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Abstract

Previous studies of tortuosity were restricted to a curve
in 2D or 3D. We propose several measures of surface tor-
tuosity based on surface normals and principal curvatures,
and apply these measures to analyze the tortuosity of three-
dimensional crack surfaces of concrete. We show that all
crack surfaces are similar in tortuosity despite their differ-
ent sizes and locations, while distinctive from various geo-
metric surfaces.

1. Introduction

According to the Oxford English Dictionary, “tortuosity”
is the condition of being twisted, crooked, sinuous. Tortu-
osity is a type of geometrical irregularity. This property has
been studied for a curve in 2D or 3D. We have not found
studies of this property on a surface.

1.1. Curve Tortuosity

The tortuosity of a curve has been mostly applied to ex-
amine the morphology of blood vessels. Normal blood ves-
sels are straight or slightly curved. They become tortuous
when diseases such as high blood flow, angiogenesis, and
congestion of blood vessels occur. By modeling the blood
vessels as curves in 2D or 3D, a measure of tortuosity will
enable automatic diagnosis [4, 1].

Tortuosity is also used to measure the diffusion distance
of neuro-active molecules in the brain. As the substances
confined to the extracellular space diffuse more slowly than
in free solution, this study can provide insight into the func-
tion of neuro-active molecules [8].

1.2. Motivation

We study the tortuosity of a surface in order to analyze
the three-dimensional crack surfaces of concrete. Concrete

is a quasi-brittle, heterogeneous material whose fractures
are characterized by a wide range of physical processes [9].
Previous research in fracture modeling (a) aimed to under-
stand and predict the bulk fracture response, (b) analyzed
the contours of cracks at a low resolution in 2D. However,
three-dimensional models are necessary to accurately com-
pute the properties of concrete, which exhibits complex 3D
fracture surfaces [2].

With X-ray microtomography, 3D representation of the
internal structures of a concrete specimen has been pro-
duced at an unprecedented resolution. By applying increas-
ing compressive loads to a specimen, this technique cap-
tures the fracture evolution in a sequence of volumetric im-
ages [6].

We have developed image processing tools to extract the
crack surfaces from these images [10]. Here we discuss
measures of surface tortuosity, and apply them to investigate
the properties of these cracks.

In Section 2, we review various measures of curve tor-
tuosity in 2D and 3D. We propose new measures of surface
tortuosity in Section 3. Section 4 contains the results of
these measures on crack surfaces. We summarize our find-
ings in Section 5.

2. Measures of Curve Tortuosity

There are three common measures of curve tortuosity:
the distance ratio, the number of inflection points, and the
sum of angles.

Distance Ratio: The distance ratio is the easiest and most
frequently-used measure. It is defined as the ratio of the
length of the curve to the distance between its end points
(Figure 1 (a)). The measure can be applied to a curve in
either 2D or 3D, but the problem is that it is insensitive to
how the curve “wiggles”. For example, in Figure 1 (b), the
curve of the largest half-circle has the same distance ratio
as the curve composed of a series of smaller half-circles.
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(a) (b)

Figure 1. (a) Distance ratio is the ratio of the
length of the curve (dashed line) to the dis-
tance between the two end points (solid line).
(b) The two curves have the same distance
ratio even though the dashed curve is more
tortuous than the solid one.

Number of Inflection Points: An inflection point of a
curve is the locus with zero curvature. For a curve spec-
ified by a series of points, the inflection point can be de-
termined from the normal direction of a surface defined lo-
cally by a point Pk and its immediate neighborhoods Pk−1

and Pk+1. Let v1 = (Pk − Pk−1)/|Pk − Pk−1| and
v2 = (Pk+1 − Pk)/|Pk+1 − Pk|, then the normal nk at
Pk is the cross product

nk = v1×v2. (1)

The normal nk+1 at Pk+1 can be computed similarly using
its neighbors Pk and Pk+2. If the curve segment at these
four points bends in the same way, the two surface normals
will be in the same direction, otherwise they will have op-
posite directions (Figure 2). If Pk+2 is not in the plane de-
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Figure 2. Inflection points: the normals are
in the same direction at non-inflection points
(left), and are in the opposite direction at in-
flection points (right).

termined by Pk−1, Pk and Pk+1, then nk and nk+1 will not
be exactly in the same or opposite directions. The inflection
point can then be determined by identifying the local max-
ima in |∇n|, where ∇n can be computed as the difference
of neighboring normal directions. A similar method in [1]
determines an inflection point using the concept of Frenet
frame [5].

