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Analytical Results on Style-Constrained
Bayesian Classification of Pattern Fields
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Abstract—We formalize the notion of style context, which accounts for the
increased accuracy of the field classifiers reported in this journal recently. We argue
that style context forms the basis of all order-independent field classification
schemes. We distinguish between intraclass style, which underlies most adaptive
classifiers, and interclass style, which is a manifestation of interpattern dependence
between the features of the patterns of a field. We show how style-constrained
classifiers can be optimized either for field error (useful for short fields like zip
codes) or for singlet error (for long fields, like business letters). We derive bounds
on the reduction of error rate with field length and show that the error rate of the
optimal style-constrained field classifier converges asymptotically to the error rate
of a style-aware Bayesian singlet classifier.

Index Terms—Style context, field classification, adaptive classification, Bayesian
classification.

*
1 INTRODUCTION AND MOTIVATION

IN statistical pattern recognition, it is often assumed that the test
patterns are independently and identically distributed (i.i.d.),
therefore they are classified one at a time. One consequence of the
ii.d.assumption is that the labels assigned to the singlets in a test set
are independent of the order in which the test singlets are presented
to the classifier. However, classifying groups (or fields) of patterns is
often more accurate than classifying single patterns (or singlets)
because of interpattern statistical dependence or context. We defined
in [1] and [2] a particular kind of interpattern dependence, called
style context, which we exploited in field classification. We show
below that such dependence also results in identical classification of
singlets in the field independent of their order (unlike, for example,
morphological and lexical context in Optical Character Recognition
(OCR) and Automated Speech Recognition (ASR)).

The interpattern dependence among the patterns in the test
field, induced by the fact that they belong to the same mixture
component, is called style context. In many applications style
context is the consequence of each group (field) of patterns to be
recognized having been generated by one of several sources, as
exemplified in Fig. 1.

Style consistency forms the basis for all adaptive classification,
i.e., order-independent classifiers that modify their decision
regions by exploiting the statistics of the test set. For instance,
clustering using the expectation-maximization or K-means algo-
rithms exploits some assumed similarity of patterns from the same
class. The necessary conditions occur frequently in OCR and ASR,
but, so far, adaptive methods have exploited only the consistency
of patterns of the same class generated by a given source. In terms
of style, we can define adaptation succintly as style-constrained field
classification where the field encompasses the entire test set.
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Nagy suggested exploiting “spatial context” in [3] without any
specific notion how this was to be done. The word “style” came to
be used with similar meaning four or five years later. We call
algorithms developed specifically under the three assumptions
listed in the next section style-constrained or style-consistent
classification. Discrete-style field classifiers were demonstrated
using templates in [4], on simulated Gaussian distributions in [5],
and on printed digits in [6]. We reported application of a
continuous-style quadratic classifier to printed and hand-printed
digits in [7], [8]. Sarkar and Veeramachaneni also derived fast,
suboptimal approximations to the optimal style classifiers. An
“adaptive” (within-class style) classifier was presented in [9]. We
proposed in [10] some conjectures on the nature of class and style
distributions in high-dimensional feature space, with supportive
evidence on hand-printed characters. Most of this material, with
detailed derivation of the classifier formulas, was assembled in
three journal papers [11], [1], [2] which also include additional
experimental results. In [12], we differentiated, by means of
Bayesian networks (directed graphical models), style context from
several other kinds of context that occur in OCR. Nagy reviewed
progress in adaptive character recognition in [13], almost 40 years
after his first attempts in that direction [14]. Adaptation in a
commercial OCR engine was reported in [15], but no commercial
exploitation of interclass style is known to us.

