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Abstract—Patterns often occur as homogeneous groups or fields generated by the same source. In multisource recognition problems,

such isogeny induces statistical dependencies between patterns (termed style context). We model these dependencies by second-

order statistics and formulate the optimal classifier for normally distributed styles. We show that model parameters estimated only from

pairs of classes suffice to train classifiers for any test field length. Although computationally expensive, the style-conscious classifier

reduces the field error rate by up to 20 percent on quadruples of handwritten digits from standard NIST data sets.

Index Terms—Interpattern feature dependence, writer consistency, continuous styles, quadratic discriminant classifier.
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1 INTRODUCTION

WHEN patterns are presented as groups (or fields) to a
classifier, statistical dependencies between the fea-

tures of different patterns can be exploited to improve
recognition accuracy over that of a singlet classifier that
operates on the patterns one at a time. Linguistic context
(interpattern class dependence) has been widely used to
improve classification accuracy. Feature dependence be-
tween adjacent patterns is another commonly occurring
context which can be caused by ligatures in cursive hand-
writing and by coarticulation in speech and is dependent on
the relative position of the patterns. Another kind of
interpattern feature dependence is present in multisource
recognition problems owing to the commonality of origin
(isogeny) of test fields. Such dependence is usually indepen-
dent of the order of the patterns in the field and is called style
context. Whereas feature dependence between adjacent
patterns occurs even in single-source recognition problems,
style context arises only when multiple sources are present.
This communication presents new models and algorithms
that exploit style context for field classification.

The single-source interpattern feature context has been
widely studied and utilized. Such a context can usually be
modeled as Markov dependence of pattern features on the
features of the previous pattern [1].

When interpattern feature dependence is due to liga-
tures, coarticulation, etc., the order in which the patterns
occur is important. However, when the feature dependen-
cies arise only because of the isogeny of the patterns, the
relative order of the patterns in the field should not affect
the classification decision. This condition disallows the
modeling of style context by Markov processes.

It is clear that, even in the absence of any linguistic
context, spatial context, i.e., the stationary nature of typeset,
typeface and shape deformations over a long sequence of
symbols, can be used to improve classification accuracy [2].

Human readers achieve higher accuracy on word groups
from single writers than on word groups from different
writers [3]. Hong and Hull use visual relations between
images, i.e., similarities between words or word-parts, to
increase word recognition accuracy [4].

Sarkar and Nagy model styles by multimodal distribu-
tions with two layers of hidden mixtures, corresponding to
styles and variants [5], [6], [7]. The parameters of the mixture
distributions are estimated using the EM algorithm.
Although, under the assumption that there are only a few
styles with Gaussian style-conditional class distributions,
this approach is optimal, the complex EM estimation stage is
prone to small-sample errors. Furthermore, in some pro-
blems, such as handwritten text recognition, the assumption
of a limited number of discrete styles is questionable.

Under essentially the same assumptions as ours,
Kawatani attempts to utilize style consistency by identify-
ing “unnaturalness” in test patterns with respect to other
patterns by the same writer [8]. His criteria are based on
distances to other patterns classified into the same class or
correlations with patterns classified into different classes.
This method is similar in principle to our proposed
method. However, our method replaces the above heuristic
criteria by a unified method of classification using all the
information available. Koshinaka et al. model style context
as the dependence between subcategory labels of adjacent
patterns [9].

Some multisource recognition methods attempt to im-
prove accuracy by extracting features that are invariant to
source-specific peculiarities such as size, slant, skew, etc.,
[10]. Dehkordi et al. extract principal components based
only on class means to determine directions which have the
most interclass variability [11]. Although such strategies are
suitable for pattern classifiers operating on one pattern at a
time, correlations between intraclass variations contain
useful information for style-consistent word recognition.

Another approach to multifont recognition is first
recognizing the font of a document and performing font-
specific classification. The font recognizer developed by
Zramdini and Ingold uses typographical features such as
weight, size and slope of the text [12]. Shi and Pavlidis
propose extracting information from two sources—global
page properties (which help to distinguish fixed-pitch from
variable-pitch fonts) and from short-word recognition (that
helps to distinguish between serif and sans-serif fonts). The

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 1, JANUARY 2005 1

. S. Veeramachaneni is with the Automated Reasoning Division, Istituto per
la Ricerca Scientifica e Tecnologica, Via Sommarive 18, Povo, Trento
38050, Italy. E-mail: sriharsha@itc.it.

. G. Nagy is with the Department of Electrical, Computer, and Systems
Engineering, 6020 Johnsson Engineering Center, Rensselaer Polytechnic
Institute, 110 8th street, Troy, NY 12180. E-mail: nagy@ecse.rpi.edu.

