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Abstract

1 When patterns occur in the form of groups generated
by the same source, distinctions between sources can be ex-
ploited to improve accuracy. We present a method for ex-
ploiting such ‘style’ consistency using a quadratic discrim-
inant. We show that under reasonable assumptions on the
feature and class distributions, the estimation of style pa-
rameters is simple and accurate.

1. Introduction

It is well known that an optical character recognition sys-
tem which is tailored to a certain font (machine print) or
personalized to a particular writer (handwriting) has higher
accuracy on input drawn from the particular font or writer
than one which is trained on multiple fonts or multiple writ-
ers. Confusions between classes across fonts or writers
cause this increase in error rate. If, during classification,
the identity of the font or the writer is known, a mixed
font/writer classifier can perform font/writer-specific clas-
sification leading to higher accuracy. However, this infor-
mation is often unknown and difficult to determine during
operation time.

Nevertheless, if the input patterns appear in the form of
isogenous fields, that is, a group of multiple patterns (hence-
forth called singlets) belonging to the same font or gener-
ated by the same writer, classification accuracy can be im-
proved. This dependence or correlation between features of
co-occurring patterns is called style context. Style context
can exist independently of linguistic context (dependence
between class labels of co-occuring patterns) and hence can
be exploited concurrently. Methods to utilize linguistic con-
text to improve word recognition accuracy have been well
studied [12][9]. Many multi-source recognition methods at-
tempt to improve accuracy by extracting features that are
invariant to source-specific peculiarities such as size, slant,
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skew, etc. [13].
Bazzi et al. observe that due to the assumption that

successive observations are statistically independent, HMM
methods have higher error rate for infrequent styles [1].
They propose modifying the mixture of styles in the training
data to overcome this effect.

Cha and Srihari propose a dichotomizer that classifies a
pair of documents into the categories ‘same author’ or ‘dif-
ferent author’ [2]. This is irrespective of the classes that
appear on the documents, which is converse to our prob-
lem where it is known that co-occurring patterns are from
the same writer and the problem is to identify the class irre-
spective of the writer.

Nagy suggests that even in the absence of any linguis-
tic context, spatial context, i.e., the stationary nature of
typeset, typeface and shape deformations over a long se-
quence of symbols can be used to improve classification
accuracy [9]. Sarkar models styles by multi-modal distri-
butions with two layers of hidden mixtures corresponding
to styles and variants [11]. The mixing parameters are es-
timated using the EM algorithm. Although under the as-
sumptions made, this approach is optimal, the complex EM
estimation stage is prone to small-sample errors. Under es-
sentially the same assumptions as ours, Kawatani attempts
to utilize style consistency by identifying ‘unnaturalness’ in
input patterns based on other patterns by the same writer
[5]. This is done by finding the distance to other patterns
classified into the same class or correlations with patterns
classified into different classes. Our method combines the
above heuristic criteria into one classification decision us-
ing all the information available. Koshinaka et al. model
style context as the dependence between subcategory labels
of adjacent symbols [7].

In many OCR applications quadratic discriminant meth-
ods provide a robust yet versatile means for classification.
In order to reduce the effect of small-sample estimation
of covariance matrices on accuracy, various methods to
smooth the estimates, such as the Modified Quadratic Dis-
criminant Function [6] and Rectified Discriminant Function
[10], have been proposed.
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2. Mathematical formulation

Consider the problem of classifying an isogenous field
y = (xT

1
; : : : ; x

T
L)

T (each xi represents d feature mea-
surements for one of L patterns in the field) generated by
one of S sources s1; s2; : : : ; sS (writers, fonts, etc.). Let

 = f!1; : : : ; !Ng be the set of singlet-class labels. Let ci
represent the identity of the ith pattern of the field.

We make the following assumptions on the class and fea-
ture distributions.
1. p(skj c1; c2; : : : ; cL) = p(sk) 8k = 1; : : : ; S. That is,
any linguistic context is source independent.
2. p(yj c1; c2; : : : ; cL; sk) = p(x1j c1; sk)p(x2j c2; sk) : : :
: : : p(xLj cL; sk) 8k = 1; : : : ; S. The features of each pat-
tern in the field are class-conditionally independent of the
features of every other in the same field.

Under the above assumptions, we will show that for any
function f(�), we have for L = 2, Eff(x1)j c1; c2g =

Eff(x1)j c1g. This result will be useful while deriving the
formulae for the field-class-conditional means and covari-
ance matrices.