Our objective here is the formalization of the conditions where
style context is beneficial and of the equations that govern its
exploitation. We investigate four salient aspects of style-constrained
classification:

order independence,

intraclass versus interclass style,

singlet versus field error optimization, and
dependence of error rate on field length.
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Order independence distinguishes style context from linguistic
context. The definitions of intraclass and interclass style clarify the
difference between conventional adaptive classifiers and the broad-
er notion of style-constrained classifiers. Since the traditional
assumption (in Bayesian classification) of class-conditional inde-
pendence between the features of different patterns is dispensed
with, we can build classifiers optimized for either the field error rate
or the singlet error rate. In addition to showing that the error rate of a
(Bayesian) style-constrained classifier asymptotically converges to
that of the optimal style-aware classifier, our bound provides insight
into the properties of the classification problem that influence the
reduction in error rate with style-constrained classification.

2 NOTATION AND ASSUMPTIONS

For simplicity we restrict our notation and discussion to two-
class problems. We consider the problem of classifying a field-
feature vector y = (z,...,z;) (each z; represents d feature
measurements for one of L patterns in the field) produced in
one style s € S. The field feature vector is an instance of the
random vector y = (xy,...,xz). Let C={A, B} be the set of
singlet-class labels. Let ¢’ represent the class of the ith pattern
of the field." We make the following assumptions on the style,
class, and feature distributions.

1. p(ch,e?,...,ck) = p(c))p(c?) ... p(ch). That is, there is no

higher order linguistic dependence” than the prior class
probabilities p(A) and p(B) =1 — p(A).

1. If the fifth pattern of the field is a B, then it is denoted ¢® = B.
2. This assumption is desirable for exploring style context independently
from linguistic context which is already widely used in classification.
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Fig. 1. A hypothetical example with style induced dependence—*17” written by two
writers, 1 and 2. We can achieve higher accuracy by classifying a group of
patterns from the same writer simultaneously than classifying the singlets in the
group independently. Note that the label of the writer of the test field is not needed
to improve the accuracy.

2. p(Als) =p(A)Vs e S. The prior class probabilities are
style-independent. For multiwriter word recognition, this
assumption states that the handwriting style of a writer
does not influence his or her vocabulary.

3. plyle',c?,...,chs) =15, p(xilc',s) Vs € S. The features
of each pattern in the field are class-conditionally
independent of the features of every other pattern in the
same field. For multifont word recognition, this assump-
tion states that, for the word ABBA in a particular font, the
noise in the first A is independent of the noise in the
second one as well as of the noise in the Bs.

3 ORDER INDEPENDENCE

A consequence of our assumptions is order independence, which is
central to the idea of exchangeability in modern Bayesian statistics.
An infinite sequence of random variables is finitely exchangeable if
the joint distribution of any finite subset of them is equal to that of
any permutation of the subset. The theorem of De Finetti states that
the probability distribution of a finitely exchangeable sequence
must be a (possibly uncountably infinite) mixture of probability
distributions of i.i.d. sequences [16]. In other words the sequence is
conditionally ii.d. We render this latent conditioning variable
explicit and call it style.

Result 1. Under our assumptions, for any permutation (i,...,ir) of
(1,...,L)
p(x1 =%1,...,x =2z | c! :cl,...,cL =cr)
=p(x1=%i,...,x, =z, | :ciw..wcL =¢j;)-

Proof Outline. The left-hand side can be written as

L:CL)

= Zp(:zl,...,zL7s|cl =c,...,ck=¢p).
seS

p(X17...,IL|C1:C17...7C

The result follows straightforwardly from Assumptions 2 and 3
above. a

This result implies that the probability of a pattern field given a
field class is equal to the probability of any permutation of the
pattern field given the field class which is the same permutation of
the original field class. Note that such order independence does
not hold when there is class-label dependence due to linguistic
context or sequence-induced interpattern feature dependence due
to ligatures or coarticulation. Conversely, the assumption of
Markov dependence is not appropriate to model the feature
dependence arising due to a common source. We shall make
further use of order independence for deriving a bound for the
error rate as a function of field length.
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4 INTRACLASS AND INTERCLASS STYLE CONTEXT

