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We propose an adaptive methodology to tune the decision boundaries of a classi�er

trained on non-representative data to the statistics of the test data to improve

accuracy. Speci�cally, for machine printed and handprinted digit recognition we

demonstrate that adapting the class means alone can provide considerable gains in

recognition. On machine-printed digits we adapt to the typeface, on hand-print to

the writer. We recognize the digits with a Gaussian quadratic classi�er when the

style of the test set is represented by a subset of the training set, and also when

it is not represented in the training set. We compare unsupervised adaptation

and style-constrained classi�cation on isogenous test sets of �ve machine-printed

and two hand-printed NIST data sets. Both estimating mean and imposing style-

constraints reduce the error-rate in almost every case, and neither ever results in

signi�cant loss. They are comparable under the �rst scenario (specialization), but

adaptation is better under the second (new style). Adaptation is bene�cial when

the test is large enough (even if only ten samples of each class by one writer in a

100-dimensional feature space), but style conscious classi�cation is the only option

with �elds of only two or three digits.

1 Introduction

The design objective of document recognition systems is to yield high accuracy

on a large variety of fonts, typefaces and handwriting styles. The most obvious

approach, which is also the most popular amongst design engineers, is to collect

patterns from all possible styles to train the classi�er. Another approach is

to design features that obscure di�erences between various styles. Due to

the proliferation of fonts and typefaces with the advent of digital font design

and the decreasing emphasis on neat handwriting, new styles encountered in

the �eld often render these methods ine�ective. Typically, OCR systems are

overhauled periodically and retrained with patterns from newly encountered

styles.

Statistical training of OCR engines is based on the assumption that the

training set is representative of the statistics of the test set, i.e, the text that is

encountered in the �eld. The only departure from this assumption has been the

study of small-sample estimation problems, i.e., the variance of the classi�er

due to di�erent draws from the population.

Although there are an immense variety of glyphs that correspond to each

class, within a given document we expect to see a certain consistency owing to
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the common source. We call this consistency style or spatial context. The com-

monality denoted by style may arise from the processes of printing, scanning or

copying as well as consistency of writer or typeface. Even documents composed

with multiple scripts and fonts contain only a negligible fraction of all existing

glyphs. In such scenarios, even if the style in which the current document is

rendered is represented in the training data, the classi�cation accuracy su�ers

from the relatively small weight given to the particular style by the classi�er

(which was trained on patterns drawn from a large number of styles). It is

therefore appealing to consider the possibility of adapting the classi�er pa-

rameters to the test set. Figure 1 illustrates the concepts of style-conscious

classi�cation and adaptive parameter estimation using a simple example.

Although little use of adaptive methods for has been reported for OCR,

there has been considerable work done in the �eld of communications, adaptive

control and more recently in speech recognition 1. Castelli and Cover explore

the relative value of labeled and unlabeled samples for pattern classi�cation 2.

Nagy and Shelton proposed a heuristic self-corrective character recognition al-

gorithm that adapts to the typeface of the document to improve accuracy 3,

which was later extended by Baird and Nagy to a hundred-font classi�er 4.

Sarkar exploits style consistency in short documents (�elds) to improve ac-

curacy, under the assumption that all styles are represented in the training

set, by estimating style-and-class-conditional feature distributions using the

EM algorithm 5 6. We have proposed a style-conscious quadratic discriminant

classi�er that improves accuracy on short �elds under essentially the same

assumptions 7.

Mathis et al. propose a hierarchical Bayesian approach very similar to

our method to utilize the test data to improve accuracy 8. They recursively

apply EM estimation by combining the training and test data. We believe that

this method introduces an avoidable classi�er bias, especially if the size of the

training data is commensurate with the size of the document being classi�ed.

In the following sections we de�ne the problem formally and describe a par-

tial solution. We then present an experimental comparision of style-constrained

classi�cation and adaptation under di�erent scenarios, and discuss the impli-

cations of the results.

2 The problem of classi�er parameter adaptation

We consider the problem of classifying the patterns in a large test set

T = fx1; : : : ; xtg where each xi is a d-dimensional feature vector, into one of N

classes f!1; : : : ; !Ng. The test set T is drawn according the class-conditional

feature distributions p(xj!i) = fi(x) � N (�i;�i); i = 1; : : : ; N and a priori
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Figure 1: Illustrative example. The equi-probability contours of the class-conditional feature

distributions, for two typefaces and two classes fA, Bg, estimated from the training data,

are shown. The squares represent patterns classi�ed as A's and the circles represent patterns

classi�ed as B's by each of the methods. The same two input patterns are shown �lled in all

three sub�gures. (a) The conventional singlet classi�er assigns the label (B, B) to these two

patterns independently, oblivious to any style-consistency. (b) The style-conscious classi�er

assumes that both patterns are from the same typeface and assigns the label (B, A) to the

left and right patterns respectively. (c) The existence of a large test set drawn from a single

typeface causes an adaptive classi�er to assign the label (A, B).

class probabilities p(!i) = pi; i = 1; : : : ; N .