Manuscript received 25 Oct. 2002; accepted 21 May 2004.
Recommended for acceptance by L. Vincent.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 117670.

0162-8828/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society



knowledge of the font family is then used to guide the text
recognition [13].

Bazzi et al. observe that, because of the assumption that
successive observations are statistically independent, HMM
methods have higher error rate for rare styles (because, due
to the independence assumption, the infrequent styles are
exponentially penalized) [14]. They propose modifying the
mixture of styles in the training data to overcome this effect.
In contrast, our method uses the a priori style probabilities
during classification.

There are, of course, many factors that impact text
recognition accuracy: segmentation errors, variability in
character shape, image quality, and the extent of linguistic
context. For classification, the resulting distribution of
features has been modeled most successfully by means of
Gaussian and composite Gaussian multivariate density
functions [15], [16]. The discriminant functions are then
completely determined by the first and second-order statis-
tics (mean vectors and covariance matrices). While higher-
order statistical dependences may occur, estimating even
second-order dependences among features requires large
training sets for the high-dimensional feature spaces cus-
tomary in character recognition. Language models that
govern the sequence of pattern classes can be readily
incorporated into the Gaussian statistical framework, typi-
cally through Hidden Markov Methods. Although we have
not applied a languagemodel, their use is entirely compatible
with style-constrained classification.

In OCR, touching character sequences are usually pro-
cessedbyintegratingsegmentationwithrecognition[17], [18].
The classifier determines the most probable path through a
trellis of oversegmented character images. Therefore, the
classification itself is still based on isolated patterns and style
constraints will raise the accuracy of the combined scheme.

In Section 2, we introduce precise notation for field
classification and extend the Gaussian quadratic discrimi-
nant function to fields of isogenous patterns generated by
discrete sources. In Section 3, we develop a model for
sources with normally distributed means that appears
appropriate for handwriting. Experimental results on fields
of NIST data sets are reported in Section 4. Our conclusions
and future work are in Section 5.

2 STYLE-CONSCIOUS QUADRATIC FIELD
CLASSIFIER—DISCRETE SOURCES

In the first two sections, we formally define the problem of
style-conscious field classification when homogeneous test
fields are generated by one of several discrete sources. In
Sections 2.3, 2.4, and 2.5, we describe the proposed style-
conscious quadratic discriminant classifier. The character-
istics of various field classifiers for this problem are
explored through an extended example.

2.1 Problem Statement

We consider the problem of classifying an isogenous
input field-feature vector yyyy ¼ ðxxxxT

1 ; . . . ; xxxx
T
LÞ

T (each xxxxi

represents d feature measurements for one of L patterns
in the field) produced by one of S sources s1; s2; . . . ; sS
(writers, fonts, etc.). More than one source can be from
the same style. Let C ¼ fc1; . . . ; cNg be the set of singlet-
class labels. Let ci represent the class of the ith pattern

of the field.1 We make the following assumptions on the
class and feature distributions:

1. pðskjc1; c2; . . . ; cLÞ ¼ pðskÞ 8k ¼ 1; . . . ; S. That is, any

linguistic context (interpattern class dependence) is

source independent. For multiwriter word recogni-

tion, this assumption implies that the handwriting

style of a writer does not depend on her vocabulary.

2. pðyjc1; c2; . . . ; cL; skÞ
¼ pðx1jc1; skÞpðx2jc2; skÞ . . . pðxLjcL; skÞ 8k ¼ 1; . . . ; S.

The features of each pattern in the field are class-

conditionally independent of the features of every

other pattern in the same field. For multifont zip code

recognition, this assumption implies that, for the zip

code “12180” in a particular font, the noise in the “2” is

independent of the noise in the “0.”

Under the above assumptions, for the field-feature vector

ðxT
1 ; . . . ;x

T
LÞ

T and field-class ðci1 ; ci2 ; . . . ; ciLÞ, it can be shown

that, for any function fð�Þ and l ¼ 1; . . . ; L,

EffðxlÞjci1 ; ci2 ; . . . ; ciLg ¼ EffðxlÞjcilg: ð1Þ

This result will be useful for deriving the formulae for the

field-class-conditional means and covariance matrices.

To illustrate the problem of style-constrained classifica-

tion and contrast various classifiers we reexamine the

example studied by Sarkar in [5].

Example 1. Consider the problem of classifying test fields

of length L generated by one of two sources fs1; s2g.
The possible singlet-class labels are C ¼ fA;Bg. For

simplicity, we assume that the classes are equally likely

(i.e., pðAÞ ¼ pðBÞ ¼ 1=2) and no linguistic dependence

is present (i.e., pðAAÞ ¼ pðAÞpðAÞ etc.). Additionally,

we assume that the sources are equally likely (i.e.,

pðs1Þ ¼ pðs2Þ ¼ 1=2).

