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Abstract. When patterns occur in large groups gener-
ated by a single source (style consistent test data), the
statistics of the test data differ from those of the train-
ing data, which consist of patterns from all sources. We
present a Gaussian model for continuously distributed
sources under which we develop adaptive classifiers that
specialize in the statistics of style-consistent test data.
On NIST handwritten digit data, the adaptive classifiers
reduce the error rate by more than 50% operating on one
writer (≈ 10 samples/class) at a time.

Keywords: Optical character recognition – Style –
Writer consistency – Adaptation – Quadratic discrimi-
nant –Interpattern feature dependence – Digit recogni-
tion

1 Introduction

Pattern classifiers are generally designed, built, and
trained with the tacit assumption that the test patterns
encountered in the field are well represented by the train-
ing data (i.e., the stochastic process generating the pat-
terns is assumed to be stationary). This assumption is
often violated for a variety of reasons. For example, due
to the proliferation of fonts and typefaces with the ad-
vent of digital font design, previously unseen fonts may
be encountered by character recognizers. Also, classifiers
are usually designed to recognize patterns from various
styles by training them on patterns from a large number
of styles. However, in most applications, a given docu-
ment is rendered in one or at most a few styles. The
classification accuracy suffers due to the statistical dis-
similarity between the training and test data. It is there-
fore appealing to consider the possibility of adaptation
or modification of the decision regions by learning from
the test set.
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For the purposes of this communication, we assume
that the generating process is nonstationary only because
each homogeneous test set originates from a single source
(whose identity is unknown). Such intrasource homogene-
ity is called style consistency.

When the test set is sufficiently large, general trends
in the data can be discovered. This knowledge can then
be used by a pattern classifier to improve its decisions on
the patterns in the same test set. Although little use of
adaptive methods has been reported for OCR, there has
been considerable work in the field of communications
for operator adaptive Morse code recognition [18], adap-
tive equalization [13], and, more recently, speech recog-
nition [11]. Gauvain and Lee propose speaker adaptive
speech recognition by maximum a posteriori estimation
of HMMs [8]. Castelli and Cover explore the relative value
of labeled and unlabeled samples for pattern classification
from an information theoretic point of view [3].

A heuristic self-corrective character recognition algo-
rithm that adapts to the typeface of the document to
increase accuracy is described in [15] and applied to a
hundred-font classifier in [1]. Adaptation is performed by
retraining the classifier on the test data with the labels
previously assigned by the classifier. This process is iter-
ated until the assigned labels are unchanged.

Other approaches to adaptive classification include
clustering the test data (identifying groups of similar pat-
terns) and mixture identification [6]. Unsupervised classi-
fication algorithms based on mixture identification model
the test data as a mixture of patterns from several classes,
each distributed according to a parameterized density.
The parameters of the mixture distribution are then es-
timated. The expectation-maximization (EM) algorithm,
which is an optimization technique proposed by Demp-
ster et al., is widely used for the maximum-likelihood
estimation of mixture distribution parameters [5,17].

After clustering, either linguistic constraints or a la-
beled training set can be utilized to label the clusters.
Linguistic constraints can be exploited by considering the
text as a substitution cipher that is decrypted to obtain
the recognition result [2,10,16]. Shahshahani and Land-
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grebe use coarse information from the training data to
identify the clusters [19]. Mathis and Breuel have recently
proposed a hierarchical Bayesian approach to adapting to
the style of a batch of test data [14]. They assume that
the parameters of the test data are drawn according to
a known “hyperprior” distribution. The hyperprior they
propose is an independent Gaussian distribution of class
means. In addition to such style-induced intraclass con-
sistency, our model includes interclass correlations that
extend the applicability of adaptive classification even to
relatively short fields.

We present strategies to improve recognition accu-
racy of a specific class of multisource pattern classifiers
(Gaussian quadratic discriminant classifiers) by adapting
to the statistics of a style-consistent test set. We will de-
rive a family of adaptive classifiers under the assumption
of normally distributed styles and features, explore their
characteristics through a detailed study of a simple exam-
ple, and demonstrate their efficacy on NIST handwritten
data.

2 Adaptive quadratic discrimination

We now formulate precisely the problem of classifier
adaptation and show that under some reasonable as-
sumptions adaptive methods are effective in exploiting
style consistency in pattern fields.

We consider the problem of classifying the patterns
in a large test set X = {x1, . . . ,xL}, where each xi is a
d-dimensional feature vector, into one of N classes
C = {c1, c2, . . . , cN}. The samples in the test set X are
independently drawn according to the probability density
p(x) =

∑N
i=1 p(ci)p(x| ci), where the class-conditional

feature distributions are p(x| ci) = fi(x) ∼ N (µi, Σi),
i = 1, . . . , N with a priori class probabilities p(ci) = αi,
i = 1, . . . , N . Thus, p(x) can be written as the mixture
density

p(x; Θ) =
N∑

i=1

αip(x; θi) (1)

where θi = (µi, Σi) parameterizes the class-conditional
density and Θ is the vector of all the parameters (the
values αi and θi, i = 1, . . . , N).

