
Style Quantification of Scanned Multi-source Digits 
 

Xiaoli Zhang and George Nagy 
DocLab, ECSE, Rensselaer Polytechnic Institute 

zhangxl@rpi.edu, nagy@ecse.rpi.edu 
 

Abstract 
The co-occurring patterns in a group carrying the 

traits of common origin are statistically dependent via 
an underlying style context. Exploiting style 
consistency in groups of patterns from multiple 
sources can increase OCR accuracy. The accuracy 
gains obtained by a style consistent classifier depend 
on the amount of style in isogenous (same-source) 
fields. We present mathematical models to quantify the 
amount of single-class and multi-class style using 
entropy, correlation and mutual information. We also 
demonstrate a method for style homogenization that 
allows testing our metrics on real data.  

1. Introduction 
We can often distinguish numerals written by Alice 

from numerals printed by Bob, as well as digits printed 
in different fonts. Forensic analysts can even tell 
whether two fields of digits were written with the same 
pen, or printed on the same printer. This shape 
consistency, called style, takes two forms, which we 
call single-class style and multi-class style.  

Single-class style is the shape consistency of a 
single class from each source. It reveals how consistent 
a writer is in writing a glyph. Does Alice always cross 
her 7’s, while Bob never does?  

Multi-class style determines how much the shape 
of a given class reveals about the appearance of other 
classes from the same source. The way Alice writes 9 
helps predict the way she will write 6. 

 In OCR, each glyph (a letter, numeral or 
ideograph) is usually represented by a feature vector. 
Style can then be characterized in terms of statistical 
measures collected on fields of data from different 
sources. We will present a measure for single-class 
style based on entropy, and two measures for multi-
class style, one based on cross-correlation and the 
other on mutual information. 

 Table 1 illustrates the difference between the two 
kinds of style. In single-class style, the patterns of the 
same class from a given source differ only by noise. 
For example, the 2s from Source 1, Source 2, and 
Source 3 are always bold. Therefore Source 1, 2, and 3 
have the same style with respect to numeral 2.  

 In multi-class style, if a source produces a bold 2, 
we can be sure that it will also produce a bold 1, and a 
source that favors italic 2 will also favor italic 1. These 
sources represent two distinct multi-class styles. 

Table 1. Single-class and multi-class style 
 Single-class style Multi-class style 
Source 1 22/07/1927 22/07/1922 
Source 2 25/05/1905 05/05/1925 
Source 3 21/06/1943 21/06/1943 
Source 4 03/24/1945 03/24/1945 

Either kind of dependence can be exploited in 
field classification. Single-class style is suitable for 
adaptation on long fields, while multi-class style can 
improve accuracy even on short, mixed-class fields 
[1.2]. In real data, especially hand-print, either kind of 
style may be difficult to detect. Our methods facilitate 
the cost-benefit analysis of resource-intensive field 
classification versus simpler singlet classification. 

We first show how style homogenization can 
remove style from a dataset. We will then apply style 
homogenization to scanned printed and hand-printed 
digits, and show that (1) our measures do reveal the 
presence or absence of the two kinds of style, and (2) 
the error rate of a style-constrained field classifier is 
consistent with the proposed measures. 

2. Style homogenization 
The tables below illustrate the process. There are 

only two classes here, A and B, and four sources: the 
source of each pattern is indicated by a superscript. 
Each source has only 3 samples, numbered 1, 2 and 3, 
and indicated by a subscript. Thus B2

3 is the second 
sample of class B from Source 3. The original data, 
Dataset (DS) I, before style homogenization, is 
indexed according to Table 2.  

Table 2 - Dataset I 
 Class A Class B 
S1 A1

1 A2
1 A3

1 BB1
1 BB2

1 BB3
1

S2 A1
2 A2

2 A3
2 BB1

2 BB2
2 BB3

2

S3 A1
3 A2

3 A3
3 BB1

3 BB2
3 BB3

3

S4 A1
4 A2

4 A3
4 BB1

4 BB2
4 BB3

4
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Style homogenization creates virtual sources by 
shuffling the samples. In DS II (Table 3), samples of 
both A and B are replaced by randomly selected 
samples from any source. Therefore DS II exhibits no 
style, regardless of the style content of DS I.  