We ensure that the style-specific-class-conditional

feature distributions are unidimensional Gaussian and

are configured, as shown in Fig. 1. fA1;B1g represent the
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1. This egregious notation avoids nested subscripts. If the second pattern
of the field belongs to the fifth class, then it is denoted c2 ¼ c5.

Fig. 1. The source-and-class-conditional feature distributions—discrete
sources.



class-conditional densities for A and B from source s1,

and fA2;B2g represent those from source s2. The feature

distributions are

ðxjA; s1Þ � Nð�A1
; �2Þ; ðxjA; s2Þ � Nð�A2

; �2Þ;

ðxjB; s1Þ � Nð�B1
; �2Þ and ðxjB; s2Þ � Nð�B2

; �2Þ:

The parameters dc and ds control the interclass and
interstyle distances. Since only the relative positions of

the means matter, the means were fixed as follows:

�A1
¼ 0; �A2

¼ ds; �B1
¼ dc and �B2

¼ dc þ ds:

For L ¼ 2, the field-class-conditional field-feature dis-

tributions have two components—one for each source.

pðx1; x2jc1; c2Þ ¼ ð1=2Þfpðx1jc1; s1Þpðx2jc2; s1Þ
þ pðx1jc1; s2Þpðx2jc2; s2Þg for c1; c2 2 fA;Bg:

Similarly, for any field length, the field-class-conditional

feature distributions are bimodal composite Gaussian.

2.2 The Discrete-Style (DS) and the Style-First (SF)
Field Classifiers

If the source-and-class-conditional feature distributions are

known, the optimal field classification strategy is to assign

the label ðc?1; . . . ; c?LÞ to the test field feature vector yyyy, where

ðc?1; . . . ; c?LÞ ¼ argmax
ðci;...;ckÞ2CL

fpðyyyyjðc1 ¼ ci; . . . ; c
L ¼ ckÞ

pðc1 ¼ ci; . . . ; c
L ¼ ckÞg

¼ argmax
ðci;...;ckÞ2CL

pðci; . . . ; ckÞ

XS
m¼1

pðxxxx1jci; smÞ . . . pðxxxxLjck; smÞpðsmÞ:

ð2Þ

Such a classifier, being optimal for discrete styles, will
henceforth be referred to as the discrete-style (DS) field
classifier. In reality, the feature distributions are seldom
known and have to be estimated from training data,
implying the need for sufficient samples per class for
each style. Sarkar attempts to alleviate this requirement
by modeling the data as being drawn from much fewer
styles [5].

Another straightforward approach for exploiting the
isogeny of pattern fields is to first recognize the source label
from the field and use the particular source-specific decision
boundaries to classify the patterns in the field. This classifier
will hence be referred to as the style-first (SF) field classifier.2

The SF classifier first identifies the style according to

s? ¼ argmax
sk

pðskjyyyyÞ ¼ argmax
sk

pðskjxxxx1; . . . ; xxxxLÞ

¼ argmax
sk

fpðxxxx1; . . . ; xxxxLjskÞpðskÞg
ð3Þ

and then classifies the test field according to

ðc?1; . . . ; c?LÞ ¼ argmax
ðci;...;ckÞ2CL

pðci; . . . ; ckÞpðxxxx1jci; s?Þ . . . pðxxxxLjck; s?Þ:

ð4Þ

In general, the style-first classifier has a higher field error

rate than the discrete-style classifier because of errors in

style identification.

2.3 Quadratic Discriminant Field Classifier

In contrast to the above classifiers, we propose a quadratic

discriminant field classifier thatmodels style context in a field

as correlations between normally distributed singlet feature

vectors. This classifier, which is a natural extension of the

singlet Gaussian quadratic discriminant classifier, will

henceforth be referred to as the style-conscious quadratic

discriminant field (SQDF) classifier.
We will first derive the expressions for field-class-

conditional means and covariance matrices. For now, let

L ¼ 2 and cccc ¼ ðci; cjÞT be a field-class label.
The mean vector for the field-class c is given by

�ij ¼ Efyjc1 ¼ ci; c
2 ¼ cjg ¼

Efx1jc1 ¼ ci; c
2 ¼ cjg

Efx2jc1 ¼ ci; c
2 ¼ cjg

 !

