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Abstract 
 

The new non-parametric approach to unsegmented 
text recognition builds two bipartite graphs that 
result from the feature-level and lexical comparisons 
of the same word against a reference string which 
need not include the query word. The lexical graph 
preserves the relative order of edges in the feature 
graph corresponding to correctly recognized 
features. This observation leads to a subgraph-
matching formulation of the recognition problem. An 
initial implementation proves the robustness of the 
approach for up-to 20% noise introduced in the 
feature-level graph. 

 
1. Introduction 
 
During the last twenty years, most recognition engines 
for difficult to segment scripts have been built around 
Hidden Markov Models (HMMs). Parametric 
recognizers for unsegmented signals, like HMMs, are 
hard to train. In contrast, non-parametric classifiers, like 
Nearest-Neighbor, require only a labeled reference list. 
In this paper, we provide preliminary results in support 
of an entirely new method for non-parametric 
classification of unsegmented text.  Indirect symbolic 
correlation is a general method for bringing lexical 
context into the recognition of unsegmented signals that 
represent words or phrases in printed form. It is 
applicable wherever segments of lexically labeled 
reference signals can be compared to unlabeled signals. 
The signal need only preserve the ordering of the 
alphabetic units within a word (and of words within a 
phrase).  
 
The method is general in the sense that it does not 
depend on the signal representation or signal-matching 
algorithm except for the above constraint. Indirect 
means that the unknown signals can represent words for 
which no labeled signals are available. Symbolic means 
that the label of the unknown signal is determined by 
comparing the signal-level matches with lexical 
matches precomputed between the labels of the 
reference signals and a lexicon of admissible words. 
Correlation refers to both the signal-level and the 
lexical tally of ordered matches, which is usually 

accomplished by shifting one signal with respect to the 
other.  
 
The nature of the underlying features is immaterial for 
the graph-level comparisons. Errors at the feature level 
can be compensated by extending the reference signal 
to increase the number of potential matches for each 
segment of the unknown signal.  
 
Indirect Symbolic Correlation promises far-reaching 
benefits over HMM. It avoids parameter estimation 
with unstable Expectation Maximization. It can use the 
reference sample more efficiently than HMM, and 
immediately incorporate new samples into the 
recognition process.  
 
2. Approach 
 
In contrast with most pattern recognition methods, 
which compare an unknown signal with a labeled 
reference signal, we propose a graph-based comparison 
of sequence comparisons. To illustrate the concepts, 
consider an idealized example of cursive English script 
with only a six-letter subset of the alphabet. 
 
Unknown words must belong to a lexicon of acceptable 
words. This list is available in some computer 
representation, such as UNICODE symbols.  Here the 
lexicon consists of 9 words:  

 
low, me, mole, mule, moll, mellow, 

wool, loom, we. 
 

Written samples of a subset of the lexicon are available. 
These samples are correctly labeled. Such a sample is 
usually called a training set, but here it is used only for 
comparisons, and called the reference set. There are 
five samples in the reference set. Every sample happens 
to be a different word. The reference sample does not 
need to be segmented at the word level; we show the 
inter-word blanks only for the sake of legibility.  
 
The script font of the reference set is intended to 
suggest handwriting: 

George Nagy
This file may not be exactly identical to the one appearing in the Proceedings (on CD-ROM only) of the Int'l Workshop on Document Image Analysis and Retrieval, Madison, WI June 2003.
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loom, mole, me, mule, moll. 

 
The transcript of the reference set is also available:  

 
loom, mole, me, mule, moll. 

 
We wish to recognize an unknown word sample, such 
as 
 

mellow. 
 
This word does not appear in the reference set, but 
segments of the word, such as 

 
m  e  me  l  ll  o  lo 

 
will be similar to the corresponding segments of the 
reference set. In fact, some of the segments (here only 
individual letters) appear multiple times in the reference 
set. With a large reference set, there will be more 
matches that are multi-symbol. It is precisely the 
number of redundant comparisons that increase with the 
length of the reference set, which is the strength of this 
method. Even if many of the matches fail to be 
recognized, or there are false matches, adding samples 
to the reference list will reduce the error rate.  
 
If one knew exactly where each match occurred then 
one could immediately identify each symbol, and hence 
the unknown word. However, the position of the 
matches cannot be known unless both the reference 
words and the unknown pattern are segmented at the 
character level. It is known from experience that 
accurate segmentation prior to recognition is a nearly 
impossible task in OCR. 
 