Table 3 - Dataset II 
 Class A Class B 
S1 A2

2 A1
3 A1

4 BB1
2 BB3

3 BB2
4

S2 A1
1 A3

2 A3
4 BB1

1 BB2
3 BB3

4

S3 A2
1 A1

2 A2
4 BB3

1 BB2
2 BB1

4

S4 A3
1 A2

3 A3
3 BB2

1 BB3
2 BB1

3

The statistical integrity of the data is preserved by 
using each sample only once. Our measures should 
show that the homogenized Dataset II has no single- or 
multi-class style except what might be expected from 
serendipitous configurations of a finite sample. 

3. Style quantification 
Our entropy measure for single-class style requires 

style labeled data. It compares the non-uniformity of 
the distribution of styles of a single class from each 
source to the average non-uniformity of this class in 
the entire dataset, using entropy as a measure of non-
uniformity. 

For multi-class style we propose two measures, 
mutual entropy and style correlation. Mutual 
information also requires style-labeled data. It is a non-
parametric measure of the dependence between the 
style distributions of pairs of classes in same-source 
pairs of patterns.  

Style correlation does not require style-labeled 
samples, but only pairs of samples from each source. It 
is therefore applicable to many pattern recognition 
tasks where the samples arrive in same-source fields 
(like addresses on postal envelopes, insurance claims, 
and tax forms), but where the style of these groups is 
not known, and many fields may share the same style. 

3.1. Single-class style: entropy 
We begin with Nc samples, and therefore Nc 

feature vectors of a single digit class c, from M 
sources. There are K styles, and each sample of class c 
has a style label. The style may be associated with a 
writer, a typeface, or with any other source-dependent 
grouping. Let there be Nm samples of this digit class 
from source m, Nk samples of style k, and Nm,k samples 
from source m and class style k. The Source Class-
Style Probability Vector (SCSPV) is 

,1 ,2 ,  ( ,  , , ) m m m m KP p p p= …  
where pm,k=Nm,k/Nm, for , . 1, ,m M= … 1, ,k K= …

We calculate the Source Class Entropy for each source:  
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If all the samples of a digit class for the source are 
assigned to the same style, then the source class 
entropy is its minimum value, zero. This source has 
maximal single-class style. In contrast, the source class 
entropy reaches maximum value of log2 K when a 
source exhibits K equally probable variations in 
shaping the same digit. Such a source does not have 
any single-class style for the observed digit.  The 
Average Source Class Entropy (ASCE) is defined as: 
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The values of Hm and Haverage depend on the 
fraction of samples from each style as well as on the 
amount of style.  

With a finite number of samples, even if the 
sources did not exhibit any single-class style, sampling 
fluctuation may decrease the average entropy. To 
account for the finite sample size, we compute the 
Expected Source Class Entropy E[H]  under the 
multinomial sampling distribution [3].   
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average number of samples from each source, and nk is 
the number of samples of style k. We assume that 

mN n=  for each source. We obtain the source class 
entropy of each partition by considering all ways of 
partitioning n samples into K styles: 
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E[H] is then derived by summing the product of 
the multinomial probability and the entropy for every 
possible source class-style partition. E[H] is given by 
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E[H] approaches its normalized limiting value of unity 
as n increases. With Matlab we can compute E[H] up 
to n=170 with K=3.  

The expected entropy predicts the average entropy 
when there is no style. We can therefore compare 
Haverage with E[H] as a measure of single-class 
consistency. A large difference indicates strong single-
class style. 