We postulate the existence of a training set for esti-
mating the class-conditional feature distributions given
by

f̂
(0)
i (x) ∼ N (µ̂(0)

i , Σ̂
(0)
i ), i = 1, . . . , N and

p̂(0)(ci) = α̂
(0)
i , i = 1, . . . , N

If X is classified using quadratic discriminant func-
tions constructed with the estimated parameters, gener-
ally the expected error rate of the classifier on X will be
higher than the lowest achievable error rate because of
the discrepancies between the estimated parameters and
the true parameters (i.e., the parameters of the test set).
Under the assumption that the estimated parameters are

“sufficiently” close to the true parameters and that the
test set X is sufficiently large, we wish to adapt the clas-
sifier to the true parameters of the test set X .

The general method for adaptive Gaussian quadratic
discriminant classification is to estimate the parameter
Θ from the test set X and use the estimate Θ̂ to classify
X .

The maximum-likelihood estimator Θ̂ML for the Θ
that parameterizes the mixture density in Eq. 1 is

Θ̂ML = argmax
Θ

L∑
i=1

log p(xi; Θ)

= argmax
(α1,...,αN ,θ1,...,θN )

L∑
i=1

log


 N∑

j=1

αjp(xj ; θj)




which presents a maximization problem that is analyti-
cally intractable. We utilize the well-known expectation-
maximization (EM) algorithm, which is an iterative tech-
nique to solve this optimization problem. We propose two
approaches: (i) initialize the EM algorithm with the pa-
rameter values obtained from the training set and (ii)
use the parameters of the training set as priors in a MAP
formulation of the EM algorithm.

3 Model for continuous styles

We formulate the problem of classifying fields of style-
consistent patterns in a way that leads naturally to adap-
tive strategies. We classify a field y = (xT

1 , . . . ,xT
L)T

(each xi ∈ R
d represents one of the L patterns in the

field) into one of the field classes in CL, where C =
{c1, c2, . . . , cN}. We assume the existence of a “hidden”
Nd-dimensional random vector s = (mT

1 , . . . ,mT
N )T ,

where each mi is a d-dimensional random vector,
∀i = 1, . . . , N . Let the random vector s represent the
style whose identity is entirely determined by its class-
conditional means. We will assume that the a priori class
probabilities are known and independent of s. We make
the following assumptions on the feature distributions:
1. s ∼ N (µs,Σs), where

µs =


 µ1

...
µN


 and Σs =




C11 C12 . . . C1N

C21 C22 . . . C2N

...
...

. . .
...

CN1 CN2 . . . CNN




where Cij = E{(mi − µi)(mj − µj)T }
2. (y| c1 = ci, . . . , cL = ck, s = (mT

1 , . . . ,mT
N )T )

∼ N ((mT
i , . . . ,mT

k )T ,Σi,...,k), where

Σi,...,k =


 Σi . . . 0d×d

...
. . .

...
0d×d . . . Σk




The covariance matrix Σs specifies the amount of style
variability, while the matrices {Σ1, . . . , ΣN} specify the
amount of intrastyle variance in the patterns.
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Under this model, a style is generated by selecting
the class means. The mean for a particular class is a ran-
dom translation from the overall mean (µi) of that class
(grand mean over all styles). The translation vector for
each class is Gaussian distributed with zero mean. Fur-
thermore, the translations for different classes are corre-
lated (given by Σs). After the style is chosen, the features
are generated for each class independently, according to
the style-specific means and a covariance matrix (Σi) that
depends on the class but not on the style.

In such a scenario it can be shown that the field-class-
conditional feature distributions (y| ci, . . . , ck) are Gaus-
sian [20]. Therefore, a style-conscious quadratic discrim-
inant function (SQDF) field classifier can be constructed
in the field-feature space to yield the minimum field mis-
classification rate.

The field-class conditional means and covariance ma-
trices can be shown to be

µi,j,...,k = E{y| ci, cj , . . . , ck} =




µi

µj

...
µk


 (2)

Ki,j,...,k = E{(y − µi,j,...,k)(y − µi,j,...,k)T | ci, cj , . . . , ck}

=




Σi + Cii Cij . . . Cik

Cji Σj + Cjj . . . Cjk

...
...

. . .
...

Cki Ckj . . . Σk + Ckk


 (3)

———————————————————————–

Example 1.

The following example illustrates our model of continuous
styles for classifying test fields of length L (each field is
generated by a single source). The possible singlet-class
labels are C = {A, B}. For simplicity, we assume that the
classes are equally likely (i.e., p(A) = p(B) = 1/2) and no
linguistic dependence is present (i.e., p(AA) = p(A)p(A)
etc.).

The class-and-source conditional singlet-feature dis-
tributions are

(x|A, s = s) ∼ N(s, σ2), (x|B, s = s) ∼ N(dc + s, σ2)

and the sources are distributed according to

s ∼ N(0, d2
s/4) (4)

The distribution of sources and the feature distribu-
tions are shown in Fig. 1. Here, the source is identified
by only one number (instead of the two class-conditional
means) because, given the mean of A (denoted mA) of a
particular source, we can obtain the source-specific mean
of B (denoted mB) by mB = mA +dc. That is, the mean
of A and the mean of B are maximally correlated (in a
multiwriter handwriting recognition problem the correla-
tion, although not maximal, arises because of intrawriter
consistency). Here the single-style variable just specifies
the “shift” of the mean of A from the origin.
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Fig. 1. The source-and-class-conditional feature distributions
– normally distributed sources