¼
Efx1jcig
Efx2jcjg

� �
from ð1Þ

¼4
�i

�j

� �
:

ð5Þ

Therefore, the field-class-conditional mean vector can be

constructed by concatenating the component singlet-class-

conditional mean vectors.
Let us now compute the field-class-conditional covariance

matrix for the class cccc ¼ ðci; cjÞT , whichwewill denote byKij.

Kij ¼ Efðy� Efyjc1 ¼ ci; c
2 ¼ cjgÞ

ðy� Efyjc1 ¼ ci; c
2 ¼ cjgÞTg

¼ E
n
ðxT

1 ;x
T
2 Þ

T ðxT
1 ;x

T
2 Þjc1 ¼ ci; c

2 ¼ cj

o
� E

n
ðxT

1 ;x
T
2 Þ

T jc1 ¼ ci; c
2 ¼ cj

o
E
n
ðxT

1 ;x
T
2 Þjc1 ¼ ci; c

2 ¼ cj

o
¼4

Ci Cij

Cji Cj

� �
;

ð6Þ

where

Ci ¼ Efx1x
T
1 jcig �Efx1jcigEfxT

1 jcig;
Cij ¼ Efx1x

T
2 jc1 ¼ ci; c

2 ¼ cjg �Efx1jcigEfxT
2 jcjg;

ð7Þ

and, similarly,

Cii ¼ Efx1x
T
2 jc1 ¼ ci; c

2 ¼ cig � Efx1jcigEfxT
2 jcig:

Thus, Kij can be written as an L� L block matrix with

d� d blocks (d is the singlet-pattern feature dimensionality),

where the diagonal blocks are just the class-conditional

singlet covariance matrices. It can be shown that the above

derivations generalize to longer fields. In the general case,
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2. The style-first classifier is different from Sarkar’s label-style (LS)
classifier [5], which essentially classifies each field by S style-specific
classifiers and chooses the label assigned by the style with the maximum
field-feature likelihood (weighted by the a priori style probability). The LS
classification rule is
ðc?1; . . . ; c?LÞ ¼ argmax

ðci ;...;ckÞ2CL
pðci; . . . ; ckÞmax smpðxxxx1jci; smÞ . . . pðxxxxLjck; smÞpðsmÞ.



the mean �i;j;...;k and covariance matrix Ki;j;...;k for the field-
class cccc ¼ ðci; cj; . . . ; ckÞT are given by

�i;j;...;k ¼

�i

�j

..

.

�k

0
BBB@

1
CCCA;Ki;j;...;k ¼

Ci Cij . . . Cik

Cji Cj . . . Cjk

..

. ..
. . .

. ..
.

Cki Ckj . . . Ck

0
BBB@

1
CCCA:

Hence, the means and covariance matrices for field-classes
of arbitrary length can be constructed from the singlet-class-
conditional means, the N singlet-class-conditional covar-
iance matrices C1;C2; . . . ;CN , and the NðN þ 1Þ=2 “cross-
covariance” matrices (since Cij ¼ CT

ji) C11;C12; . . . ;CNN .
This means that the estimation of field-class-conditional
covariance matrices for long fields is no more demanding
than for L ¼ 2.

2.4 Estimation of the Classifier Parameters

Here, we present expressions from which the estimators for
the field-class-conditional means and covariance matrices,
given class and source labeled data, can be derived by
replacing all expectations by the corresponding sample
averages.

The field-class-conditional means as shown in (5) are
formed just by concatenating the appropriate singlet-class
means estimated from data (neglecting source labels). As
mentioned earlier, the diagonal blocks of the field-class-
conditional covariance matrices, Ci, are the class-condi-
tional singlet-class covariance matrices. They will be
estimated from the weighted sum of the source-and-class-
conditional “power” matrices.

Ci ¼ Efx1x
T
1 jcig � �i�

T
i ¼

XS
k¼1

pðskÞEfx1x
T
1 jci; skg � �i�

T
i :

ð8Þ

In general, the accurate estimation of parameters that
describe style context (here, Cij, the off-diagonal “cross-
covariance” matrices) requires a large number of field-
samples for each field-class. We will show that the
assumptions made in Section 2.1 simplify the estimation
of the cross-covariance matrices. From (7),

Cij ¼ Efx1x
T
2 jc1 ¼ ci; c

2 ¼ cjg � Efx1jcigEfxT
2 jcjg

¼
XS
k¼1

pðskÞEfx1x
T
2 jc1 ¼ ci; c

2 ¼ cj; skg � �i�
T
j

¼
XS
k¼1

pðskÞEfx1jci; skgEfx2jcj; skgT � �i�
T
j

¼
XS
k¼1

pðskÞ�ðkÞ
i �

ðkÞT
j � �i�

T
j :

ð9Þ

Thus, the cross-covariancematrices can be computed from
the estimates of the source-specific singlet-class means
(�

ðkÞ
i ¼ Efxjci; skg). Since the cross-covariance matrices en-

capsulate the style information, it is intuitively appealing that
the existence of any style context is determined only by the
variation of class means across sources and not by variation
within a source. Furthermore, the cross-covariance matrices
canbeestimatedmoreaccurately fromsource-specific sample
means than from individual patterns from each source.