We postulate the existence of a training set for estimating the class-

conditional feature distributions given by f
(0)
i

(x) � N (�
(0)
i

;�
(0)
i
); i = 1; : : : ; N

and p(0)(!i) = p
(0)

i
; i = 1; : : : ; N .

T is classi�ed using a quadratic discriminant function classi�er constructed

with the estimated parameters. Clearly, the expected error-rate of the classi�er

on T is higher than the Bayes error-rate due to the discrepancies between the

estimated parameters and the true parameters. Under the assumption that the

estimated parameters are `not far' from the true parameters, and that the test

set T is suÆciently large, we wish to adapt the classi�er to the true parameters

of the test set T .

3 Adaptation

We will assume only that the class-conditional feature means are misrepre-

sented in the training set. That is, p
(0)
i

= pi and �
(0)
i

= �i i = 1; : : : ; N . We
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adapt the estimate of the mean according to the following EM update formula

�
(k+1)
i

=

P
x2T

xp(k)(!ijx)
P

x2T
p(k)(!ijx)

; i = 1; : : : ; N

where p(k)(!ijx) =
pif

(k)
i

(x)
P

N

i=1 pif
(k)

i
(x)

; f
(k)
i

(x) � N (�
(k)
i

;�i)

Although convergence to the means of the test distribution is not guaran-

teed with arbitrary initialization, it appears that the true mean is a �xed point

of the algorithm with good covariance estimates.

4 Experimental results on machine-printed data

A database of multi-font machine-printed numerals was generated as follows 6.

Five pages, containing the ten digits 0-9 spaced evenly and replicated 50 times,

were prepared using Microsoft Word 6.0. Each page was rendered in a di�erent

6 pt typeface, namely Avant Garde (A), Bookman Old Style (B), Helvetica (H),

Times New Roman (T), and Verdana (V), and printed on a 600 dpi Apple

LaserWriterSelect. Each page was scanned 10 times at 200 dpi into 10 bilevel

bitmaps using an HP 
atbed scanner. This yielded a total of 25,000 samples

(5000 samples per typeface). A few of the samples are shown in Figure 2. The

resulting scanned images were segmented and for each digit sample 64 blurred

directional (chaincode) features were extracted and stored 9. We used only the

top 8 principal component features for experimentation so that the gains in

accuracy are signi�cant. For each typeface, 2500 samples were included in the

training set, while the remaining 2500 samples were used for testing. That is,

the number of errors in each cell of the tables below are based on 2500 test

patterns.

Avant Garde

Bookman Old Style

Helvetica

Times New Roman

Verdana

Figure 2: Samples of the machine-printed digits, reproduced at approximately actual size.

4.1 Multiple-style training, test style represented

Here we consider the case when the classi�er is trained on patterns from mul-

tiple typefaces including the typeface of the test set. We use the training data
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from all typefaces to train the classi�er and adapt to each typeface separately.

The recognition results for iterated adaptation of the mean are presented in

Table 1.

Iterations Test typeface

A B H T V

0 17 3 34 1 33

1 7 2 37 1 3

5 6 2 39 1 3

10 6 2 39 1 3

Table 1: Error counts on di�erent typefaces for successive EM iterations (All-typefaces

training)

We now compare the results in Table 1 with our style-conscious quadratic

classi�cation 7. The error-rates for various �eld lengths are presented in Ta-

ble 2.

Field length Test typeface

A B H T V

1 17 3 34 1 33

2 6 4 35 0 7

3 1 4 33 0 2

Table 2: Error counts using style-conscious �eld classi�cation (All-typefaces training)

4.2 Multiple-style training, test style not represented

Here the classi�er is trained on patterns from multiple typefaces, but excluding

the typeface of the test data. We trained the classi�er �ve times, each time

excluding the training data from the typeface of the test data. The recognition

results for the mean adaptation are presented in Table 3.

Table 4 shows the error counts of the style-conscious quadratic �eld clas-

si�er when the test style is not represented in the training set.