Eff(x1)j c1; c2g =

SX
k=1

Eff(x1)j c1; c2; skgp(skj c1; c2)

=

SX
k=1

Eff(x1)j c1; skgp(sk)

= Eff(x1)j c1g (1)

2.1. Expressions for means and covariances

Under the assumption of field-class-conditionally nor-
mally distributed features we can use a quadratic discrim-
inant function for field classification. We will now derive
the formulae for field-class-conditional means and covari-
ance matrices. For now we set L = 2.

Let c = (c1; c2)
T = (!i; !j)

T be a field-class label.
The mean vector for the field class c is given by

�ij = Efyj c1; c2g =

�
Efx1j c1g
Efx2j c2g

�
=

�
�i

�j

�
(2)

Thus the field-class-conditional mean vector can be
constructed by concatenating the component singlet-class-
conditional mean vectors.

Let us compute the field-class-conditional covariance
matrix for the class c which we will denote by Kij .
Kij = Ef(y �Efyj c1; c2g)(y �Efyj c1; c2g)

T g

= E

��
x1

x2

�
(xT

1
x
T
2
)jc1; c2

�

� E

��
x1

x2

�
j c1; c2

�
E
�
(xT

1
x
T
2
)j c1; c2

	

=

�
Ci Cij

Cji Cj

�
(3)

where Ci = Efx1x
T
1
j c1 = !ig

�Efx1j c1 = !igEfxT
1
j c1 = !ig

Cij = Efx1x
T
2
j c1 = !i; c2 = !jg

�Efx1j c1 = !igEfxT
2
j c2 = !jg

Cii = Efx1x
T
2
j c1 = !i; c2 = !ig

�Efx1j c1 = !igEfxT
2
j c2 = !ig

Thus, Kij can be written as a block matrix where the
diagonal blocks are just the class-conditional singlet covari-
ance matrices. Also, note that the above derivations can be
generalized to longer fields to yield field-class-conditional
means and covariance matrices that can be constructed
from the singlet-class-conditional means and from the
N blocks C1; C2; : : : ; CN and the N(N + 1)=2 blocks
(since Cij = C

T
ji) C11; C12; : : : ; CNN . For example,

the field-feature mean and covariance matrix for class
(!2; !1; !3) are given by

�213 =

0
@ �2

�1

�3

1
A; K213 =

0
@ C2 C21 C23

C12 C1 C13

C32 C31 C3

1
A

Hence the computation of field-class-conditional covari-
ance matrices for long fields is no more complicated than
for L = 2.

2.2. Estimation of the covariance matrices

As mentioned previously the Ci matrices are the class-
conditional singlet covariance matrices. We have, from
Equation 1

Efx1x
T
1
j c1; c2g =

SX
k=1

Efx1x
T
1
j c1; skgp(sk) (4)

Hence, the singlet covariance matrices can be computed
from the weighted sum of the source-conditional ‘power’
matrices, and the singlet class means.

In general, the accurate estimation of the off-diagonal
Cij matrices requires a large number of field-samples for
each field-class.

We will show that under assumptions made at the begin-
ning of Section 2 the computation of the cross covariance
matrices is simplified. We have

Efx1x
T
2
j c1 = !i; c2 = !jg

=

SX
k=1

Efx1x
T
2
j c1 = !i; c2 = !j ; skgp(sk)

=

SX
k=1

Efx1j!i; skgEfx2j!j ; skg
T
p(sk) (5)
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Thus, the cross covariance matrices can be computed
from the source-specific singlet-class means (Efxj!i; skg)
as follows.

Cij =

SX
k=1

Efx1j!i; skgEfx2j!j ; skg
T
p(sk)� �i�

T
j

(6)
Hence the estimates of the cross covariance matrices are

believed to be accurate.

2.3. Classification

Having obtained the estimates for the field-class-specific
means and covariance matrices, we can classify the input
fields using a straightforward quadratic classifier.

If all the field classes are a priori equally likely,
the quadratic discriminant function (QDF) for field-class
(!i; !j)

T is given by

gij(y) = (y � �ij)
T
K
�1

ij (y � �ij) + logjKij j (7)

The field feature vector y is assigned the class label which
yields the minimum discriminant value.

We will now show that when the off-diagonal blocks in
the field-class covariance matrices are zero matrices, i.e.,
Cij = 0; 8i; j = 1; : : : ; N , the quadratic field classifier is
equivalent to the quadratic singlet classifier. Such a scenario
results from the presence of only one source, or when the
source-specific class means are same for all classes.

gij(y) = (y � �ij)
T
K
�1

ij (y � �ij) + logjKij j

= ((x1 � �i)
T (x2 � �j)

T )

�
C
�1

i 0

0 C
�1

j

�
�

x1 � �i

x2 � �j

�
+ logjCij+ logjCj j

= (x1 � �i)
T
C
�1

i (x1 � �i) + logjCij

+ (x2 � �j)
T
C
�1

j (x2 � �j) + logjCj j

= gi(x1) + gj(x2) (8)

This implies that the field-class that minimizes gij(y) is
the one formed by the singlet-classes that minimize g i(x1)
and gj(x2) respectively. Hence, any style information used
to improve singlet classification is derived from the varia-
tion in the class means between sources. This is intuitively
appealing since within-source variation does not contribute
any style information.