3.1 EM algorithm

We now briefly summarize the EM algorithm. Suppose
that the observations (the so-called incomplete data)
X = {x1, . . . ,xL} are drawn independently according
to the probability law p(x; Θ). We posit the existence
of the complete data Z = (X ,C), distributed with the
probability law

p(z; Θ) = p(x, c; Θ) = p(c|x, Θ)p(x; Θ) (5)

Therefore,

log p(X ; Θ) = log p(Z; Θ) − log p(C| X , Θ)

Since E{log p(X ; Θ)| X , Θk} = log p(X ; Θ), for any
fixed Θk, we have

log p(X ; Θ) = E{log p(Z; Θ)| X , Θk}︸ ︷︷ ︸
Q(Θ| Θk)

−E{log p(C| X , Θ)| X , Θk}︸ ︷︷ ︸
H(Θ| Θk)

(6)

The above expectations are over the unobserved vari-
ables. It can be shown using Jensen’s inequality that
H(Θ|Θk) ≤ H(Θk|Θk). Thus, in order to maximize
the log-likelihood function we need to maximize only
Q(Θ|Θk). The EM algorithm has the following two it-
erated steps and is guaranteed to converge to a local op-
timum.

E step: Compute Q(Θ|Θk) = E{log p(Z; Θ)| X , Θk}(7)

M step: Update Θk+1 = argmax
Θ

Q(Θ|Θk) (8)
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We are interested in Gaussian mixtures. That is, for
the test set X the likelihood function is

p(X ; Θ) =
L∏

i=1

N∑
j=1

αjp(xi| cj ; θj)

=
L∏

i=1

N∑
j=1

αj

(2π)d/2|Σj |1/2

×exp(−1
2
(xi − µj)T Σ−1

j (xi − µj))

It has been shown for Gaussian mixtures that

Q(Θ|Θk) =
L∑

i=1

N∑
j=1

log(αj)p(cj |xi; Θk)

+
L∑

i=1

N∑
j=1

log p(xi| cj ; θj))p(cj |xi; Θk) (9)

To obtain the EM update equation for Θ, Q(Θ|Θk)
must be maximized with respect to Θ, subject to the
constraints αi ≥ 0 ∀i = 1, . . . , N and

∑N
j=1 αi = 1. Below

we present the general update formulae for EM algorithm
for Gaussian mixture identification.

αk+1
j =

1
L

L∑
i=1

p(cj |xi; Θk)

µk+1
j =

∑L
i=1 xip(cj |xi; Θk)∑L

i=1 p(cj |xi; Θk)

Σk+1
j =

∑L
i=1 p(cj |xi; Θk)(xi − µk+1

j )(xi − µk+1
j )T∑L

i=1 p(cj |xi; Θk)

3.2 Maximum a posteriori (MAP) parameter estimation
of component means of Gaussian mixtures

Suppose that we are given L observations X =
{x1, . . . ,xL} drawn independently according to the prob-
ability law, p(x| θ), where θ is the realization of the ran-
dom variable θ that we wish to estimate. The maximum
a posteriori estimator of θ is given by

θ̂MAP = argmax
θ

{log p(θ) + log p(X| θ)} (10)

The log-likelihood function for MAP estimation is
identical to that for ML estimation, save the extra bias
term log p(θ). As suggested in [5], we note the mathe-
matical equivalence between the optimization problem
for MAP estimation and ML estimation to justify the
EM algorithm for the solution. This variant of the EM
algorithm has been dubbed the Bayesian EM algorithm
[4].

From Eq. 6 we have

log p(X , Θ) = Q(Θ|Θk) + log p(Θ)︸ ︷︷ ︸
B(Θ)

−H(Θ|Θk)

Therefore, at every iteration of the EM algorithm, we
improve the estimate of Θ by choosing the value that
maximizes the quantity

Q′(Θ|Θk) = Q(Θ|Θk) + B(Θ) (11)

B(Θ) is a bias term that factors in our prior knowledge
about the distribution of Θ.

We will use the above model for style-consistent test
fields as a prior for the MAP parameter estimation. We
model styles by their class means, distributed as de-
scribed in Sect. 3. We often encounter classification prob-
lems where the training data contain patterns drawn
from several sources but the test patterns are gener-
ated by only one of these sources. It is therefore the
objective of the MAP adaptive scheme to adapt or spe-
cialize to the said source. The samples in the test set
X = {x1,x2, . . . ,xL} are independently drawn according
to the probability law p(x) =

∑N
i=1 p(ci)p(x| ci), where

the class-conditional feature distributions are p(x| ci) =
fi(x) ∼ N (mi, Σi), i = 1, . . . , N with a priori class prob-
abilities p(ci) = αi, i = 1, . . . , N . We assume that the
means {mi}N

i=1 are distributed according to
1. s = (mT

1 , . . . ,mT
N )T ∼ N (µs,Σs), where

µs =


 µ1

...
µN


 and Σs =




C11 C12 . . . C1N

C21 C22 . . . C2N

...
...

. . .
...

CN1 CN2 . . . CNN




Note that this distribution is identical to the one describ-
ing the distribution of styles in Sect. 3. Since we have
prior knowledge only about the distribution of the means,
we assume for now that the mixture component weights
{αi}N

i=1 and the style-conditional singlet-class covariance
matrices {Σi}N

i=1 are known. We wish to compute only
the MAP estimate of s, the vector of class means, using
the EM algorithm.