4.3 Single-style training

This is a more challenging task for the adaptive algorithm. We train on only

one typeface and classify the test sets of each typeface. The recognition results

are presented in Table 5 for 0, 1 and 5 iterations of the mean adaptation

algorithm.
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Iterations Test typeface

A B H T V

0 102 113 146 33 141

1 7 14 76 5 6

5 5 2 44 4 4

10 5 2 43 4 4

Table 3: Error counts on di�erent typefaces (Leave-one-typeface-out training)

Field length Test typeface

A B H T V

1 102 113 146 33 141

2 109 115 160 34 115

3 97 119 166 29 98

Table 4: Error counts with style-conscious �eld classi�cation (Leave-one-typeface-out train-

ing)

5 Experimental results on handwritten data

We used the databases SD3 and SD7, which are contained in the NIST Spe-

cial Database SD19 10. The database contains handwritten numeral samples

labeled by writer and class (but not of course by style). SD3 was the training

data released for the First Census OCR Systems Conference and SD7 was used

as the test data. We constructed four datasets, two from each of SD3 and SD7,

as shown in Table 6. Each writer has approximately 10 samples per class.

We extracted 100 blurred directional (chaincode) features from each sam-

ple 9. We then computed the principal components of the SD3-Train+SD7-

Train data onto which the features of all samples were projected to obtain 100

principal-component features for each sample.

Since the writers were arbitrarily chosen to form the training and test

sets we did not expect any signi�cant improvement in accuracy with mean

adaptation when the entire test data was assumed to be from the same style.

Our belief was con�rmed by the recognition rates obtained.

When the test data is known to be from a single writer, we do expect a

good adaptive scheme to specialize the decision regions to the said writer. Ta-

ble 7 shows the recognition rates for various iterations of the mean adaptation

algorithm when samples of the test set are adaptively classi�ed, operating on

one writer at a time. For each writer in the test set the means are initialized

before adaptation to those of the training set.
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Iter Test typeface

A B H T V

A 0 0 520 440 276 486

1 0 326 305 133 230

5 0 40 179 2 0

B 0 145 1 111 54 92

1 15 1 36 1 3

5 8 2 51 0 1

H 0 17 154 13 164 555

1 5 8 13 2 73

5 5 8 13 1 0

T 0 163 324 433 0 3

1 73 290 404 0 0

5 0 162 402 0 0

V 0 251 481 517 34 0

1 98 289 401 4 0

5 4 321 408 3 0

Table 5: Error counts with cross-training (Each row is for the same training set, each column

is for the same test set)

Writers Number of samples

SD3-Train 0-399 (395) 42698

SD7-Train 2100-2199 (99) 11495

SD3-Test 400-799 (399) 42821

SD7-Test 2200-2299 (100) 11660

Table 6: Handwritten numeral datasets

6 Discussion

The above results con�rm the value of adaptive classi�cation in the presence

of a large volume of style-consistent test data. It is possible to design OCR

systems that improve with use. For machine-printed data, when the style of

the test data is represented in the training set, but the size of the test data

is small, it is advantageous to use a style-conscious classi�er over an adap-

tive methodology. Either method can, ofcourse, be combined with language

context.
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Iter Test set

SD3-Test SD7-Test

0 2.2 8.0

SD3-Train 1 2.0 7.0

5 1.9 6.5

0 3.7 3.6

SD7-Train 1 2.8 3.2

5 2.6 3.0

SD3-Train 0 1.7 4.7

+SD7-Train 1 1.5 4.0

5 1.5 3.7

Table 7: Error-rates in % with mean adaptation on handwritten data (Each row is for the

same training set, each column is for the same test set)

6.1 Multiple-style training, test style represented

We observe from Tables 1 and 2 that even when the test style is represented in

the training set, utilizing the information that the entire test set is drawn from

the same style can lead to improved accuracy. The style-conscious quadratic

classi�er outperforms the adaptive scheme. We attribute this anomaly to the

violation of our assumption that the estimates of the covariance matrices from

the training data are representative. Actually, the estimated feature variances

are `larger' than the typical single-typeface variance due to the variation in

means across typefaces. Also because of the high degree of consistency in

machine-printed numerals, a few test patterns (i.e., short �elds) are suÆcient to

specialize to the test style. The best that we can hope to achieve with either the

style-conscious classi�er or the adaptive classi�er is accuracy equaling typeface-

speci�c singlet classi�cation.

6.2 Multiple-style training, test style not represented

The potential of the adaptive scheme is more evident when the test style is not

represented in the training data. Table 3 indicates that the classi�er converges

with only a few iterations and yields a signi�cant improvement in accuracy.

As expected the style-conscious classi�er is impotent here, performing poorly

even when classifying triples (Table 4).
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6.3 Single-style training

The experimental results presented in Table 5 explore the most extreme case

of non-representative training data. We observe that the adaptive classi�er

improves for every pairing of training and test sets, although not uniformly.