Since a single arc and a straight line have no inflection
point, they will report the same tortuosity of zero. One sug-
gested measure combines the number of inflection points
with the distance ratio: it adds one to the number of inflec-
tion points and multiplies the result by the distance ratio [1].

Sum of Angles: Any measures of curve tortuosity that com-
bine the distance ratio and the number of inflection points
cannot differentiate between an arc and a coil (Figure 3).
This confusion can be solved by measuring the total angles

C

C2

1

Figure 3. Suppose the arc (C1) and the coil (C2,
formed by wrapping around a cylinder) have
the same ending points and length. As they
both have no inflection point, their tortuosi-
ties are the same for any measures that only
involve the distance ratio and the number of
inflection points.

of curvature [1]. At each Pk, the total angle (θk) is asso-
ciated with two components : an in-plane angle (ρk) and a
torsional angle (τk). They are computed using the inverse
cosines of two dot products:

ρk = arccos (v1 · v2) , (2)

τk = arccos (nk · nk+1) , (3)

and the total angle θk =
√

ρ2
k + τ2

k . The sum of the angles
is

∑
k θk. It is commonly divided by the length of the curve

for normalization.

3. Measures of Surface Tortuosity

We propose measures of surface tortuosity based on the
surface normal (n) and the two principal curvatures (k1, k2).
At each point on a smooth surface. these properties are de-
fined in differential geometry [3] as follows: n is the normal
direction of the tangent plane, and k1, k2 are the maximum
and minimum curvatures of the set of curves crossing that
point. This set of curves is formed at the intersection of the
surface with a plane determined by the surface normal n
and a vector t in the tangent plane (Figure 4).

These geometric quantities are often reformulated as a
spatial average at each vertex for a piece-wise linear trian-
gular mesh [7]. In order to do so, the surface patches of the
mesh must form a complex: any two triangles either do not
meet, or only meet at an edge or a vertex.

Average Angle between Surface Normals (µn
θ ): Similar

to the sum of angles in measuring the curve tortuosity, we
calculate the average of angles between every neighboring
pairs of surface normals. We first compute, at every vertex i,
the sum of angles between ni and its neighbors {nij}: θi =
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Figure 4. A curve formed as the intersection
of the surface S with a plane determined by
the normal vector n at x, and a vector t on the
tangent plane T.

∑
j arccos(ni · nij). Summing over all vertices will result

in every angle between each pair of neighboring vertices
being computed twice. Therefore, we define the average
angle between surface normals as:

µn
θ =

1
2Ne

∑
i

θi =
1

2Ne

∑
i

∑
j

arccos(ni · nij), (4)

where Ne is the total number of edges. µn
θ will be zero on

a flat surface (Figure 5 (a)) as the normals are everywhere
identical. It will be within (0, π] on a curved surface.

(a) (b)

(c) (d)

Figure 5. Surface properties are discussed on
four types of simple geometric surfaces: (a)
a flat surface, (b) a half cylinder, (c) a half
sphere, and (d) a saddle surface.

Average Principal Curvatures (µk1 , µk2 ): Some surfaces
have distinctive properties of curvatures in different orienta-
tions. The curvature of a half cylinder (Figure 5 (b)) is posi-
tive along the circular direction and is zero along the lateral
direction. A single measure of µn

θ will not fully character-
ize the properties of the surface. We compute two average
principal curvatures by calculating the sums of maximum
and minimum principal curvatures at every vertex, and di-

viding the sums by the number of vertices:

µk1 =
1

Nv

∑
i

k1,i, (5)

µk2 =
1

Nv

∑
i

k2,i, (6)

where Nv is the total number of vertices.

Standard Deviations of Principal Curvatures (σk1 , σk2 ):
Other than the average principal curvatures, we also com-
pute the standard deviations as a measure of how “uni-
formly” k1 and k2 are distributed across the surface:

σk1 =

√
1

Nv

∑
i

(k1,i − µk1)
2
, (7)

σk2 =

√
1

Nv

∑
i

(k2,i − µk2)
2
. (8)

As the principal curvatures of the half cylinder and the half
sphere (Figure 5 (c)) are identical everywhere, their corre-
sponding standard deviations will be zero. Non-zero results
are expected for the saddle surface in Figure 5 (d).

