-03 6

 Root

 (1,6) (1,3) (1,2) (1,5)

(5,-) (5,4) no gain 3 (5,7) (5,5) (5,5) (5,7) (5,-) (2)

 (3,5) (3,4) (3,-) (3,4) (3,4) no gain 2 (3,-) (3,-) (3,7) (3) (3)

(4,-) (4,4) (4,-) (4,7) (4,7) (4,-) (4,-)
 (3)

(2,4) (2,4) (2,7) (2,-) (2,-) (2,-) no gain 1 (4) (3) (2) (2) (2) (2)

Figure 5: Pruned host tree for permutations T = (6 3 2 5 1 7 4) and P = (1 5 3 4 2).

unique set of letters, bigrams, and trigrams are 48.68%,
99.92%, and 99.99% respectively [2].

The Brown Corpus words are sorted in descending
order with respect to their usage frequency. The lexicon
words are the first 1000 words from the sorted list with
a space character appended to the beginning and end of
each word (for the purpose of doing word-level bigram
analysis). As already stated, a query word is assumed to
be in the lexicon.

Selection of Reference String: In our experiments, we
construct reference strings by concatenating 1000
words of the lexicon in three different ways: original
(sorted) order, reverse order, and random order. The
first reference string starts with the most frequently
used words, which are usually the stop words. The
second reference string starts with less common words
that are usually long.

The distribution of the lexical-graph size for the
reference set of 1000 words is shown in Figure 6. The,
average graph sizes is 305.

Noise Models: The purpose of modeling noise is to
determine the effect of the frequency of feature-level
errors on the overall word recognition rate. Feature
level errors can be classified as follows:

False positive at position (i,j): This feature
level error occurs when a bigram match is
found between a query word feature string at
position i and a reference word string at
position j, whereas the transcript of the query
word at the corresponding position i does not
share this bigram with the transcript of the
reference string at the corresponding position
of j.

False negative at position (i,j): This feature
level error occurs when a lexically shared
bigram at position i of the query word and j of
the reference string is not detected between the
feature string of the query word and the feature
string of the reference word at the
corresponding position.

Further, we assume that the probabilities of false-
positive and false-negative errors are position
independent and denote them as p(e|0) and p(e|1)
respectively.

We consider two noise models. Both involve one
normalized parameter Q with a real value between 0
and 1 indicating the total amount of error. In the
symmetric noise model, p(e|0) and p(e|1) are assumed
to be equal and Q is the sum of these two probabilities.

DIAR-03 7

Figure 6: Distribution of the graph size of words in the lexicon

In the weighted noise model, the total probability Q is
obtained as the weighted sum of the two probabilities:

)|e(P)w()|e(pwQ 011 11 −+=
where the weights are defined as follows. We consider
the complete bipartite graph in which the two sets of
nodes correspond to character positions in the query
word and the reference string. The lexical graph
corresponding to the query word G is a subgraph of

. Let the size of a graph be the number of edges in

the graph. Then the weight is the size of G ,

normalized with respect to the size of G . Typically
this value is quite small because of the sparseness of

, therefore the second noise model heavily favors
false positive errors.

q

cG

qG

1w q

c

Match Algorithm: The time complexity of our
permutation-matching algorithm is highly data
dependent. Generally, the matching time grows non-
linearly with the sizes of the two graphs, as well as with
their size differences. This observation suggests an
iterative approach in which the reference string size
grows progressively larger. Further, by choosing a
prefix of the reference string initially and extending it
to the right by a fixed amount in the subsequent
iteration, we ensure that the two graphs used for
matching in the previous step are subgraphs of the new
graphs. In the results reported below, the initial
reference string is chosen to be 10 words long and it is
extended by another 10 words if it is necessary to take
the next iterative step. At each step, only those lexicon
words are matched that were not eliminated as
mismatches during a previous step. Thus, the set of
candidate matches can only diminish after each step.

During each iteration, the matching process starts by
performing a simple check to eliminate matching two
graphs of substantially different sizes. The acceptable
size interval is determined differently for the each noise
model, representing the 98% confidence value that the
query graph is a noisy version of the lexical graph.
Further pruning of the candidate matches occurs after
the matching process. Every candidate has an
associated matched subgraph associated with it. If the
matched subgraph of a word is too small compared to
the best match, that word is also eliminated from further
matching. Again, the range of acceptable values is
determined differently for each noise model according
to another parameter representing the 98% confidence
value. These algorithmic parameters can be adjusted
according to the desired accuracy/speed tradeoff.