As reported in [1], style constrained classifiers trade-off loss of
accuracy on same-class fields against gain on mixed-class fields.
We, therefore, define two kinds of style context: intraclass style and
interclass style. Intraclass style is present when there is statistical
dependence between patterns of the same class in a field, i.e., there
is at least one class ¢ € C such that

p(x1,%3a(c, ¢) # p(x1]c)p(xa|c). (1)

Interclass style is defined as the statistical dependence between
patterns of different classes in the same field. That is, there exist
two different classes c;, c; € C such that

p(x1,Xa|ci, ¢) # p(xaei)p(xalc)). (2)

The above definitions are only for L = 2, but they generalize to
longer fields. Class-conditional statistical dependence between
triples of different-class patterns may arise even if all pairs are
class-conditionally independent. This cannot happen with same-
class patterns because dependence between any three patterns
from the same class in a field implies dependence between all
pairs. For simplicity, we shall avoid considering any egregious
higher-order dependence without lower-order dependence.

Result 2. The existence of interclass style context implies intraclass style
context.

Proof Outline. If there is no intraclass style context, then for every
class, the class-conditional distributions are identical for all
styles. This implies that inter-class style is absent as well. O

As mentioned, adaptive classifiers reported to date exploit only
intraclass style context. They use the patterns in the test set to
refine the estimates of the underlying distributions via clustering,
expectation maximization, or decision-directed estimation, and the
patterns in the training set to assign labels to these distributions.
The essential idea is crystallized in [17], [18].

Adaptation can compensate both for an insufficient number of
training samples and for nonrepresentative training sets, but
classifiers that use only intraclass style context are clearly
suboptimal for data that also exhibit interstyle context. As shown
experimentally in [11], exploiting interclass style can increase the
accuracy over using only intraclass style, especially on short fields.
We now examine the essential characteristics of field classifiers
that exploit the existing interclass style context.

5 STYLE-CONSTRAINED CLASSIFIERS

Most of the experiments we reported earlier were based on Gaussian
class-and-style-conditional feature distributions. Here, we take a
broader view to examine issues common to all style-constrained
classifiers. We formulate criteria for singlet-error optimized and
field-error optimized classification, propose an efficient approxima-
tion, and define, for analytical purposes, an abstract classifier.

As is customary, we assume that the cost of all interclass
confusions is the same and, therefore, we wish to minimize the error
rate. When classifying fields, however, we can minimize either the
number of misclassified fields (a field is considered misclassified if
any pattern in the field is misclassified), or the total number of
misclassified patterns, regardless of how the errors are distributed
among fields. In operational applications with short fields (bank
check amounts and ZIP codes) field error rate is paramount, because
regardless of the number of errors, after proofreading it is more
convenient to reenter the whole field. However, in longer fields, like
a business letter, the number of singlet errors, which will be
individually corrected, must be minimized. We note also that the
field error rate increases with field length, which must be taken into
account in experimental comparisons with different field lengths [2].
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When we classify field-patterns into field-classes, the Bayes
decision rule using the zero-one loss function minimizes the field
error rate: the classification decision that minimizes field error rate

for the test field y = (z1,..., %) is, as in [1]
¢ = argmaxp(cly) —argdeZp yle, s)p(e)p(s). ()
cect ceCt &S

We call this field classifier FOPT (for Field error OPTimized).

To minimize the singlet error rate, we construct the so-called
SOPT classifier (for Singlet error OPTimized), which is a Bayes
decision rule with the Hamming distance loss function between
the true and assigned field class labels. The SOPT classifier assigns

the label ¢; to «;, the Ith pattern in the field y = (z1,...,z.), where
G = argmaxp(cl =c|z1,..., %)
e (4)
= argrréaXZp clzy, $)p(slza, ..., zL),

cel

where
L

Ty,...,x|s)p(s )L, p(xi|s

p(5‘$17---7$L): p( 1 L| )p( ) — p( )Hl 1Lp( [‘ ) . (5)
2sp(@, - zLls)p(s) S p(s) [T p@ls)

These optimal style classifiers can be computationally demand-
ing. The FOPT classifier requires the computation of posterior
probabilities for all field classes, the number of which increases
exponentially with field length. Both the FOPT and SOPT classifiers
require the averaging of posterior class probabilities over all styles.