2.1. Match Graphs 
 
Figure 1 shows the two bipartite graphs that result from 
the feature-level and lexical comparisons of the same 
word against the reference string. The top graph (G’) 
shows error-free matching of the feature string of the 
unknown word (“mellow”) against the stored reference 
feature string. The bottom graph (G) shows the same 
comparison at the lexical level.  
 
We next compare the signal-match graph G’ to the 
lexical graph G. G’ represents the correspondence of 
matching segments between the features of the 
unknown signal and a reference signal. G represents the 
lexical correspondences between the labels of the 
reference signal and a specific word of a potentially 
very large lexicon. New words are recognized because 

their constituent parts are matched by portions of the 
reference signal, and the order of the matches is 
unscrambled through the lexical comparison of the 
reference labels with the lexicon. An entire set of 
graphs similar to G are precomputed, one for each word 
in the lexicon. The unknown pattern is identified with 
the label of the lexical graph that best matches the 
signal graph G’. 
 
The discretization at the feature level is arbitrary 
because different letters may have different widths. At 
the lexical level, each character has a count of 1. 
Although the numbering is different, ideally the 
sequence of matches is the same in the two 
comparisons of the same word. However, the lexical 
transcripts preserve only the relative order of the 
features, not their linear scale. We must therefore adopt 
a graph-theoretic approach for sequence comparisons 
instead of vector space operations. 
 
Recognizing the unknown sample requires finding a 
word in the lexicon that has an identical (or similar) 
sequence of matches as that of the unknown word with 
the reference feature string. In other words, when the 
match function is error-free, the string match set Xmellow 
is order-isomorphic to the signal match set X'q, whereas 
the string match set of a different word, such as Xwool, is 
not. In Figure 1, the lexical comparison for “wool” is 
listed without showing its lexical graph.  
 
The notion of order isomorphism can be interpreted as 
follows. The matches (2, 4) and (3, 0) in the string 
match set have the same order relation as the matches 
(6, 11) and (10, 0) in the signal match set.  Thus, 
identifying (2, 4) with (6, 11) is compatible with 
identifying (3, 0) with (10, 0). (The corresponding 
graph edges are shown in bold in Fig. 1.) If every pair 
of pairs is compatible, then the two sequences are order 
isomorphic.  
 
2.2. Order Isomorphism and Permutations 
 
The order isomorphism problem can be restated as 
finding common patterns in two permutations. 
Graphically, a permutation of integers 1 to n can be 
represented as a bipartite graph, e.g. the permutation (2 
4 1 3 6 7 5) of 1 to 7 will have the representation shown 
in Figure 2. 
 
In general it is not necessary to use contiguous set of 
numbers to describe a permutation as long as we keep 
in mind the natural ordering of the numbers. So the 
same graph can also be represented by  (5 11 3 8 16 20 
14).
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mellow 
                                     012345678901234567890 
                                     ..................... 
 
 
 

Signal Graph G’ 
 
 
              ...................................................................... 
   0123456789012345678901234567890123456789012345678901234567890123456

 loom mole me mule moll 
789  

 
     loom mole me mule moll 
     0123456789012345678901 
     ...................... 
 
 
 

Lexical Graph G 
 

             ....... 
             012345 
             mellow 

 
Lexicon L {low, me, mole, mule, moll, mellow, wool, loom, we} 

Unkown q(t) mellow 
Ref. Signal r(t) low me mole mule moll 
Ref. String rs low me mole mule moll 

X’(q) {(0,7), (0,9), (2,11), (6,11), (10,0), (15,0), (19,11)…} 
Xmellow {(0,2), (0,3), (1,4), (2,4), (3,0), (5,0), (6,4), (7,2), …} 
Xwool {(0,3), (1,1), (1,2), (2,1), (2,2), (6,1), (6, 2), (7,3), ...} 
f(q) mellow 

 
Figure 1: example of feature-level and lexical comparisons. 
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7

7

654321 

654321  
 
 
 
 
 
 
 

Figure 2: Permutation represented as a bipartite graph. 
 
 

 
 
 
 
 
 
 
 g2 g1 e2 e1 a2 a1 

7 6 5 312 11

ihg f e dc b a 

765 4 3 2 1 

 
 

Figure 3: Conversion of a bipartite graph to permutation. 
 
 Given two permutations T = (T0, T1, …, T n-1) and  

P =  (P0, P1, …, Pm-1) (corresponding to graphs G1 
and G2 respectively). Find the longest sequence of 
pairs, <Ti1,Pj1>, <Ti2,Pj2>, …, <Tik,Pjk>, with the 
following properties: 

Both our signal and lexical graphs are bipartite but not 
always  permutations because a node can have zero or 
multiple edges incident on it.  However, we can convert 
them to permutations by splitting nodes with multiple 
edges and eliminating nodes with zero degree, as 
illustrated in the example in Figure 3.  