3.2. Multi-class style: mutual information  
Isogenous patterns exhibit inter-pattern style 

consistency. Multi-class style derives from the 
statistical dependence between the features of co-
occurring patterns from different classes. We ignore 
throughout statistical dependence between the labels of 
adjacent patterns, known in character and speech 
recognition as language context. Mutual information 
(MI) quantifies multi-class style. 

Each source m generates patterns of class i and style 
k according to , and of class j 
according to 

,1 , ,( , , , ,i i i i
m m m k m KP p p p= … … )

j
mP , as in Section 3.1. 

 is quantized to a 0/1 vector at 
thresholds set to 

,1 ,2 ,( , , ,i i i i
m m m m KP p p p= … )

1 2( , , , )i i i i
KP p p p= … . The resulting 

Source Class-Style Assignments are considered octal-
valued random scalars Gi and Gj.  

If, for instance, there are three equiprobable styles 
of classes 5 and 6 (i.e., ), and 
Source 13 has generated (5,4,1) and (0,8,2) samples of 
each style of classes 5 and 6 respectively, then the 
corresponding values for the 13

5 6 (1/ 3,  1/ 3,  1/ 3)P P= =

th source sample will be 
G5 = (1,1,0) = 68  and G6 = (0,1,0) =28. Since the total 
number of samples per source is fixed, some values of 
G (here 08 and 78) cannot occur.  

The extent of multi-class style is determined by the 
departure from statistical independence of the joint 
sample distribution of Gi and Gj (i  j), which is 
quantified by MI  

≠

,
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( )iP G  is the fraction of sources with source class-style 
label Gi.  is the number of (G( , )i jP G G i, Gj) 
combinations over all sources divided by the number 
of sources M. The number of possible combinations 
increases rapidly with finer quantization, resulting in 
too few samples for accurate estimates of the joint 
probabilities. 

If there is strong multi-class style, that is, if the 
Source Class-Style Assignments of two classes are 
always and only associated with each other, then the 
difference between the values of MI before and after 
style homogenization will reach its maximum value. 

3.3. Multi-class style: style correlation 
Style correlation is based on the cross-covariance 

matrices which capture the class-conditional 
dependence between the singlet patterns in a field [4].  

A singlet pattern is denoted by with class 
label 

R d∈x
{ }1 2, , , Nc c c∈ …c , where N is the number of 

singlet classes. An isogenous field, with L singlet 
patterns, is represented by and its 
field class label is the concatenation of its singlet class 
labels. The covariance matrices for field-classes of 
arbitrary length can be constructed from the N singlet-
class-conditional covariance matrices  and 
the 
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L=y x x x…  

2
1 2, , , NC C C…

( 1) /N N −  cross-covariance matrices  
 [2]. We consider the field-class-

conditional covariance matrices for field patterns of 
length L=2, , with class labels , 
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i i i iC E c μ μ= −x x 1 2[ | ]T T

ij i j i jC E c c, μ μ= −x x , 
and iμ  and jμ  are the means of class i and j 1. 

The average field-class covariance matrix (over all 
field classes except those with repeated singlet class) is:   
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The d d× off-diagonal blocks of K  are average 
cross-covariance matrices over class pairs, which 
represent the average style dependence in a dataset. In 
order to facilitate comparison across different datasets, 
we normalize the covariances in the matrix K  by the 
standard deviations of the features. The pqth element of 
the matrix K , i.e., pqK  is normalized as 

l              , 1,2, ,2pq
pq

pp qq

p q d= ∀ =
KK

K K
…  

The elements of the d d× off-diagonal blocks of the 
normalized matrix K

�
 are the net correlation 

coefficients between features of pairs of distinct 
patterns. We use the average of the absolute net 
correlation coefficients as a scalar measure to quantify 
multi-class style in a dataset, i.e., 

l
2

2
1 1

1 d d

pq
p q d

R
d = = +

= ∑ ∑ K  

Style correlation can be extended to an arbitrary 
number of patterns in the fields. Here again the 
difference in the values of R before and after style 
homogenization predicts the gain of field 
classification. 

