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Abstract

A Bayesian method of isolating character bitmaps
from paragraph-length samples of heavily degraded text
images is demonstrated. The method requires a tran-
script of the text, but it is sufficiently robust to tolerate
errors in transcripls obtained from multifont commer-
cial OCR software. The resulting prototypes (labeled
character images) are used to recognize additional text
in the same document.

1 Introduction

The research reported here is motivated by (1) the
growing consensus that a representative (but not nec-
essarily large) training sample is more important for
classification accuracy than the specific choice of fea-
tures or classifiers [HB94], and (2) the accumulation
of evidence that character-level segmentation followed
by recognition is inadequate for many printed pages
submitted to OCR [Bokser92, CL96].

The most representative training sample for a given
document is a set of character samples drawn from the
same document. However, trainable OCR systems are
unpopular because they impose a burden on the op-
erator. We are therefore concentrating on minimizing
the human intervention necessary to extract character
samples from a scanned page image.

The recognition process itself can then be based
on a few training samples extracted from the same
document. This reduces the OCR task to an essen-
tially single-font recognition problem. Most shape
and size variations due to the choice of typeface, and
to gross printing, copying and scanning effects, are
eliminated. Under these circumstances, we believe
that judicious use of template matching techniques,
which have long proved their worth in single-font ap-
plications [Ullman73], are adequate. A major benefit
of template matching schemes is that, unlike many
feature-based methods, they do not require prior seg-
mentation of the printed text into isolated character
blocks.
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Our prototype extraction method is based on com-
paring the bitmaps of pairs of words that contain
the same character. Extending the recognition pro-
cess from characters to words and using document-
specific methods has been long advocated by Jonathan
Hull and by Larry Spitz, and their colleagues [HH95,
Spitz95]. Rolf Ingold used character identities derived
from the text under consideration [Ingold90]. Among
the most exciting current methods for document-
specific OCR are the sophisticated dynamic program-
ming approaches developed by Gary Kopec and his
colleagues [KC94, KL96]. Kopec also derived least-
squares estimation of sidebearing parameters from
pairs of character images [Kopec93].

The contribution presented here is a sound
Bayesian method for determining matching columns
of pixels that correspond to the same character, in se-
lected pairs of labeled word blocks. An earlier version
of prototype extraction, based on recursive segmenta-
tion of word blocks, was presented at DAS96 [NX96).

Our improved method is based on the observation
that when two bitmaps of word blocks are shifted over
each other and correlated pixel column by column,
high similarity values between columns occur in win-
dows that contain the same letter in the two words.
The known sequence of symbols in the two words can
be used to extract the bitmaps of the pair of matching
characters. This process can be performed efficiently
for every pair of matching characters. The robust-
ness of the algorithm derives from the redundancy of
matching each character to several other samples of
the same character.

A transcript may be obtained by key entry. Keying
in a few lines of text takes a good typist less than a
minute. Alternatively, we can use the imperfect out-
put of a commercial OCR package on the same image.
The transcript is used to find every pair of words that
contain matching characters and to estimate the posi-
tion of each character within each word.

In a typical paragraph of printed text, all but the



least frequent lower-case letters (x, q, z, j) tend to
appear more than once. Common letters such as a
or s may appear in dozens of words. The frequent
letters, for which prototypes can be extracted from
a paragraph or two of labeled text, statistically ac-
count for over 95% of all text in the entire document.
Improved recognition performance on these common
letters therefore substantially reduces the overall error
rate.

In a complete system, the remaining text - includ-
ing, for instance, occasional italics - would be recog-
nized by a static multifont classifier with a higher error
rate.

Preprocessing consists of line finding, word segmen-
tation, and word baseline location. Figure 1 shows the
result of preprocessing four lines of text from Docu-
ment A065 of the University of Washington database
[PCHH95]. The image was obtained at 300 dpi with
a bi-level scanner.

A lincar analysis of the free oscillations of captive

Figure 1: Broken text scanned at 300 dpi.

The prototypes are extracted by the word-shift al-
gorithm. After a set of prototypes has been obtained
for every identifiable character in the labeled text im-
age, the class-conditional pixel probabilities are esti-
mated for each class of symbols. Each probability ar-
ray is called a template. To recognize new text, the
algorithm chooses the combination of templates that
produces the highest probability for the pixel array of
each word. The result is a string of symbol identities
for each word in the new text.