 

(a) 
and 1,-nj2j10

     ,1210
<<<≤

−≤<<<≤
L

L mikii
      

The conversion process preserves the order 
isomorphism because the left-to-right order of edges 
encountered (at the top or bottom) does not change.  

(b)  Permutations  T’ = (Ti1,Ti2,…,Tik)  and  P’ = 
(Pj1, Pj2,…, Pjk) are isomorphic. 

   
A sub-permutation is a subsequence of the permutation 
sequence. So (11 3 16 14) is a sub-permutation of (5 11 
3 8 16 20 14). It is easy to observe that the graph 
associated with a sub-permutation is a sub-graph. 
Actually, there is a one-to-one correspondence between 
the sub-graphs and sub-permutations. 

where, T′ (equivalently P′ ) is the desired permutation. 
The pair of permutations will be said to represent the 
best matching permutation. In the sequel, without loss 
of generality, we will assume that m . n≤
 
Returning to our example in Figure 1, we obtain a 
compact permutation corresponding to X′q in steps as 
follows: 

 
Now the order isomorphism problem can be restated as 
follows: Given two permutations, G1 and G2, not 
necessarily of the same size, find the largest common 
sub-graph of G1 and G2, where the size of a 
permutation graph is the number of its edges. 

 
7)  2  1  6  5  4  (3    )11  0  0  11  11  9  7( 32121 ⇒  

 
Similarly, the permutations for Xmellow and Xwool will be 
(3 5 6 7 1 2 8 4) and (7 1 4 2 5 3 6 8). It can be verified 
that the best matching permutation between X′q  and 
Xmellow is of length 7 (all of X′q ) whereas the best  

 
We will first restate the problem in the language of 
permutations: 
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 Root 
 
 
 (x,-) (x,c) (x,b) (x,a)  
 
 

(y,b) (y,-) (y,c) (y,-) (y,-) (y,a) (y,b) (y,c) (y,-)  
 

Figure 4: A host tree used for matching of permutations. 
 
 
matching permutations between X′q and Xwool is of 
length 5 (e.g. the sub-permutation (3 4 5 6 7) of X′q). 
 
3. Algorithm 
 
Our algorithm systematically generates sequence of 
pairs that satisfy condition (a) by traversing a host tree 
(see Figure 4) in the depth-first order. Note that a node, 
such as (x, -), in the tree denotes a null matching. For 
every generated pair, condition (b) is checked for using 
the following observation about permutations: 
 
Observation: Given two permutations A= (a1,a2,...,ak) 
and B = (b1,b2,...,bk), let  t  be the  number of integers 

to the left of    which are greater that  , and be 

the number of integers to the left of  which are 

greater than . Then A and B are isomorphic iff   = 

, for all q. 

q

qa

qb

qa

qb
qs

qt

qs
 
This observation also implies that if (a1,a2,...,ak) and 
(b1,b2,...,bk) are isomorphic then so are their 
corresponding sub-permutations. In particular, 
(a1,a2,...,ar) and (b1,b2,...,br) are also isomorphic for any  
r  k. Now our approach would be to generate the host-
tree from top to bottom (in depth-first order) and never 
generate a node that gives a sequence corresponding to 
non-isomorphic initial sub-permutations. 

≤

 
The example in Figure 5 shows the pruned host tree for 
permutations T =  (6 3 2 5 1 7 4) and  P  =  (1 5 3 4 2). 
In this tree we also did not generate nodes that would 
have resulted in a shorter than a valid sequence found 
earlier. Single integer in the parentheses is the length of 
the sequence associated with that leaf node. 
 
The pruning of the above tree occurs at the nodes 
marked as no gain. The host tree is pruned at no gain 1 
because already three “-” pairs are formed and there is 
no possibility of getting a sequence of length greater 
than 2. In the no gain 2 case, a sequence of length 4 has 

already occurred and since a parent of this node has a “-
”node, no sequence of size 5 will occur in this sub-tree. 
In the no gain 3 case, 1 has been matched with 5 and 
there are only 3 more integer after 5 in T so the 
sequences in this sub-tree can not be of length more 
than 4 and we already have seen a sequence of length 4. 
Thus, the resulting longest isomorphic sub-
permutations in the example are T’ = (2 5 7 4) and P’ = 
(1 3 4 2).  
 
The order-isomorphism problem can be shown to be 
NP-complete by reducing the pattern matching for 
permutations problem [1] to it. Our algorithm, however, 
is practical as long as the sizes of the two graphs are not 
too large. 
 