                                                           
1 To simplify the notation, we let  denote estimates 
of the corresponding sample averages. 

[ ]E ⋅



4. Experiments 
We conducted experiments on machine-printed 

(MP) and handwritten (HP) digits data (Fig. 1), each 
with ten digit classes 0-9, to evaluate our measures. 
MP digits are rendered in Arial, Avant Garde and 
Bookman Old Style. HP digits are from the SD3 
dataset of NIST special database SD19. The writers of 
SD3 are census bureau field personnel. 

Both datasets in Table 4, and the feature extraction 
methods, are described in [1, 2]. For comparability 
with HP, we divided the MP dataset into 75 virtual 
sources with 10 samples per class each. 

Table 4.   MP & HP training sets 
Dataset Sources Number of samples 

SD3-Train 0-399 42969 
Machine-printed 1-75 7500 
 
We partitioned the printed digits into 3 styles by 

typeface, and clustered the hand-print into 3 styles 
with the K-means algorithm. The number of Source 
Class-Style Assignments increases quadratically with 
the number of styles, which causes small sample 
effects with finite samples. Three styles are used to as 
a compromise between small sample effects and 
adequate representation of style variation. We applied 
style homogenization, as described in Section 2, to 
each data set, and computed all the style measures on 
the resulting homogenized training set (Table 5).   

Table 5.  Style measures for MP & HP  
                        training sets  

MP (E[H]=0.90) HP (E[H]=0.87) Data 
Set   Haverage MI R Haverage MI R 
DS I 0.00 1.60 0.026 0.50 0.37 0.019 
DS II 0.90 0.27 0.001 0.86 0.04 0.004 

 
Both Haverage and E[H] in Table 5 are averaged over 

all classes and normalized by the maximum entropy 
log23. We can observe that DS I has more single-class 
style than DS II since the difference between the 
Haverage and E[H] in DS I is much higher than in DS II. 
Furthermore, MP exhibits more single-class style than 
HP, as expected. Entropy is a logarithmic unit, so a 
difference of 0.1 is significant. DS II, with single-class 
style removed, verified the hypothesis that without 
single-class style, the difference between the average 
and expected entropy will be close to zero.  

To compute MI, we generated 36 possible 
combinations of Source Class-style Assignments for 
each digit-pair by quantizing the Source Style 
Probability Vectors per class to 6 possible style 
assignments.  We observe that DS II with multi-class 
style removed has much lower values of MI than DS I. 

This is consistent with our hypothesis that high MI 
means strong multi-class style. 

Style correlation R also showed high difference 
between DS I and II, implying the absence of style 
consistency (multi-class style) in DS II due to style 
homogenization. 

We ran the SQDF style-constrained field classifier 
[2] on the four test sets with different field lengths L 
(Table 6). DS I has indeed fewer classification errors 
for L>1 than DS II. The results are consistent with the 
amount of style information, that is, the more style, the 
greater the gain from field classification.  

Table 6.  Singlet errors on 7,500 digits of MP-test 
and 42,821 digits of SD3 test vs. field length L 

MP HP Data 
Set L=1 L=2 L=3 L=1 L=2 L=3 
DS I 41 33 28 657 625 607 
DS II 41 41 41 664 667 663 

5. Conclusion 
The accuracy gains obtained by a style-consistent 

classifier depend on the amount of style in a dataset. 
We investigated and applied three measures to 
machine-printed and handwritten digit data. Entropy is 
an effective measure of single-class style. For multi-
class style, R is a more sensitive measure than MI 
because it is based on the amount of inter-class 
statistical dependence of the features used for 
classification, rather than on what is reflected by the 
style labels. Furthermore, R is not biased by small-
sample fluctuations, whereas they inevitably increase 
MI. We also demonstrated the validity of the three 
proposed metrics by comparing the amount of single-
class and multi-class style between the datasets before 
and after style homogenization, and through their 
correspondence with the number of errors obtained by 
field classification.    
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