2.5 The SQDF Field Classification Rule

SQDF field classification is a straightforward application of
Gaussian quadratic discrimination, albeit for field-classes.
The field quadratic discriminant function for field-class
ðci; cj; . . . ; ckÞ is given by

gi;j;...;kðyyyyÞ ¼ ðyyyy� �i;j;...;kÞTK�1
i;j;...;kðyyyy� �i;j;...;kÞ

þ log jKi;j;...;kj � 2 log pðci; cj; . . . ; ckÞ:
ð10Þ

The test field pattern yyyy is assigned the field label that
yields the minimum discriminant value. We note that the
SQDF classifier is computationally expensive because of
the exponential increase in the number of field-classes
with field length. In addition, the quadratic discriminant
function involves the computation of quadratic forms over
high-dimensional spaces. To classify a field with L singlet
patterns, d singlet features, and N singlet classes, the
SQDF classifier must compute NL quadratic forms over an
Ld-dimensional space. Furthermore, to avoid inverting
covariance matrices during runtime, NL inverse covar-
iance matrices of size Ld� Ld must be stored.

We now cite from [19] some interesting and useful
properties of the SQDF classifier and the field-class-
conditional covariance matrices. 1) With identical class
means across sources, the SQDF classifier reduces to the
singlet quadratic discriminant classifier. 2) The discriminant
computation for field-classes that are permutations of one
another can be performed using the means and covariance
matrices of only one of those classes. This reduces the
storage complexity of the classifier. 3) The relationship
between the discriminant values computed by the singlet
classifier and the field classifier can be used to derive lower
bounds on the field discriminant values. These bounds can
be exploited to develop a computationally less expensive
branch and bound algorithm for field classification.

Example 1 (continued). For the classification problem in
Example 1, the discrimination rules for various classifiers
are shown below, followed by the corresponding error
rates and decision boundaries in the field feature space.

. DS: From (2), the (optimal) discrete-style (DS)
classification rule for L ¼ 2 is

ðc?1; c?2Þ ¼ argmax
ðci;...;cjÞ2C2

X2
m¼1

pðx1jci; smÞpðx2jcj; smÞ

since the sources and classes are equally likely
and no linguistic dependence exists.

. SQDF: For the SQDF classifier, we require the
field-class-conditional means and covariance ma-
trices. For L ¼ 2, the means are

EfyjAAg ¼ �AA ¼
ds=2

ds=2

� �
;

EfyjABg ¼ �AB ¼
ds=2

dc þ ds=2

� �
;

EfyjBAg ¼ �BA ¼
dc þ ds=2

ds=2

� �
; and

EfyjBBg ¼ �BB ¼
dc þ ds=2

dc þ ds=2

� �
;
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and the covariance matrices are equal for all field-
classes, given by

K ¼ �2 þ d2s=4 d2s=4
d2s=4 �2 þ d2s=4

� �
:

As indicated in Section 2.3, the field-class-condi-

tional means and covariance matrices can be

constructed for any field length from the above

expressions. Note that the SQDF singlet classifier

approximates the class-conditional bimodal den-

sities with a single Gaussian. Thus, even for L ¼ 1,

the SQDF and the DS classifiers are different.
. SF: Finally, the style-first (SF) classifier first

identifies the style from the test samples and

classifies them independently using the particular

style-specific quadratic singlet classifier. The SF
classification rule for a field of length L ¼ 2 is

ðc?1; c?2Þ ¼ ðargmax
c2C

pðx1jc; s?Þ; argmax
c2C

pðx2jc; s?ÞÞ

where

s? ¼ argmax
s2fs1;s2g

pðx1; x2jsÞ:

2.5.1 Error Rates of the Classifiers

For every set of parameters (interclass distance dc and

interstyle distance ds), we generated 30,000 random test

fields of length two, satisfying the distributions described in

Example 1. No training was required because we used the

true parameters for classification. The resulting field error

rates are summarized in Tables 1 and 2.