4. Experimental Design 
 
We report on preliminary experiments on a synthetic 
data set for the signal graphs designed to evaluate the 
proposed approach under the following assumptions:  
 
 
(a) The signal graph represents the result of a 

bigram-matching process 
(b) The matching process is relatively reliable -- 

although it may miss or misclassify some 
bigrams, it can identify a large fraction of 
them correctly. 

 
In a related lexicon-based, indirect symbolic approach, 
El-Nasan et al. [2] used bigram occurrences as the basis 
for unsegmented text recognition. The approach 
proposed here imposes a stricter matching criterion than 
bigram occurrences: the bigrams should not only be 
common between the two words but also occur in the 
same order in the two graphs. This additional constraint 
can result in significantly shorter reference set.  
 
Selection of Lexicon: We use the same 1000-word 
lexicon from the Brown Corpus [3] as used by El-
Nasan and Nagy. The corpus contains 43,300 unique 
words in lower case letters, apostrophes, and a few 
quotation marks. The percentages of words with a 
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 Root  
 
 
 (1,6) (1,3) (1,2) (1,5) 
 
 

(5,-) (5,4) no gain 3 (5,7)  (5,5) (5,5) (5,7) (5,-) (2)  
 
 (3,5) (3,4) (3,-) (3,4) (3,4) no gain 2 (3,-) (3,-) (3,7)  (3) (3)  
 
 
 

(4,-) (4,4)  (4,-) (4,7) (4,7) (4,-) (4,-) 
 (3) 
 

(2,4) (2,4)  (2,7) (2,-) (2,-) (2,-) no gain 1  (4) (3) (2) (2) (2)  (2) 
 

Figure 5: Pruned host tree for permutations T =  (6 3 2 5 1 7 4) and  P  =  (1 5 3 4 2). 
 
 
unique set of letters, bigrams, and trigrams are 48.68%, 
99.92%, and 99.99% respectively [2]. 
  
The Brown Corpus words are sorted in descending 
order with respect to their usage frequency. The lexicon 
words are the first 1000 words from the sorted list with 
a space character appended to the beginning and end of 
each word (for the purpose of doing word-level bigram 
analysis). As already stated, a query word is assumed to 
be in the lexicon. 
 
Selection of Reference String: In our experiments, we 
construct reference strings by concatenating 1000 
words of the lexicon in three different ways:  original 
(sorted) order, reverse order, and random order. The 
first reference string starts with the most frequently 
used words, which are usually the stop words. The 
second reference string starts with less common words 
that are usually long.  
 
The distribution of the lexical-graph size for the 
reference set of 1000 words is shown in Figure 6. The, 
average graph sizes is 305. 
 
Noise Models: The purpose of modeling noise is to 
determine the effect of the frequency of feature-level 
errors on the overall word recognition rate. Feature 
level errors can be classified as follows: 
 

False positive at position (i,j): This feature 
level error occurs when a bigram match is 
found between a query word feature string at 
position i and a reference word string at 
position j, whereas the transcript of the query 
word at the corresponding position i does not 
share this bigram with the transcript of the 
reference string at the corresponding position 
of j.  
 
False negative at position (i,j): This feature 
level error occurs when a lexically shared 
bigram at position i of the query word and j of 
the reference string is not detected between the 
feature string of the query word and the feature 
string of the reference word at the 
corresponding position. 

 
Further, we assume that the probabilities of false-
positive and false-negative errors are position 
independent and denote them as p(e|0) and p(e|1) 
respectively.  
 
We consider two noise models. Both involve one 
normalized parameter Q with a real value between 0 
and 1 indicating the total amount of error. In the 
symmetric noise model, p(e|0) and p(e|1) are assumed 
to be equal and Q is the sum of these two probabilities. 
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Figure 6: Distribution of the graph size of words in the lexicon 

 
 
In the weighted noise model, the total probability Q is 
obtained as the weighted sum of the two probabilities: 

)|e(P)w()|e(pwQ 011 11 −+=  
where the weights are defined as follows. We consider 
the complete bipartite graph in which the two sets of 
nodes correspond to character positions in the query 
word and the reference string. The lexical graph 
corresponding to the query word G is a subgraph of 

. Let the size of a graph be the number of edges in 

the graph. Then the weight  is the size of G , 

normalized with respect to the size of G . Typically 
this value is quite small because of the sparseness of 

, therefore the second noise model heavily favors 
false positive errors. 