From Eqs. 9 and 11 we have

Q′(Θ|Θk) =
L∑

i=1

N∑
j=1

log(αj)p(cj |xi, Θ
k)

+
L∑

i=1

N∑
j=1

log p(xi| cj , θj)p(cj |xi, Θ
k)

+ log p(m1, . . . ,mN )︸ ︷︷ ︸
p(s)
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Ignoring all the terms that are functionally independent
of the class means, we have for our problem

Q′(Θ|Θk)

=
L∑

i=1

N∑
j=1

−1
2
(xi − mj)T Σ−1

j (xi − mj)p(cj |xi, s
k)

− 1
2
(s − µs)

T Σ−1
s (s − µs)

=
L∑

i=1

−1
2
(vi − s)T D−1

i (vi − s)

−1
2
(s − µs)

T Σ−1
s (s − µs)

where vi is an Nd × 1 vector and D−1
i is an Nd × Nd

matrix given by

vi =




xi

xi

...
xi




and

D−1
i =


Σ−1
1 p(c1|xi, s

k) 0 . . . 0
0 Σ−1

2 p(c2|xi, s
k). . . 0

...
...

. . .
...

0 0 . . .Σ−1
N p(cN |xi, s

k)




Note that D−1
i depends on the current estimate sk of

the style parameter.
To maximize Q′(Θ|Θk), we set its derivative with re-

spect to s equal to zero, to obtain
L∑

i=1

D−1
i (s − vi) + Σ−1

s (s − µs) = 0

⇒
(

L∑
i=1

D−1
i + Σ−1

s

)
s =

L∑
i=1

D−1
i vi + Σ−1

s µs

Thus the Bayesian EM update formula for the MAP
estimation of s is

sk+1=

(
L∑

i=1

D−1
i + Σ−1

s

)−1( L∑
i=1

D−1
i vi + Σ−1

s µs

)

=

(
Σs

L∑
i=1

D−1
i + I

)−1(
Σs

L∑
i=1

D−1
i vi + µs

)
(12)

Note that when L = 0, sk+1 = µs and when L → ∞,
the update formulae for the means become decoupled to
be

mk+1
j =

(
L∑

i=1

Σ−1
j p(cj |xi, s

k)

)−1( L∑
i=1

xiΣ
−1
j p(cj |xi, s

k)

)

=
∑L

i=1 xip(cj |xi, s
k)∑L

i=1 p(cj |xi, sk)

which is identical to the EM update formula for ML esti-
mation. That is, the weight we assign to prior knowledge
decreases with increasing sample size.

———————————————————————–

Example 1 continued

We construct and study the following classifiers for the
multisource classification problem presented in the exam-
ple.

– SQDF: For any field length, the features are field-
class-conditionally normally distributed. We can
therefore construct an optimal (for field error rate)
quadratic discriminant field classifier.

– SOPT: As indicated in Sect. 3, the SQDF classifier
achieves the minimum field error rate if the sources
(identified by their class means) are normally dis-
tributed according to the above model. When it is de-
sirable to minimize the character (singlet) error rate
instead of the field error rate, we can construct a field
classifier optimized for singlet error rate by replacing
the zero-one loss function with a loss function based
on the Hamming distance between field classes. Such a
classifier, called singlet error optimized classifier (de-
noted SOPT), does not yield quadratic discriminant
functions for our problem.

For both the ML and MAP adaptive schemes, we
assume that the source-specific intraclass variance (σ2)
is known and adapt only the class means.1 To classify
the field y = (x1, . . . , xL)T , we constructed four different
adaptive classifiers as follows.

– ML1: Maximum-likelihood estimation of the style
parameter s (i.e., the shift of the mean of class A
from the origin). The means of A and B are given by
m̂k

A = ŝk and m̂k
B = dc + ŝk, where ŝk is the estimate

of s at the kth iteration of the EM algorithm. The EM
update formula for ML estimation of s is

ŝk+1=
1
L

(
L∑

i=1

xi − µA

L∑
i=1

p(A|xi, m̂
k
A, m̂k

B)

−µB

L∑
i=1

p(B|xi, m̂
k
A, m̂k

B))

=
1
L

(
L∑

i=1

xi − dc

L∑
i=1

p(B|xi, m̂
k
A, m̂k

B))

– MAP1: Maximum a posteriori estimation of the style
parameter s. Assuming that s is distributed as de-
scribed by Eq. 4, the EM update formula for MAP

1 The prefixes ML and MAP distinguish the types of es-
timates of the parameters from the test data and not the
classification scheme.
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estimation of s is

ŝk+1=
1

L + 4σ2/d2
s

(
L∑

i=1

xi − µA

L∑
i=1

p(A|xi, m̂
k
A, m̂k

B)

−µB

L∑
i=1

p(B|xi, m̂
k
A, m̂k

B))

=
∑L

i=1 xi − dc

∑L
i=1 p(B|xi, m̂

k
A, m̂k

B)
L + 4σ2/d2

s

At each iteration of the EM algorithm, new estimates
of the means of A and B are computed from the cur-
rent estimate of s.2

Now we present the ML2 and MAP2 adaptive
schemes, where we attempt to estimate the means of A
and B, ignoring the constraint that they are separated by
dc. That is, the correlation between the means of A and
B induced by commonality of source is disregarded. How-
ever, the MAP2 scheme assumes the prior distributions
of the means to be normal with variance d2

s/4, centered
at µA = 0 for A and at µB = dc for B.