We note that the quadratic field classifier is computation-
ally expensive due to the exponential increase in number of
classes with L and also because the discriminant computa-
tion involves larger matrices and vectors.

2.4. Covariance matrix smoothing

In the absence of sufficient training samples the estima-
tion error of the covariance matrices degrades the accuracy
of the QDF classifier. In order to alleviate the adverse effect
of small-sample estimation on accuracy Friedman proposed
the Regularized Discriminant Function (RDF) [3]. In RDF,
the covariance matrix of a class is an interpolation of the
estimated covariance matrix and the identity matrix,

Ĉi = (1� 
)Ci + 
�
2

i I (9)

where �2i = trace(Ci)=d, and 0 < 
 < 1.
For the field-class covariance matrices, RDF was gen-

eralized as follows. The singlet-class covariance matrices
Ci; 8i = 1; : : : ; N ( the diagonal blocks in the field-
covariance matrices) were modified according to Equa-
tion 9, and the off-diagonal blocks were modified according
to Ĉij = (1� 
)Cij 8i; j = 1; : : : ; N .

3. Experiments

We used the databases SD3 and SD7, which are con-
tained in the NIST Special Database SD19 [4]. The
database contains handwritten numeral samples labeled by
writer and class. SD3 was the training data released for
the First Census OCR Systems Conference and SD7 was
used as the test data. We constructed four datasets, two
from each of SD3 and SD7, as shown in Table 1. Since
we compute the field class-conditional covariance matrices
from source-specific class-conditional matrices we require
that each writer have at least two samples for each singlet
class. We therefore deleted all writers not satisfying this cri-
terion from the training sets. Some of test fields are shown
in Figure 1 along with their true class labels and the classi-
fication results.

Writers Number of samples
SD3-Train 0-399 (395) 42698
SD7-Train 2100-2199 (99) 11495
SD3-Test 400-799 (399) 42821
SD7-Test 2200-2299 (100) 11660

Table 1. Handwritten numeral datasets

We extracted 100 blurred directional (chaincode) fea-
tures from each sample [8]. We then computed the principal
components of the SD3-Train+SD7-Train data onto which
the features of all samples were projected to obtain 100
principal-component features for each sample. The sam-
ples of each writer in the test sets were randomly permuted
to simulate fields.
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True label (8,8)
Singlet classification result (2,8)
Field classification result (8,8)

True label (2,3)
Singlet classification result (2,5)
Field classification result (2,3)

True label (1,3)
Singlet classification result (6,3)
Field classification result (1,3)

Figure 1. Some test fields with recognition
results

The accuracy of the QDF and RDF classifiers was tested
on various data sets for all 100 and the top 50 principal com-
ponent (pca) features. The parameter 
 for RDF was set to
0:2. The results are presented in Table 2.

Test set Features QDF RDF
L = 1 L = 2 L = 1 L = 2

SD3-Test Top 50 543 528 440 427
(42821)

SD7-Test Top 50 456 448 398 388
(11660)

SD3-Test Top 50 999 976 838 815
+SD7-Test

SD3-Test All 100 746 712 396 372
(42821)

SD7-Test All 100 551 534 369 352
(11660)

SD3-Test All 100 1297 1246 765 724
+SD7-Test

Table 2. Number of character errors for vari-
ous experiments (Training set = SD3-Train +
SD7-Train)

The field classifier (L = 2) consistently outperforms the
singlet classifier (L = 1). The results indicate that the reg-
ularization of the covariance matrices improves accuracy.

4. Discussion and future work

We have presented a model of style context in co-
occurring patterns using second order correlations. We in-
troduced a methodology to exploit such correlations to im-
prove classification accuracy. We have demonstrated the ef-
ficacy of the scheme on handwritten data. We have also

shown that our classifier is easy to train and is a natu-
ral extension of the widely used quadratic singlet classi-
fier. As mentioned earlier, although the extension of the
method to longer fields is theoretically possible, computa-
tional and storage constraints restrict its application. We
are currently studying schemes to extend the pair classifier
to longer fields without the need to store or manipulate large
field-covariance matrices.
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