After an iteration, the matching lexicon words that
survive define the current ambiguity set. Further
iterations are tried only if the size of the ambiguity set
is greater than one. We report the following outcomes
of the algorithm based on the ambiguity set obtained at
the end of the algorithm:

a) The ambiguity set has just one element and it

corresponds to the correct match. We call it a
unique match.

b) The ambiguity set has more than one element
and it includes the correct word; we denote
this situation as rejection.

c) Otherwise, the ambiguity set does not include
the correct word; we consider this case as
misclassification.

DIAR-03 8

5. Experimental Results and Discussion

The match algorithm, as described in the last section,
was implemented and run for the two noise models on a
server with Sun Superscalar SPARC 9 750 MHz
processors .

 Figure 7 shows the coverage of uniquely matched
words for the noise-free query graphs for three different
ways of selecting the reference strings, as described
above. The first two cases – long words and stop words
– are identical to those considered by El-Nasan et al. [2]
therefore this data can be compared directly with the
result in Figure 2 of their paper. We note that while the
general trend remains the same (the coverage for stop
words rises slower than for long words) the rate of
coverage in each case is faster. This demonstrates that
the order isomorphism indeed results in requiring
shorter reference strings for the same level of coverage.

Figure 7: Coverage vs. reference-string length

for noise-free data

A summary of the matching results according to the
symmetric noise model appears in Table 1. These
results were obtained for the reference string
constructed by concatenating the lexicon words in a
random order. In the table, Q is the noise parameter in
the first column; the next three columns give the
minimum, maximum, and median lengths of reference
strings required in matching individual words; the last
three columns indicate the matching performance in
terms of correct recognition, misclassification, and
rejection. We include the corresponding noise-free data
(Q=0) for comparison. The maximum times required to
match a word were 0.045 s, 215.0 s, and 76.2 s
respectively for Q = 0, 0.1, and 0.2 respectively.
The results for the weighted noise model appear in
Table 2.

Table 1: Results of matching for the symmetric
noise model

Q min
ref
length

max
ref
length

med
ref
length

unique misclass reject

0 10 140 20 100% 0% 0%
0.1 10 740 60 95.8% 1.5% 2.7%
0.2 10 620 70.5 87.1% 7.7% 5.2%

Table 2: Results of matching for the weighted

noise model
Q min

ref
length

max
ref
length

av ref
length

unique misclass reject

0 10 140 20.6 100% 0% 0%
0.1 10 620 40 96.9% 1.9% 1.2%
0.2 10 680 40 83.8% 8.7% 7.5%

The correct recognition rate declines in both cases with
the amount of added noise but is remarkably high for
Q=0.1. We also note that with noise the required length
of the reference string to match a word goes up
significantly.

It is clear that for longer reference strings the error rate
will be smaller, however, the exact nature of this
dependence is yet to be explored. We conjecture that,
even for very noisy data, the error rate can be arbitrarily
reduced by increasing the size of the reference string.

References

 [1] P. Bose, J. F. Buss, and A. Lubiw, “Pattern Matching for
Permutations”, Proc. Workshop on Algorithms and Data
Structures, Lecture Notes in Computer Science 709, ,
Springer Verlag pp. 200-209, New York, 1993.
 [2] A. El-Nasan, S. Veeramachaneni, and G. Nagy, “Word
Discrimination Based on Bigram Co-occurences”, 6th ICDAR,
pp. 149-153, 2001.
 [3] W. N. Francis and H. Kucera, “Brown Corpus
Manual”, available at:
www.hit.uib.no/icame/brown/bcm.html, revised and
amplified 1979.

	Indirect Symbolic Correlation Approach to Unsegmented Text Recognition
	G. Nagy1, S. C. Seth2, S. K. Mehta3, Y. Lin21Rensselaer Polytechnic Institute, Troy, NY (nagy@ecse.rpi.edu)2University of Nebraska-Lincoln (<seth, ylin>@cse.unl.edu)3Indian Institute of Technology, Kanpur, India (skmehta@cse.iitk.ac.in)
	Abstract
	1. Introduction
	2. Approach
	2.1. Match Graphs
	2.2. Order Isomorphism and Permutations

	3. Algorithm
	4. Experimental Design
	5. Experimental Results and Discussion
	
	Table 1: Results of matching for the symmetric noise model
	Table 2: Results of matching for the weighted noise model

	References