The performance of the optimal field classifiers can be
approximated by that of a style-first (SF) classifier® which first
recognizes the style of the test field and then uses the appropriate
style-conditional maximum a posteriori classifier. The style-first
classifier assigns the label ¢ to z;, the lth pattern in the field
according to

¢ = argmaxp(c|xy, §), (6)
ceC
where
where § = argmaxp(s|y) = argmaxp(s|z1,..., )
S S

(7)

argmax{p(z1, ..., zr|s)p(s)}.

To help us obtain bounds on the error rate, we now define a new
style-constrained classifier called the GIBBS classifier.* For the test
field (x1, o, . ..,z ), the GIBBS classifier chooses a style s randomly
according to the posterior distribution of the styles given the test
field p(s|x1, <2, ...,z ) and then classifies each singlet z; in the field
according to the style-conditional distributions of style s. The GIBBS
classifier assigns the label ¢ to z;, the lth pattern in the field
according to

argmax p(c|x, §) (8)
ceC

& =

) 9)

From the above classification functions and Result 1, it is clear
that all of the above classifiers classify a test field order-
independently, i.e., every singlet in the field is classified indepe-
dently of its position in the field. Note that the difference between the
SOPT, SF, and GIBBS classifiers stems from their different usage of
the posterior style distribution. By construction, the singlet error rate

where s ~ p(sly) = p(slz1, ..

3. A different suboptimal approximation is derived in [5].

4. Our GIBBS classifier is, in principle, similar to its namesake in [19], but
we use it in a different context. Here, the singlet being classified also plays a
part in altering the posterior distribution according to which the style is
sampled.
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of the SOPT classifier is lower than that of the SF or the GIBBS
classifier.

Although we have so far implied that there is a finite number of
discrete styles, it may sometimes be advantageous to consider a
continuous distribution of styles. In handwriting, a training set may
contain a large number of writers, but it is unlikely that any writers
in the test set will duplicate the patterns of some writer in the
training set. For example, in [2], we assumed that the class-
conditional distributions of every writer are identical, but their
means vary continuously. We showed that, if both distributions are
Gaussian, then all the patterns of a class will be distributed
according to a single Gaussian distribution obtained by convolving
the distribution of the style means with the class-and-style-
conditional distribution.

6 ERROR RATE VERSUS FIELD LENGTH

We now present some results on the error rate of the SOPT style-
constrained classifier. Since, due to order independence, the singlet
error rate is independent of the position of the singlet in the field,
the probability of singlet error of the SOPT classifier (see (4)) acting
on fields of length L is

/z . min{p(z1,
w0
/ ggg{zp(cwhs)p(zl ..,st>p<s>}.

Result 3. py(e) is a monotonically nonincreasing function of L.

pr(e)

Proof Outline. It follows from (10) and the inequality

/mm{a (@)} <mln{L a(a:),/x‘b(x)}.

In particular, the error rate of an optimal style-constrained field
classifier for any field length is no greater than the error rate of a
singlet classifier. We show later that except under pathological
conditions, it is less.

We can calculate the probability of singlet error of a classifier
realizable only if the styles are known (called style-aware classifier).
It is given by

O

ACIEDWE / min{p(z, c = cls)}
(11)
= Y ple) [ minfp(c = ciz,9)p(a),
£ 0to) [ o' (el )p(e) (12)
Result 4. p;(e) > p*(e) V L.
Proof Outline. It follows from (10), (11), and the inequality
Zmln{a (x)} < mln{Za(x),Zb(aﬂ)}.
O

That is, the probability of error for the style-constrained field
classifier is never lower than that of the style-aware classifier. Also,
. A - N
we note that lim;_.., pr(€) = pso(e) is not always equal to p*(e).