Also the gains obtained from adaptation are non-symmetric because the con-

vergence properties of the EM algorithm depend upon the initial estimates of

the parameters. Figure 3 shows the loci of the class-conditional feature means

of the top two principal component features for �ve iterations. The adaptative

estimation of the means is worse when Verdana is used for training and Hel-

vetica for testing than vice-versa because of convergence to a local minimum.

In Table 5 the error counts along the diagonal represent the lower bounds

attainable with same-typeface training. They are, as expected, stable under

EM iteration.

6.4 Handwritten data

The recognition results on handwritten data (Table 7) indicate that even when

the test data is small (approximately 10 samples per class) adapting the mean

improves accuracy. The adaptive classi�er that averages over the approxi-

mately 10 samples per digit available from each writer is better than the style-

conscious classi�er operating on �elds of only two digits owing to the large

variation in handwriting styles. The style-conscious classi�er to cannot fully

exploit style consistency with such short �elds.

Training set Test set Error-rate (%) % writers

Before After Accuracy Accuracy

Adaptation Adaptation increased decreased

SD3-Train SD3-Test 2.2 1.9 19.5 1.3

SD7-Test 8.0 6.5 54.0 2.0

SD7-Train SD3-Test 3.7 2.6 43.9 1.3

SD7-Test 3.6 3.0 39.0 4.0

SD3-Train SD3-Test 1.7 1.5 15.8 2.0

+SD7-Train SD7-Test 4.7 3.7 54.0 2.0

Table 8: Error-rates on handwritten data before and after adaptation (5 iterations), showing

the percentage of test writers that improved or worsened with adaptation

Table 8 shows the percentage of writers in the test set on which the accu-

racy increased and decreased with adaptive classi�cation (after 5 iterations).

The maximum improvement for any particular writer was approximately 10%
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while the maximum decrease in accuracy was about 2%.
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Figure 3: Loci of the class-conditional feature means, during adaptation, of the top 2 prin-

cipal component features. The circles represent the class means of the training data and the

squares represent the class means of the test data.
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6.5 Future work

We intend to extend the adaptive methodology to recursively estimating the

covariance matrices as well. We believe that when only a moderate sized test

data is available, the EM algorithm is unstable if used to estimate the covari-

ances, and therefore intend to explore methods that exploit the con�guration

of the class-conditional densities in the feature space. We also intend to explore

the possibility of using adaptation as a substitute for covariance matrix regu-

larization in small training sample scenarios. Another important problem is to

identify, at run-time, situations when the adaptive classi�er degrades accuracy.

7 Acknowledgements

We thank Dr Hiromichi Fujisawa, Dr. Cheng-Lin Liu and Dr. Prateek Sarkar

for the informative discussions we had over the years.

References

1. C. J. Leggetter and P. C. Woodland. Maximum likelihood linear regres-

sion for speaker adaptation of continuous density hidden Markov models.

Computer Speech and Language, 9(2):171{185, April 1995.

2. V. Castelli and T. M. Cover. The relative value of labeled and unla-

beled samples in pattern recognition with an unknown mixing parame-

ter. IEEE Transactions on Information Theory, 42:2102{2117, Novem-

ber 1996.

3. G. Nagy and G. L. Shelton Jr. Self-corrective character recognition

system. IEEE Transactions on Information Theory, IT-12(2):215{222,

April 1966.

4. H. S. Baird and G. Nagy. A self-correcting 100-font classi�er. In

L. Vincent and T. Pavlidis, editors, Document Recognition, Proceedings

of the SPIE, volume 2181, pages 106{115, 1994.

5. P. Sarkar. Style consistency in pattern �elds. PhD thesis, Rensselaer

Polytechnic Institute, Troy, NY, 2000.

6. P. Sarkar and G. Nagy. Style consistency in isogenous patterns. In

Proceedings of the Sixth International Conference on Document Analysis

and Recognition, pages 1169{1174, 2001.

7. S. Veeramachaneni, H. Fujisawa, C. L. Liu, and G. Nagy. Style-conscious

quadratic �eld classi�er, 2002. Submitted to the Sixteenth International

Conference on Pattern Recognition.

8. C. Mathis and T. Breuel. Classi�cation using a Hierarchical Bayesian

Approach. Submitted for publication.

11



9. C. L. Liu, H. Sako, and H. Fujisawa. Performance evaluation of pattern

classi�ers for handwritten character recognition. International Journal

on Document Analysis and Recognition, in press 2002.

10. P. Grother. Handprinted forms and character database, NIST special

database 19, March 1995. Technical Report and CDROM.

12