– ML2: The EM update formulae for the maximum-
likelihood estimation of the means are

m̂k+1
A =

∑L
i=1 xip(A|xi, m̂

k
A, m̂k

B)∑L
i=1 p(A|xi, m̂k

A, m̂k
B)

m̂k+1
B =

∑L
i=1 xip(B|xi, m̂

k
A, m̂k

B)∑L
i=1 p(B|xi, m̂k

A, m̂k
B)

– MAP2: The EM update formulae for the maximum
a posteriori estimation of the means are

m̂k+1
A =

∑L
i=1 xip(A|xi, m̂

k
A, m̂k

B) + 4µAσ2/ds2∑L
i=1 p(A|xi, m̂k

A, m̂k
B) + 4σ2/ds2

=
∑L

i=1 xip(A|xi, m̂
k
A, m̂k

B)∑L
i=1 p(A|xi, m̂k

A, m̂k
B) + 4σ2/ds2

m̂k+1
B =

∑L
i=1 xip(B|xi, m̂

k
A, m̂k

B) + 4µBσ2/ds2∑L
i=1 p(B|xi, m̂k

A, m̂k
B) + 4σ2/ds2

=
∑L

i=1 xip(B|xi, m̂
k
A, m̂k

B) + 4dcσ
2/ds2∑L

i=1 p(B|xi, m̂k
A, m̂k

B) + 4σ2/ds2

Error rates of the classifiers. We simulated random
test fields of length L = 2 generated according to the
above continuously distributed source model. For the
adaptive classifiers, in order to reduce the incidence of
convergence to local maxima, we use four different ini-
tializations and choose the one yielding the maximum
likelihood. The four initial values for the class means used
are
{(0, dc), (X̄−dc/2, X̄+dc/2), (X̄−dc, X̄ ), (X̄ , X̄+dc)},
where X̄ is the sample mean of the test set (field).

2 The EM update equations for estimation of the two means
in this case can be directly obtained using Eq. 12
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The field error and character error rates for various
field classifiers are plotted against increasing ds with the
interclass distance fixed at dc = 4, in Figs. 2 and 3, re-
spectively.

The SQDF and the SOPT classifiers are significantly
better than the singlet classifier. As expected, the field-
optimal SQDF classifier achieves the lowest field error
rate and the singlet-optimal SOPT classifier achieves the
lowest character error rate. For this example, the MAP1
classifier is almost as good as the optimal SQDF classifier.
The ML2 and MAP2 adaptive classifiers have a consider-
ably higher error rate than the ML1 and MAP1 classifiers
because they disregard the fact that the two class means
are maximally correlated. The reason for ML2 yielding a
field error rate of approximately 50% will become evident
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Fig. 4. Continuously distributed styles –
field classification boundaries for different
classifiers, with ds = 2, dc = 4. In all sub-
figures, the regions of the feature space clas-
sified into the four field classes are shown.
The x marks in the SQDF and SOPT sub-
figures indicate the field-class means. The
circles and ellipses indicate the equiprob-
ability contours of the assumed field-class
distributions. There are no such contours
for the ML classifiers because they are blind
to the prior distribution of the styles

when we study the decision boundaries in the field-feature
space.

Table 1 shows the character error rates obtained by
the style-conscious classifiers operating on fields of in-
creasing length. The SQDF classifier has a slightly higher
character error rate than that of the SOPT and MAP1
classifiers because the SQDF classifier is designed to opti-

mize the field error rate. As expected from the EM update
formulae, the ML1 classifier approaches the MAP1 classi-
fier as the field length increases, although it is worse than
the MAP1 classifier on short fields. We observe that with
increasing L the adaptive classifiers approach the least
achievable character error rate for this problem (which
is the intrasource error rate = 100 × Q( dc

2σ ) = 2.3%,
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Fig. 5. Continuously distributed styles –
field classification boundaries for SQDF
and MAP1 classifiers, with ds = 2, dc = 1

Table 1. Character error rates in percentage for various clas-
sifiers with increasing field length L for dc = 4, ds = 2

L SQDF SOPT ML1 MAP1 ML2 MAP2

2 6.5 6.3 14.8 6.5 25.2 6.6
4 4.7 4.6 10.4 4.6 10.2 5.8
6 3.9 3.8 5.7 3.8 6.2 4.3

10 – – 3.4 3.1 3.9 3.4
20 – – 2.6 2.6 2.8 2.7

100 – – 2.3 2.3 2.3 2.3

where Q(x) =
∫∞

x
1√
2π

exp(−x2

2 ) dx). We expect that
the SOPT classifier would perform likewise, but the re-
quired computation is excessive for L > 6.

Decision boundaries. We plotted the decision bound-
aries in the field-feature space for the above-described
classifiers for L = 2. The decision boundaries highlight
the distinctions and similarities between the various clas-
sifiers.

Figure 4 shows the decision boundaries for various
classifiers for ds = 2 and dc = 4. The SOPT field classi-
fier has slightly different boundaries from the SQDF clas-
sifier. Note that the confusions between “AA” and “BB”
are reduced by the SOPT classifier, consequently reduc-
ing the character error rate at the expense of increasing
the field error rate.