Result 5. p(e) = p*(e), the style-aware error rate, if the styles are
distinguishable.
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Fig. 2. (a) Shows the style-and-class-conditional densities. (b) and (c) Show the plots of error rate versus the field length. In both cases, p*(e) = 15.87%.

Proof Outline. Let the test field be (zi,xs,...,z). From (4), the
label ¢j assigned by the SOPT classifier to z; is
(13)

¢ = argmax
C

p(C[ = C|$[, s)p(s|zl7 s 7XL)'
eC S

If the styles are statistically distinguishable, i.e., for two distinct
styles s and s», p(z|s1) is “different” from p(z|s;), then we have

Llim p(slzi,...,zr) = 6(s, %), (14)
where s* is the identity of the style that generated the field and
§(.) is the Kronecker delta function. Thus, we have from (13) and

(14) that

G = argmaXZp(cl = c|z;, 5)6(s, 5*) = argmax p(c! = c|z;, 5*).
ceC s ceC

Thus, when the styles are distinguishable, a style-con-

strained field classifier optimized for character error rate

converges to the style-aware classifier asymptotically with the

length of the test field. Consequently, the error rate of the SOPT

classifier converges to p*(e). o

In the Appendix we derive an upper bound on the error rate of
the SOPT classifier by bounding the error rate of the GIBBS
classifier. The upper bound is related to the error rate of the style-
aware classifier (i.e., the lowest achievable error rate), the pairwise
difference of style-specific classifiers and the pairwise difference in
style-conditional feature distributions. Let the style-aware classifier
for style s; € S be denoted ¢;(.).

Result 6.

pL(e) B (e) < p7(0) + 2 s s vlsi5) Y,
i#j

(15)

where p*(e) is the error rate when the style of the field is known and
11(si, 85)
= [ aepens) ).
Joj(z)#6i(x)
oA/ p(z,5:)p(x, 55)dx

depends on the difference in the style-conditional classification
boundaries of styles s; and s; in the singlet feature space, and

v(sis)) = /z

is a measure of the difference between the style-conditional singlet
feature distributions of s; and s;. In addition, v(s;,s;) < 1 when the
style-conditional distributions are different, implying that the bound
approaches p*(e) asymptotically with L.

In Fig. 2, we show the singlet error rates obtained by
simulations for various classifiers along with the bound as a
function of the field length L. We use synthetic data to illustrate
our analytical results for Bayesian classification. We cannot
compute the bound exactly for real data because we can only
estimate the true distributions. The simulations were conducted for
Gaussian style-and-class-conditional feature distributions given by
(see Fig. 2)

(x|A4,s1) ~ N(0,1), (x|4,sz) ~ N(ds, 1),

(x|B, s1) ~ N(d.,1), and (x|B, s2) ~ N(d. + ds, 1).

Figs. 2b and 2c show the error rates for the SOPT, SF, and the
GIBBS classifiers, along with the bound and the error rate of the style-
aware classifier for two choices of d. and d, as a function of the field
length. Note that, because in Fig.2c, the styles are more distinguish-
able than in Fig. 2a, the error rates of the classifiers (and the bound)
approach p*(e) more rapidly with increasing field length.

The presence of style dependence does not necessarily decrease
the Bayes Risk achievable by field classification. Equation (15)
helps us to intuit situations where there is style dependence which
does not translate to a decrease in error rate. When does this
happen? In situations where:

1. thesinglet error rate or the error rate in classifying the style
of a singlet is zero, or

2. the style-specific classifiers are identical across styles, or

the error rate of the style-aware classifier is 50 percent, or

4. the style-conditional singlet feature distributions are
identical.