2 Word Shift Algorithm and
Prototype Extraction

The core of the method is the word shift algorithm.
Its input is a set of scores S that reflect the similarity
between every pair of columns in each pair of words
that contain at least one instance of the same letter.
The similarity scores are converted to probabilities.
Next, the a posteriori probabilities of candidate win-
dows are computed for every probable location and
width of the target character. The pair of character
bitmaps with largest a posteriori probability is saved.

The word shift algorithm makes use of prior proba-
bilities for width and location. These are obtained as
follows.
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The width of each class of characters is estimated
by solving multi-variable regression equations where
the variables are the widths of the characters. The
sums of the character widths are equal to the known
word lengths, and constitute an overdetermined linear
system which is solved for the mean width of each class
of characters, and for the inter-character spaces.

The location of each character with respect to the
beginning of the word is the sum of the widths of the
preceding characters and inter-character spaces. (For
characters nearer to the end of the word, we compute
the position from the right.) We consider the width
of each character as a random variable, and obtain
the probability distribution of the sum of the widths
of a string of characters by convolving the individual
width distributions. The estimated locations of the
characters in two words are shown in Figure 2. These
estimated widths and character location probabilities
are used in the Bayesian matching algorithm as priors.
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Figure 2: Probability distribution of character loca-
tion for two words, estimated from both ends.

The similarity scores are converted to match and
non-match probabilities using a generic table based
on histograms of similarities for columns from match-
ing and non-matching characters. The same table is
used in every example. When the location and width
of the window corresponds to a pair of matching char-
acters, then high similarity scores are probable for cor-
responding pairs of columns within the window, and
low similarity scores are probable for all other column
pairs. Therefore the window that contains the target
character in both words will have the highest a poste-
riori probability.

The pseudocode of the word shift algorithm is
shown in Figure 3. The match probability conditioned
on the similarity score is P(z,y, w|S). The range W:: v
of column scores consists of every pair of columns
within the window w located at = in word 1 and y
in word 2. W, consists of every other column pair
in the two words, at every (z,y). P(z),P(y),P(w)
are the previously estimated e priori probabilities for
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Il x, y: location of window in each word

/I P_(-): match probability

Il P(-): no-match probability

/I P(x), P(y): location probability

/] P(w): width probability

!l Ly: width of word I ; Ly : width of word 2

PROCEDURE word-shift ()
FOR Vx, Vy, Vw DO
P(x,y,wlS) o
P(x) P(y) Pw) TL Po(sp T1P(S)

= Q0(x, y, w);
END
(x *, y *, w *) = argmax Q(x, y, w);
END
Output:

Extract w: coluryns from each word at shift
position x and y " respectively.

Figure 3: Pseudocode for word shift and character
bitmap extraction.
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Figure 5: Text, above, reproduced full scale. Begin-
ning of the text, middle, enlarged 4X. Prototypes,
below, enlarged 4X. [a,a,e,e,s,s,c,c,0,0,%,f,
i,i,1,1,r,r,t,t].

This paper surveys current bit level processor array
architectures and describes 3 tool for designing and
programming these arrays. The survey emphasises
arrays that have been implemented rather than
proposed architectures. The essential features shared by
these arrays, and those that differentiate them are
characterised and used to develop a taxonomy for bit
level processor arrays. The second part of the paper
discusses programming tools, with an emphasis on RAB,
3 large program used to msp 2 class of aigorithms
written in ‘C’ onto bit level processor arrays. The basic
components and extensions to RAB are discussed.
Directions of curreat research and design of bit level
processor array architectures and their programming
environments are also briefly discussed.
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Figure 4: TTop-left part of text, above, repro-
duced full scale. Prototypes, below, enlarged 2X.
[b,b,h,c,c,e,e,m,n,n,s,s,v,v,y,y)].

location and width (z, y, and w are assumed to be
independent of one another).

Prototype extraction is illustrated in Figures 4-6
with three examples from the UW database. Below
each paragraph from which the prototypes were ex-
tracted are representative examples of the prototypes
of several classes. We selected typical prototypes from
several confusion pairs in order to emphasize the poor
quality of the print in the chosen examples.
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Figure 6: Text, above, reproduced full scale. Proto-
types, below, enlarged 4X. [a,a,s,s,z,z,c,c,e,0].

The first example (A065 in the UW database) has
uneven weight and some broken characters. The sec-
ond example (JO4E) is in a very small and badly
blurred type. In the third example (1000), some
classes, especially s and z, are virtually undistinguish-
able to the eye.