For these values of dc = 4 and ds = 2, the MAP1 clas-
sifier is almost identical to the SQDF classifier. Figure 5
shows the decision boundaries for the SQDF and MAP1
classifiers for dc = 1 and ds = 2, where the difference
between the two classifiers is more apparent.

The ML1 classifier classifies every pair of patterns suf-
ficiently close to each other to be from the same class
because it operates under the assumption that the mean
of A and B for a particular style must be dc apart. How-
ever, since the likelihood of the samples being from either
of the singlet classes is equal, the banded region in the
middle has the label AA/BB. When the patterns are
sufficiently separated, the pattern with the lower value is
labeled as an A and the pattern with the higher value is
called a B.
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Fig. 6. ML1 decision boundaries for dc = 4, ds = 2 with only
one initialization

The ML2 adaptive classifier attempts to fit two nor-
mal distributions to the two patterns in the field because
the correlation between the means A and B is disre-
garded. Thus unless the two patterns coincide, it is as-
sumed that they are from different classes. Also, the like-
lihood obtained by labeling the two modes as AB and BA
is equal. However, in Fig. 4, the region x1 > x2 is labeled
as BA and the region x1 < x2 is labeled as AB. This
is an artifact of our initialization of the EM algorithm
(all four initializations for mean of A are lower than the
corresponding initialization for the mean of B). Thus the
field error rate obtained is at least 50% (all AAs and BBs
are misclassified). In addition, there are some confusions
between ABs and BAs.

Although the MAP2 adaptive classifier assumes that
the mean of A and the mean of B are drawn indepen-
dently from a given source, the classification boundaries
are not parallel to the coordinate axes owing to the cor-
relation between patterns from the same class. The as-
sumed field-feature probability contours are shown su-
perimposed on the MAP2 decision boundaries in Fig. 4.
That is, the MAP2 adaptive classifier uses only the in-
trasource same-class consistency but no source-induced
correlation between classes.
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We have observed that the accuracy of all four adap-
tive classifiers depends critically on the initialization
scheme. For this simple simulation example we solved the
problem by using multiple starts. However, it is unclear
how this can be done for high-dimensional data. Also, for
ML1 and ML2 adaptive classifiers incorrect labeling of
mixture components can result from initialization meth-
ods designed to obtain parameter estimates that yield
the maximum likelihood. That is, local optima close to
the parameters obtained from the training data may be
more desirable. For example, Fig. 6 shows the ML1 deci-
sion boundaries when the EM algorithm is initialized only
with ŝ0 = 0 (cf. Fig. 4 where four different initializations
were used).

4 Experimental results

4.1 Description of the data

To test our algorithms on realistic data, we experimented
with the databases SD3 and SD7, which are contained in
the NIST Special Database SD19 [9]. The database con-
tains samples of handwritten numerals labeled by writer
and class. SD3 was the training data released for the First
Census OCR Systems Conference and SD7 was the test
data. SD3 and SD7 were obtained from different popula-
tions, and SD7 is considered to be much more difficult to
recognize. There are approximately ten samples per class
per writer.

We constructed four datasets, two from each of SD3
and SD7, as shown in Table 2. The writers in the Train
and Test sets are disjoint, which allows us to verify our
hypothesis that broad styles can be gleaned from a suffi-
ciently large sample of writers.

Since we compute the field class-conditional covari-
ance matrices from source-specific class-conditional ma-
trices, we require that each writer have at least two sam-
ples for each singlet class. We therefore deleted all writ-
ers not satisfying this criterion from the training sets. In
Table 2, the numbers in parentheses indicate the total
number of writers from each set that remain after the
deletion.

Figure 7 shows the scatterplot of the top two principal
component features of the writer-specific class means of
the writers in the training sets. We show only some of
the classes for legibility. The writer-specific class means
seem to vary in a continuous fashion.

We extracted 100 blurred directional (chain-code) fea-
tures from each sample [12]. The samples of each writer
in the test sets were randomly permuted, and L patterns
were chosen at a time to simulate fields of length L.

In order to alleviate the adverse effect of finite sam-
ple estimation on accuracy, we smoothed the class-
conditional covariance matrices by the regularized dis-
criminant function (RDF) method [7]. Regularization re-
duces the variance of the estimator at the cost of increas-
ing its bias. In RDF, the regularized (smoothed) covari-
ance matrix of a class is an interpolation of the sample

Table 2. Handwritten numeral datasets

Writers Number of samples

SD3-Train 0-399 (395) 42698
SD7-Train 2100-2199 (99) 11495
SD3-Test 400-799 (399) 42821
SD7-Test 2200-2299 (100) 11660
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Fig. 7. Scatterplot of the top two principal component fea-
tures of writer-specific class means

covariance matrix and the identity matrix

Ĉi = (1 − γ)Ci + γσ2
i I (13)

where σ2
i = tr(Ci)/d and 0 < γ < 1. For our experiments

we chose a value of γ = 0.2.
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4.2 Results and discussion

On the handwritten data we present results on adapting
the class-conditional covariance matrices as well as the
means. Starting with the statistics of the training set,
we adapt to the statistics of the test set (modeled as a
Gaussian mixture with one Gaussian per class) via the
EM algorithm. We will first test the ML adaptive classi-
fier and then the MAP adaptive classifier.