4. Results

We first examine the four types of simple geometric sur-
faces in Figure 5. Various measures of tortuosity are listed
in Table 1. Every property of a flat surface is of value zero.
The saddle is the most tortuous in terms of average angle.
For the half cylinder, the difference between two principal
curvatures is expected, while the small non-zero value in
σk1 is caused by the limited mesh resolution. Although the
principal curvatures are identical everywhere on a smooth
spherical surface, there is some difference in the results of
half sphere due to the uneven distribution of mesh vertices.
In the saddle surface, the two principal curvatures have op-
posite signs. Their large standard deviations also indicate
its sinuosity.

µn
θ µk1 σk1 µk2 σk2

flat surface 0 0 0 0 0
half cylinder 0.19 0.21 0.05 0 0
half sphere 0.28 0.25 0.03 0.19 0.05
saddle surface 0.32 0.52 0.30 -0.52 0.30

Table 1. Results of various measures of tortu-
osity from four types of geometric surfaces.

We then apply these measures to the crack surface re-
covered from volumetric concrete images. The concrete se-
quence we use is composed of four images, B1, B2, B3 and
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B4. The first image, B1, has no cracks. There are widen-
ing cracks in B2 through B4. The size of each image is
704×768×512. The dimension of a voxel is (6µm)3.

There are different numbers of cracks in each image. B2
has only one crack, B3 has five cracks, and B4 have eigh-
teen cracks. The triangulated meshes of crack surfaces are
displayed in Figure 6. A fixed set of colors is used. The
color of a crack surface is determined by the rank in the
number of its constituent triangles.

Figure 6. Crack surfaces in B2, B3, and B4.

The various measures on these crack surfaces are listed
in Table 2. All cracks in B2 and B3 are included in the
table, but only the largest ten cracks of B4 are listed due to
the limited space. Despite their different sizes and locations,
all cracks have similar values in every measure. Compared
with the saddle surface, the cracks also have relatively large
values in µn

θ , and opposite signs in µk1 , µk2 . However, the
values are much smaller than those of the saddle surface.
This indicates that the crack surfaces have bumps and dents,
but their amplitudes are much smaller. This can be observed
by comparing the pictures directly.

Comparing the amplitude of the principal curvature with
that of the corresponding standard deviation, it is also ob-
served that the former is larger for geometric surfaces, while
the latter is larger for the crack surfaces. This can be ex-
plained by the geometric surfaces still being quite smooth
despite some surface irregularity, while the crack surfaces
having many bumps and dents.

5. Conclusion

We have derived several measures of surface tortuos-
ity based on surface normals and principal curvatures. We
demonstrate that these measures can differentiate some sim-
ple geometrical surfaces. We have also applied these mea-
sures to analyze the crack surfaces recovered from volumet-
ric image sequences. The results show that (1) the crack sur-
faces of concrete are locally tortuous with bumps and dents,
but they are still quite “flat” globally; (2) the crack surfaces,
despite their different sizes and spatial locations, have very
similar properties in surface tortuosity.

Acknowledgments: The authors wish to thank Prof.
Eric Landis for providing the volumetric concrete images.

µn
θ µk1 σk1 µk2 σk1

B2 0.42 0.030 0.046 -0.033 0.046
0.35 0.023 0.032 -0.023 0.032
0.36 0.022 0.034 -0.026 0.036

B3 0.34 0.021 0.030 -0.026 0.033
0.37 0.027 0.039 -0.026 0.035
0.32 0.021 0.027 -0.023 0.030
0.35 0.022 0.031 -0.022 0.031
0.37 0.026 0.035 -0.024 0.035
0.37 0.025 0.033 -0.023 0.032
0.36 0.021 0.031 -0.027 0.034
0.37 0.023 0.033 -0.028 0.034

B4 0.37 0.020 0.034 -0.030 0.038
0.42 0.025 0.040 -0.038 0.048
0.34 0.023 0.029 -0.024 0.033
0.33 0.021 0.027 -0.025 0.031
0.45 0.025 0.044 -0.041 0.047

Table 2. Results of various measures of tortu-
osity on the crack surfaces in the 3D images
of B2, B3, and B4.
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