When dc ¼ 0, the classifiers have no means of distin-

guishing between As and Bs, leading to a field error rate of

75 percent (since all four field classes have the same

posterior probability at every point in the field-feature

space). When ds ¼ 0, there is no style variation and neither

the DS nor the SQDF field classifier proffer an improvement

over their corresponding singlet classifier. As expected,

when the interstyle distance (ds) is large compared to the

interclass distance (dc), the single Gaussian approximation

is poor, resulting in a higher error rate for the SQDF

classifier over the DS classifier. This effect is evident even

for the singlet classifiers.
Both the DS and SQDF field classifiers are more accurate

than the corresponding singlet classifier. Even after account-

ing for statistical variation, the observed improvement in

accuracy of the field classifiers is significant. This improve-

ment in accuracy is most striking when both dc and ds are

large. This can be attributed to the advantage in recognizing

the style identity when the interstyle distance is large.

Additionally, only when the classes are well separated can

we reliably recognize the style identity from only one pair of

isogenous patterns. Detailed analysis showed that the field

classifierdecreases the error rate ondifferent-class pairsmore

than on same-class pairs. From the results, we note that the

SQDF field classifier is a good approximation to the optimal

DS pair classifier when the interstyle distance is small

compared to the interclass distance.
Table 3 shows the character error rates of the DS, SQDF,

and SF classifiers with increasing field length for two

different parameter sets. The top row shows the minimum

achievable error rate, i.e., the single-source error rate that can

be attainedwhen the source labels for the test data are known.

All three classifiers improvewith increasing field length. The

single Gaussian assumption of the SQDF classifier causes its

error rate to flatten out at a higher value than the single-

source error rate. For this simple example, the SF classifier is a

good approximation to the optimal DS classifier.
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TABLE 1
Field Error Rates in % for the DS Classifier

for Different Values of dc and ds

The top number in each cell is the field error rate for the singlet classifier
and the bottom number is the field error rate for the field classifier.

TABLE 2
Field Error Rates in % for the SQDF Classifier

for Different Values of dc and ds

The top number in each cell is the field error rate for the singlet classifier
and the bottom number is the field error rate for the field classifier.

TABLE 3
Character Error Rates in % as a Function of Field Length
for Discrete Sources for Two Different Configurations

The single source error rate for each configuration is indicated.



2.5.2 Decision Boundaries

In this section, we will highlight the differences between the

various classifiers by studying the differences in their

decision boundaries in the field-feature space (for L ¼ 2).

Figs. 2 and 3 show the decision regions for the various

classifiers. The labels for the decision regions are obvious

from the position of the style-specific field-class means

(shown in the subfigures for the DS and SF classifiers). The

assumed single normal distribution for the SQDF pair and

quadratic singlet classifier are also shown.

The singlet classifier operates on each pattern in the field

independently: The classification boundaries are parallel to

the coordinate axes. The style-conscious classifiers (DS,

SQDF, and SF) utilize the dependence between co-occurring

singlets to improve accuracy. In Fig. 2 (dc ¼ 4 and ds ¼ 2), we

notice that, although the quadratic field classifier’s bound-

aries differ considerably from those of the DS classifier, its

field-error rate is nearly optimal. When dc ¼ 6 and ds ¼ 2

(Fig. 3), the suboptimal quadratic classifier decision bound-

aries are almost identical to those of the optimal field

classifier. This is due to the large class separation compared

to the style separation,which is generally the case in character

recognition applications. Hence, we believe that the SQDF

classifier can reasonably approximate the optimal DS field

classifier even though the patterns originate from only two

discrete sources. The boundaries for the SQDF field classifier

are piecewise linear because all four field-classes have equal

covariance matrices.

3 SQDF FIELD CLASSIFIER—CONTINUOUSLY

DISTRIBUTED SOURCES

It is conceivable that there are classification problems where
the possible styles are not discrete but are drawn from a
continuous distribution. For example, there is almost a
continuous variability in handwriting styles. We present a
mathematical model for continuously distributed sources
and show that, under the assumption of normality of
feature and style distributions, the SQDF classifier is
optimal for field classification.

3.1 Model for Continuous Styles

We consider again the problem of classifying a field yyyy ¼
ðxxxxT

1 ; . . . ; xxxx
T
LÞ

T (each xxxxi 2 IRd ) into one of the field-classes
in CL, where C ¼ fc1; c2; . . . ; cNg. We assume the exis-
tence of a “hidden” Nd-dimensional random vector
s ¼ ðmT

1 ; . . . ;m
T
NÞ

T , where each mi is a d-dimensional
random vector, 8i ¼ 1; . . . ; N . Here, the random vector s
represents the style whose identity is entirely deter-
mined by its class-conditional means.3 We make the
following assumptions on the feature distributions:
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3. A style is generated by selecting the class means. The mean for a
particular class is a random translation from the overallmean (�i) of that class
(grand class mean over all styles). The translation vector for each class is
normally distributed with zero mean. Furthermore, the translations for
different classes are correlated (as given by ����s). After the style is chosen, the
features are generated for each class independently, according to the style-
specific means and a covariance matrix (�i) that depends on the class but not
on the style.