The extracted prototypes are combined in a prob-
ability array to form a template for each class. The
templates for the first example are shown in the form
of gray-scale maps in Figure 7. In the next section,
we describe the recognition of new text from the same



pages, using the templates constructed from the ex-
tracted prototypes.

abcdefghilmnoprstuvy

Figure 7: Template probabilities from the prototypes
of Figure 4, shown in gray scale.

[)(_abcdefghilmmoprstuyy

Figure 8: Templates obtained with an imperfect tran-
script.

To demonstrate the robustness of the algorithm to
labeling errors, instead of the correct transcript we use
the transcript generated by a commercial OCR soft-
ware. We also use the error-prone word-segmentation
boundaries determined by the OCR software. The
OCR output has 37 errors on the 280 character train-
ing set of A065, as counted by a longest-common-
substring algorithm. Note that using the training fea-
ture of the OCR software does not improve its results
much because of the many segmentation errors and
because the package fails to pinpoint the error-prone
classes. Nevertheless, the class-conditional pixel dis-
tributions produced by our algorithm (Figure 8), are
similar to those obtained from the correct transcript
(Figure 7). The extra template classes ‘)’ and ‘(’ are
due to broken-character recognition errors.

3 Recognition

The recognition of new text without character
segmentation requires estimation of the best match
among the prototypes in each column position. The
best sequence of prototypes is selected by level-
building, a dynamic programming algorithm used
in speech recognition with Hidden Markov methods
[RL85]. The templates used for recognition include a
single-column “blank”, one or more instances of which
may be inserted between character templates to im-
prove the overall match.

The results of the prototype extraction and recog-
nition experiments are shown in Table 1 for the three
examples. The Table shows the number of characters
in the training set (row 1) and the test set (row 2),
the number of prototypes that were extracted from
the training set (row 3), the number of characters in
the test set from the classes represented by these pro-
totypes (row 4), the classification error rate on these
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Table 1: Recognition results.

UW filename A065 JO4E 1000
No. of characters

(training set) 280 418 656
No. of characters

(test set) 274 437 4094
No. classes

(with prototype) 21 39 29
No. of admissible

characters 265 339 3936
Error on 2/265 | 77/339 | 170/3936
admissible text 0.75% 19.7% 4.32%
Commercial OCR || 25/274 | 262/437 | 869/4094
error on test set 9.12% 60% 21%

characters (row 5), and the error rate of a commercial
OCR device on the entire test set (row 6).

We have not yet included any provision to recognize
the characters for which no prototypes are available.
If the a posteriori match probability of the template
responsible for any symbol is too low, a reject symbol
is inserted. Having a reject option is mandatory in
our method because the training set does not gener-
ally contain samples of every symbol class (e.g. q, W
in Figure 9). In principle, the symbol string produced
by our method could be aligned with the symbol string
produced by the omnifont OCR, and most reject sym-
bols replaced by the omnifont OCR. output.

VTS
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Figure 9: Low scores due to missing q, W templates.

As indicated in Table 1, the material in all three ex-
amples is well beyond the capabilities of current om-
nifont OCR, devices, even with their extensive letter
n-gram tables and lexicons. For instance, the error
rate of a commercial OCR on the second example is
60% (yes, really.) However, we understand that the
sample sizes are far too small to draw significant con-
clusions, and present these examples for illustrative
purposés only.



4 Conclusions

The availability of high-speed processors with large
internal memories offers an opportunity to revisit
adaptive learning methods for OCR. Some commercial
systems already make use of limited forms of adapta-
tion, but their methods are seldom revealed to the
research community.

The method presented here is not comparable with
current commercial OCR systems with their exten-
sive routines for special bitmap configurations, punc-
tuation, capitalization, and morphological and lexical
context. It is, nevertheless, a demonstration of the
power of adapting the classifier to each document. We
are now working on improving the following aspects of
our system:

e Modification of the match function and level-
building programs for effective template matching

on kerned text.

Development of a robust method for combining
the outputs of our classifier and of the multifont
OCR device. This requires an OCR device that
provides word-block coordinates.

Reduction of the effect of word-segmentation er-
rors, and extending the method to unsegmented
Chinese and Japanese text.

Comparison of the Bayesian word shift pro-
totype extraction with HMM for printed text
(BK94, EI95], and with the elaborate methods of
[KC94, KL96], to determine their relative advan-
tages and limitations.
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