(58]

In the first three situations, the error rate of the singlet classifier
already matches the accuracy of the style-aware classifier, and in the
last case, although the error rate of the style-aware classifier may be
lower, it cannot be achieved by field classification because the
styles are not distinguishable. These situations are not representa-
tive of most application domains.
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7 SUMMARY

The decrease in error rate due to style-constrained classification has
already been amply demonstrated experimentally. We believe that
the analytical findings communicated above provide guidance for
further development of field classifiers based on less restrictive
assumptions. We explored the connection between style-con-
strained classification and exchangeability. We defined intraclass
and interclass style and showed how the commonly accepted notion
of adaptive classification fits into the style framework. Even though
it is difficult to find situations where intraclass style occurs without
interclass style, we drew a distinction between them because many
adaptive classification algorithms exploit only intraclass style. Only
recently has attention been focused on interclass style. We gave a
general formulation for style classification and showed that
minimizing the singlet error rate and field error rate require different
algorithms and have different applications. We defined an abstract
Gibbs classifier, by means of which we investigated the decrease in
error rate with field length. We proved that when the styles are
distinguishable, the error rate of the optimal style-constrained
classifier converges asymptotically to that of the style-aware Bayes
singlet classifier.

APPENDIX |

PROOF OUTLINE FOR RESULT 6

Proof Outline. Let us consider the singlet error rate of the GIBBS
classifier, say on z;, from the test field y = (z1,%2,...,x1)
generated in style s;. The probability of error is the sum, over all
J, of the probability of choosing a style s; times the probability
of misclassifying x; by style s;, given that it was generated in s;.
Recall that the label assigned to z; using the classification
boundaries for style s; € S by ¢;(z1).

PP ely, i) = > p(sily)p(d,(m)|a, 50),
J
where ¢;(z;) denotes that the style-conditional classifier of s;
makes an error on .
Now (for a two class problem), if ¢;(x1) = ¢i(z1), ie., if

both styles s; and s; classify z; identically, p(¢;(z1)|Z1,s:) =

p(elzy,s;) and if @;(x1) # di(x1), then p(g;(x1)lx1, i) =
1 — p*(e|z1, si). Therefore,

iP5 ely, s:)

= Sy
{9 (el 1) + 1(5(31) # 61(21))(1 — 2" (el )},

where I(.) is the indicator function, which is 1 when its

p

argument is true, and 0 otherwise.
Removing the conditioning on the field and the style, the
error rate of the GIBBS classifier is

%‘IBBS (6)

= / Z Zp(si\y)p(sj\y) ..

A el 51) + T(5(a) # o)
. (1 —2p*(e|zq,8)) tp(y)

rO+ [ S pslnsly)-

o I(@i(zr) # bi(21)) (1 — 2p™ (el 5:))p(Y).-

p
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Now, since p(s;|y)p(s;ly) < min{p(si|y),p(s;|y)}, we have
PP (e) —p*(e)

S5 [ 1056 £ o)1 - 25 clar,5) .

IN

- mintte 920,90
- ZZ/ 1(6)(z1) # 6u(@)(1 — 2" (el 5)
/ min{p(s;, z1)p(x2 ..., 2L|si),. ..

.p(sj,x1)p(®2 - - -, xL85)}

S [ 1osm) # oxm)1 - 20 el )

/ min{p(s;, £1)p(x2|s:) . .. p(xLlsi), . ..
. p(sj, T )p(xals;) - - . p(zLls))}

S5 [ o) £ @) -2 elar.s)

s [ oteloomaie}

IN

= 23" [ 16m) # 6.
i#j 7 E
(1= p(elz,s) = p*ela, 5)y/p(@. s)p(@,s)) -

p(z[si)p(zls))

L b

2 Z /1,(3,,1, S]')V(Sj, 8_7')(L71).

i#]
The fact that v(s;,s;) <1, if the styles are distinguishable,
follows from the Cauchy-Schwarz inequality. |
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