q

cG

qG

1w q

c

 
Match Algorithm: The time complexity of our 
permutation-matching algorithm is highly data 
dependent. Generally, the matching time grows non-
linearly with the sizes of the two graphs, as well as with 
their size differences. This observation suggests an 
iterative approach in which the reference string size 
grows progressively larger. Further, by choosing a 
prefix of the reference string initially and extending it 
to the right by a fixed amount in the subsequent 
iteration, we ensure that the two graphs used for 
matching in the previous step are subgraphs of the new 
graphs. In the results reported below, the initial 
reference string is chosen to be 10 words long and it is 
extended by another 10 words if it is necessary to take 
the next iterative step. At each step, only those lexicon 
words are matched that were not eliminated as 
mismatches during a previous step. Thus, the set of 
candidate matches can only diminish after each step.  

During each iteration, the matching process starts by 
performing a simple check to eliminate matching two 
graphs of substantially different sizes. The acceptable 
size interval is determined differently for the each noise 
model, representing the 98% confidence value that the 
query graph is a noisy version of the lexical graph. 
Further pruning of the candidate matches occurs after 
the matching process. Every candidate has an 
associated matched subgraph associated with it. If the 
matched subgraph of a word is too small compared to 
the best match, that word is also eliminated from further 
matching. Again, the range of acceptable values is 
determined differently for each noise model according 
to another parameter representing the 98% confidence 
value. These algorithmic parameters can be adjusted 
according to the desired accuracy/speed tradeoff. 
 
After an iteration, the matching lexicon words that 
survive define the current ambiguity set. Further 
iterations are tried only if the size of the ambiguity set 
is greater than one. We report the following outcomes 
of the algorithm based on the ambiguity set obtained at 
the end of the algorithm: 

 
a) The ambiguity set has just one element and it 

corresponds to the correct match. We call it a 
unique match. 

b) The ambiguity set has more than one element 
and it includes the correct word; we denote 
this situation as rejection. 

c) Otherwise, the ambiguity set does not include 
the correct word; we consider this case as 
misclassification. 
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5. Experimental Results and Discussion  
 
The match algorithm, as described in the last section, 
was implemented and run for the two noise models on a 
server with Sun Superscalar SPARC 9 750 MHz 
processors  . 
 
 Figure 7 shows the coverage of uniquely matched 
words for the noise-free query graphs for three different 
ways of selecting the reference strings, as described 
above. The first two cases – long words and stop words 
– are identical to those considered by El-Nasan et al. [2] 
therefore this data can be compared directly with the 
result in Figure 2 of their paper. We note that while the 
general trend remains the same (the coverage for stop 
words rises slower than for long words) the rate of 
coverage in each case is faster. This demonstrates that 
the order isomorphism indeed results in requiring 
shorter reference strings for the same level of coverage. 
 

 
Figure 7: Coverage vs. reference-string length 

for noise-free data 
 

 
A summary of the matching results according to the 
symmetric noise model appears in Table 1. These 
results were obtained for the reference string 
constructed by concatenating the lexicon words in a 
random order. In the table, Q is the noise parameter in 
the first column; the next three columns give the 
minimum, maximum, and median lengths of reference 
strings required in matching individual words; the last 
three columns indicate the matching performance in 
terms of correct recognition, misclassification, and 
rejection. We include the corresponding noise-free data 
(Q=0) for comparison. The maximum times required to 
match a word were 0.045 s, 215.0 s, and 76.2 s 
respectively for Q = 0, 0.1, and 0.2 respectively. 
The results for the weighted noise model appear in 
Table 2. 
 

Table 1: Results of matching for the symmetric 
noise model 

Q min 
ref 
length 

max 
ref 
length 

med 
ref 
length 

unique  misclass reject 

0 10 140 20 100% 0% 0% 
0.1 10 740 60 95.8% 1.5% 2.7% 
0.2 10 620 70.5 87.1% 7.7% 5.2% 
 
Table 2: Results of matching for the weighted 

noise model 
Q min 

ref 
length 

max 
ref 
length 

av ref 
length 

unique  misclass reject 

0 10 140 20.6 100% 0% 0% 
0.1 10 620 40 96.9% 1.9% 1.2% 
0.2 10 680 40 83.8% 8.7% 7.5% 
 
The correct recognition rate declines in both cases with 
the amount of added noise but is remarkably high for 
Q=0.1. We also note that with noise the required length 
of the reference string to match a word goes up 
significantly.  
 
It is clear that for longer reference strings the error rate 
will be smaller, however, the exact nature of this 
dependence is yet to be explored. We conjecture that, 
even for very noisy data, the error rate can be arbitrarily 
reduced by increasing the size of the reference string. 
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