Fig. 2. Discrete styles—field classification boundaries and field error rates for different classifiers, with dc ¼ 4, ds ¼ 2.

Fig. 3. Discrete styles—field classification boundaries and field error rates for different classifiers, with dc ¼ 6, ds ¼ 2.



1. s � Nð����s;����sÞ, where

����s ¼
�1

..

.

�N

0
B@

1
CA and ����s ¼

C11 C12 . . . C1N

C21 C22 . . . C2N

..

. ..
. . .

. ..
.

CN1 CN2 . . . CNN

0
BBB@

1
CCCA;

where Cij ¼ Efðmi � �iÞðmj � �jÞTg.
2. ðyjc1 ¼ ci; . . . ; c

L

¼ ck; s¼ ðmmmmT
1 ; . . . ;mmmm

T
NÞ

T Þ� N ððmmmmT
i ; . . . ;mmmm

T
k Þ

T ;����i;...;kÞ,
where

����i;...;k ¼
�i . . . 0d�d

..

. . .
. ..

.

0d�d . . . �k

0
B@

1
CA:

The covariance matrix ����s specifies the style varia-

bility, while the matrices f�1; . . . ;�Ng specify the

within-style variance in the patterns.

Let us now define

z ¼ ðyjc1 ¼ ci; . . . ; c
L ¼ ck; s ¼ ðmmmmT

1 ; . . . ;mmmm
T
NÞ

T ÞÞ �m;

where

m ¼ ðmT
i ; . . . ;m

T
k Þ

T . Clearly, z is Gaussian (� N ð0;�i;...;kÞ)
and independent of s.

The field-class-conditional density is given by

pðyyyyjci; . . . ; ckÞ ¼
Z
s

pðy ¼ yyyyjci; . . . ; ck; ssssÞpðssssÞdssss

¼
Z
m

pðy ¼ yyyyjci; . . . ; ck;mmmmÞpðmmmmÞdmmmm

¼
Z
m

pðz ¼ yyyy�mmmmjci; . . . ; ck;mmmmÞpðmmmmÞdmmmm

¼ pðzzzzÞ ? pðmmmmÞ
ðwhere ? is the convolution operatorÞ:

ð11Þ

Since both z and m are normally distributed, so are the

field-class-conditional feature distributions ðyjci; . . . ; ckÞ.
Therefore, the SQDF classifier yields the minimum field

classification error rate (the Bayes error).

The field-class conditional means and covariance ma-

trices can be shown to be

�i;j;...;k ¼ Efyjci; cj; . . . ; ckg ¼

�i

�j

..

.

�k

0
BBBB@

1
CCCCA ð12Þ

Ki;j;...;k ¼ Efðy� �i;j;...;kÞðy� �i;j;...;kÞT jci; cj; . . . ; ckg

¼

�i þ Cii Cij . . . Cik

Cji �j þ Cjj . . . Cjk

..

. ..
. . .

. ..
.

Cki Ckj . . . �k þ Ckk

0
BBBB@

1
CCCCA: ð13Þ

Example 2.We modify Example 1 from the previous section
to illustrate the model for continuous styles. There are
still only two singlet classes fA;Bg that are a priori
equally likely and there is no linguistic dependence.

The class-and-source conditional singlet-feature dis-

tributions are

ðxjA; s ¼ sÞ � Nðs; �2Þ ðxjB; s ¼ sÞ � Nðdc þ s; �2Þ

and the sources are distributed according to

s � Nð0; d2s=4Þ: ð14Þ

The distribution of sources and the feature distribu-
tions are shown in Fig. 4. Here, the source is identified by
only one number (instead of the two class-conditional
means) because, given the mean of A (denoted mA) of a
particular source, we can obtain the source-specific mean
of B (denoted mB) by mB ¼ mA þ dc. That is, the mean of
A and the mean of B are maximally correlated. So, the
single style variable just determines the “shift” of the
mean of A from the origin.

For any field length, the features are field-class-

conditionally normally distributed. For L ¼ 2, the field-

class means are

EfyjAAg ¼ �AA ¼
0

0

� �
; EfyjABg ¼ �AB ¼

0

dc

� �
;

EfyjBAg ¼ �BA ¼
dc

0

� �
; and EfyjBBg ¼ �BB ¼

dc

dc

� �

and the covariance matrices are equal for all field-classes,

given by

K ¼ �2 þ d2s=4 d2s=4
d2s=4 �2 þ d2s=4

� �
:

Again, the means and covariance matrices for any field
length can be constructed from those for L ¼ 2. These
parameters are used by the SQDF classifier for field
classification. Note that the means, covariance matrices,
and decision boundaries are identical to those of
Example 1 where there were only two styles.
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Fig. 4. The source-and-class-conditional feature distributions—continu-
ously distributed sources.