ML adaptation. The maximum-likelihood estimation of
covariance matrices for Gaussian mixtures with the EM
algorithm with insufficient samples is beset with prob-
lems such as convergence to the boundary of the param-
eter space. That is, when the class-covariances are un-
constrained, the EM algorithm sometimes fits the sam-
ples with a mixture containing zero-variance Gaussians.
We avoid this phenomenon by constraining the class-
conditional covariance matrices to be equal, for every
class for a particular writer, during adaptation. Even so,
the number of samples available per writer in our dataset
(approximately ten samples per class) is insufficient to
estimate the full 100×100 covariance matrix for 100 fea-
tures.

We solve the problem of covariance adaptation as fol-
lows. We first estimate the class-conditional covariance
matrices Ci, i = 1, . . . , N from the training set. Let Di

be the matrix obtained by setting all the off-diagonal
terms in Ci equal to 0. We compute the class-conditional
correlation matrices Ri = D−1/2

i CiD
−1/2
i . Now we find

the average correlation matrix Ravg = 1
N

∑N
i=1 Ri. Note

that the feature variances in Ci include the variance of
means across writers.

At the first iteration of the EM algorithm we use the
full class-conditional covariance matrices Ci to evaluate
the posterior class probabilities of the test samples. At
every succeeding iteration of the EM algorithm we up-
date only the class-conditional feature variances for all
features under the assumption that, for a particular fea-
ture, the class-conditional feature variance is equal for all
classes. That is, for d-dimensional features, we estimate
only d variances irrespective of the number of classes
present.

Let D̂
k

be the d×d matrix with the principal diagonal
set to the feature variances estimated at the kth iteration
of the EM algorithm and all other elements set to 0. The
class-conditional covariance matrices at the kth iteration
are updated according to Ĉ

k

i = D̂
k
RavgD̂

k
. The estimates

Ĉ
k

i are used in the next iteration to compute the posterior
probabilities of each class for each sample. We classify the
test samples after every EM iteration and terminate when
no classification decision is changed.

In other words, we assume that the feature-to-feature
correlation in the test set is the same as in the training set
and is independent of the class, but the individual feature
variances, averaged over all classes, are estimated from
the test set. The algorithm for ML mean and covariance
adaptation is given in Fig. 8.

Tables 3 and 4 present the character error rates for
various combinations of training and test sets without
any adaptation, as well as adapting only the means and
adapting both means and covariance matrices. For the
experiments in Table 3 the covariance matrices obtained
from the training set were not regularized, whereas they
were regularized for the experimental results in Table 4.
We do not report running times because all the classifiers
were implemented in MATLAB.

We observe a reduction in the character error rate
even when only the class-conditional means are adapted
to those of the test set. This improvement is increased
dramatically when the covariance matrices are also
adapted (the total reduction in error rate is more than
50% in many cases). The final error rates after adaptation
with the regularized covariance matrices are lower than
for the unregularized covariance matrices, indicating the
dependence of the adaptation accuracy on the training
method. However, the benefit of covariance adaptation is
more significant when the matrices are not regularized.

For each of the above experiments, Table 5 shows
the percentage of writers in the test set with increased
and decreased accuracy with adaptive classification (both
class-conditional means and covariance matrices were
adapted). The maximum decrease in accuracy for any
writer was never higher than 2.5% of the total number
of samples from the writer, while the maximum increase
in accuracy was around 25%. Table 5 also lists the num-
ber of iterations before the stopping criterion was met,
averaged over all the writers in each test set. We observe
that the adaptive algorithm converges rapidly, requiring
approximately two iterations on average. These results
indicate that even when the test fields are not very large
(here we have only ten samples/class), ML adaptation
can be performed to improve accuracy.

MAP adaptation. According to the model of normally
distributed writer-specific class means, we constructed
a maximum a posteriori adaptive classifier (Sect. 3.2).
The means and covariance matrices of the writer-specific
means were estimated from the training data. However,
we could not experiment with all 100 features because we
had fewer than 500 writers in the training data (the co-
variance matrix of the vector writer-specific means would
be singular if all 100 features were used). Therefore, we
conducted experiments with only the top 25 principal
component features. In Table 6, we compare the accu-
racy of the MAP adaptive classifier with that of the ML
adaptive scheme for increasing field length. The last row
shows the results when all the samples from each writer
in the test set are considered as one field (i.e., approxi-
mately 100 patterns per field).

We observe that the MAP adaptive classifier is more
accurate than the singlet classifier even on fields as
short as ten patterns. The ML adaptive classifier per-
forms poorly when the fields are short but improves with
increasing field length. On SD7-Test we observe that
ML adaptation performs better than the MAP adaptive
scheme when each writer constitutes a separate field. We
attribute this to the estimation error in the writer-specific
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Table 3. Character error rates on handwritten data before and after adaptation
with all 100 features. Training covariance matrices not regularized

Character error rate (%)
Before After After

Training set Test set adaptation mean adaptation mean & cov adapt

SD3-Train SD3-Test 2.2 1.9 0.8
SD7-Test 8.0 6.6 3.0

SD7-Train SD3-Test 3.7 2.7 1.1
SD7-Test 3.6 3.1 1.8

SD3-Train SD3-Test 1.7 1.5 0.6
+SD7-Train SD7-Test 4.7 3.8 1.9

Table 4. Character error rates on handwritten data before and after adaptation
with all 100 features. Training covariance matrices regularized (γ = 0.2)