4 EXPERIMENTAL RESULTS

4.1 Description of the Data

We experimented with databases SD3 and SD7, which are
contained in the NIST Special Database SD19 [20]. The
database contains samples of handwritten numerals labeled
by writer and class. SD3 was the training data released for
the First Census OCR Systems Conference and SD7 was the
test data. SD3 and SD7 were obtained from different
populations and SD7 is considered to be much more
difficult to recognize. There are approximately 10 samples
per class per writer.

We constructed four data sets, two from each of SD3 and
SD7, as shown in Table 4. The writers in the Train and Test
sets are disjoint, which allows us to verify our hypothesis
that broad styles can be gleaned from a sufficiently large
sample of writers. We experimented with only a subset of
three classes (1, 2, 7) that contributed most to the error for
singlet classification.

Since we compute the field class-conditional covariance
matrices from source-specific class-conditional matrices, we
require that each writer have at least two samples for each
singlet class. We therefore deleted all writers not satisfying
this criterion from the training sets (but not from the test
sets). In Table 4, the numbers in the parentheses indicate the
total number of writers from each set that remain after the
deletion.

We extracted 100 blurred directional (chain-code) fea-
tures from each sample [21]. The top 25 principal
component features were picked for the following experi-
ments in order to avoid complicated covariance regulariza-
tion schemes as well as to reduce the computational cost for
classification. The samples of each writer in the test sets
were randomly permuted and L patterns were chosen at a
time to simulate fields of length L. All the algorithms were
implemented in MATLAB; therefore, we don’t consider it
appropriate to report running times. Since the error rates
reported below are the field error rates for a subset of
classes, they are not directly comparable with the error rates
reported on the NIST benchmark. For comparison, the best
character error rate of the baseline singlet classifier (with
covariance regularization) on all 10 classes of SD3-Test +
SD7-Test, with all 100 features, was 1.4 percent.

Fig. 5 shows the scatter plot of the top two principal
component features of the writer-specific class means of the
writers in the training sets. The writer-specific class means
seem to vary in a continuous fashion.

4.2 Classification Results

We present below the recognition results for the SQDF field
classifier and compare them with those of the quadratic
discriminant singlet classifier on the handwritten digits.
Table 5 lists the field error rates for the singlet and SQDF
field classifiers on fields of length two through five for
various test sets.

Fig. 6 shows some of the field patterns classified
incorrectly by the singlet classifier but correctly by the
SQDF field classifier.

The results in Table 5 show the advantage of exploiting
style context. The field error rate (3.8 percent) of the style-
conscious field classifier is significantly lower onNIST hand-
printeddigits than thatof the singlet classifier (4.6percent) for
fields of length 4. For L ¼ 4, the results are over 4,495 test
fields.

5 DISCUSSION AND FUTURE WORK

We have formulated the style-conscious quadratic discri-
minant function (SQDF) classifier as a natural extension of
the widely used Gaussian quadratic discriminant classifier.
We have shown that the SQDF classifier can be trained with
information only from pairs of same-source characters to
classify test fields of arbitrary length. We proposed a model
for the generation of style consistent fields under which the
SQDF classifier is optimal for field error rate.
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TABLE 4
Handwritten Numeral Data Sets

Fig. 5. Scatter plot of the top two principal component features of writer-
specific class means.

TABLE 5
Field Error Rates for Fields in % of Length L ¼ 2 and L ¼ 3 on Handwritten Data for Singlet and SQDF Field Classification

The training set is SD3-Train+SD7-Train.



The simulations indicate under what circumstances
style-conscious classification is most advantageous and
reveal the nature of the resulting pair-classification bound-
aries. On real data (Table 5), as field length increases, the
field classification accuracy for the singlet classifier as well
as the SQDF field classifier approaches zero, albeit at
different rates. The decrease in relative gain by the field
classifier from L ¼ 4 to L ¼ 5 can be attributed to this. For
long fields, it may be more advisable to optimize classifiers
for character error rate than for field error rate. In any case,
its excessive computational and storage complexity dis-
qualifies the SQDF classifier for longer fields. We propose
investigating methods to further exploit the special struc-
ture of the field-class-conditional covariance matrices to
reduce the computational complexity of the classifier.
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Fig. 6. Some test fields with recognition results.