Character error rate (%)
Before After After

Training set Test set adaptation mean adaptation mean & cov adapt

SD3-Train SD3-Test 1.1 0.7 0.6
SD7-Test 5.0 2.6 2.2

SD7-Train SD3-Test 1.7 0.9 0.8
SD7-Test 2.4 1.6 1.7

SD3-Train SD3-Test 0.9 0.6 0.6
+SD7-Train SD7-Test 3.2 1.9 1.8

Table 5. Percentage of writers in each experiment that improved or worsened after mean
and covariance adaptation. The number of EM iterations, averaged over all writers for each
test set, before the stopping criterion was met is also shown

Without regularization With regularization

% of Writers Avg % of Writers Avg
Training set Test set improved worsened iter improved worsened iter

SD3-Train SD3-Test 59.1 5.0 1.8 23.8 5.8 1.4
SD7-Test 83.0 0.0 3.1 68.0 3.0 2.4

SD7-Train SD3-Test 79.2 1.8 2.2 47.6 4.8 1.7
SD7-Test 64.0 9.0 2.3 38.0 11.0 1.9

SD3-Train SD3-Test 52.6 4.8 1.7 22.6 6.0 1.4
+SD7-Train SD7-Test 70.0 4.0 2.5 50.0 6.0 2.0

covariance matrix (which is a covariance matrix for a 250-
dimensional vector estimated from 500 samples).

5 Conclusions

By modeling the test fields as being drawn from a normal
mixture with unknown parameters, we developed adap-
tive methodologies to cope with nonrepresentative train-
ing data. We suggested that multiple sources in the train-
ing data can give rise to such nonrepresentative training
sets.

We proposed a Gaussian model for situations with a
continuous style variation. The model identifies a style
by its class means, which are assumed to be Gaussian
distributed. Furthermore, intrastyle consistency induces
interclass correlation between the class means, which can
be estimated from training data. Under such a model we

derived ML and MAP adaptive classifiers that exploit
style consistency in test fields.

Extensive simulations showed that the computation-
ally less expensive MAP adaptive classifier is a good ap-
proximation to the optimal SQDF classifier even on short
fields, when the styles are Gaussian distributed and in-
terclass separation is large. For long fields the even more
economical ML adaptive classifier achieves accuracy com-
parable to that of the MAP adaptive classifier. The sim-
ulations also demonstrated that as the field length in-
creases the accuracy of all the style-conscious classifiers
approaches the average intrastyle accuracy.

On the NIST handwritten data, we experimented
with mean and covariance adaptive schemes with all the
samples from a single test writer considered as one field.
The ML adaptive classifiers that operate on one test
writer at a time (≈ 100 samples in the test field) reduce
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function Training( )
For all classes i = 1, . . . , N , compute class-conditional means µi and

covariance matrices Ci from training set.
Compute Di by setting every nondiagonal term in Ci to 0, i = 1, . . . , N .
Compute Ri = D−1/2

i CiD
−1/2
i , i = 1, . . . , N .

Compute Ravg = 1
N

∑N
i=1 Ri.

function Adaptive Classification (Test samples from one writer X , Max Iterations)
µ̂0

i = µi and Ĉ
0
i = Ci, for i = 1, . . . , N .

Classify Samples(X with µ̂0
i , Ĉ

0
i ).

for k=1 to Max Iterations
(µ̂k

i , D̂
k
) = EM Estimation(X , µ̂k−1

i , Ĉ
k

i )
Here estimate the N class-conditional means

and only one diagonal covariance matrix D̂
k
.

Ĉ
k

i = D̂
k
RavgD̂

k
for i = 1, . . . , N .

Classify Samples(X with µ̂k
i , Ĉ

k

i ).
If no classification result for any sample in X

is changed from previous result, then terminate for.
end for

Fig. 8. Pseudocode for the ML mean and covariance matrix adaptation algorithm.

Writer worsened (2 more errors
than before adaptation)

Writer improved (26 fewer errors
than before adaptation)

Fig. 9. Some samples from writers on whom error
rate improved and worsened after adaptation

Table 6. Character error rates in % for the MAP and ML
adaptive classifiers with increasing field length. The training
set is SD3-Train+SD7-Train. Only the top 25 pca features
were used, without covariance regularization. For comparison,
the character error rate obtained by the singlet classifier with
25 features on SD3-Test is 1.5% and on SD7-Test 4.4%. The
last row shows the error rates when all the samples from one
writer comprise the same field

Test set ⇒ SD3-Test SD7-Test
Field length L MAP ML MAP ML

10 1.5 5.1 4.2 7.5
20 1.4 2.2 4.1 5.1
40 1.2 1.7 3.6 4.5
60 1.2 1.5 3.2 4.2

Writer 1.0 1.0 3.0 2.7

the error rate by more than 50%. We also implemented
the MAP adaptive classifier for class mean adaptation
and demonstrated that adaptive classification increases
accuracy even on relatively short fields (≈ 10 samples).

An important problem in the area of adaptive clas-
sification is to characterize situations when the adaptive
classifier degrades accuracy. For the approaches we pre-
sented, this problem is related to the separation of styles
relative to the separation between classes as well as the
convergence properties of the EM algorithm. Although
we currently initialize the EM algorithm to the parame-
ters estimated from the training set, we intend to explore
other initialization methods.
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