Interfacing a Hitachi HD44780 to a Motorola 68HC11 or Motorola 68HC12
Table of Contents

Page

Introduction

1

Hardware Operation
2

Memory
4

Instructions
5

Software Operation
8

C Code Function Descriptions
8

Test Code
12

68HC11 Assembly Code
13

Appendix A: Wire Connections
14

Appendix B: LCD11.h and LCDtest11.c
15

Appendix C: LCD12.h and LCDtest12.c
21

Appendix D: LCD.asm
27

Introduction:

This document is intended to explain the basics of interfacing a Hitachi HD44780 LCD Controller with the Motorola 68HC11 and Motorola 68HC12 microcontrollers and to provide sample code in the form of a C header file for the HC11 and HC12 and assembly code subroutines for the HC11. All code for this document was developed and tested with Introl C 4.0. All tables, diagrams, and charts from the Hitachi data sheets unless credited otherwise.
Hardware Operation:

The hardware in the HD44780 is mostly transparent to the programmer. As a result many of the features do not need an in depth explanation. Those readers interested in more detailed information should refer to the Hitachi Data Sheet for the HD44780. For this project the Optrex DMC-16204 Display Module (DigiKey part number 73-1033ND) was used. This incorporates the HD44780 as the on board LCD Screen controller.

The Optrex DMC-16204 Display Module has 14 connections between itself and the microprocessor. On the Optrex DNC-16204, pin 2 provides power and pin 1 is connected to ground. Pin 3 controls the brightness level of the screen and is connected to the wiper of a 10 kOhm potentiometer. Pin 4 is the register select of the LCD screen. This is used to select between the instruction register or address counter of the HD44780. When the input to the pin is low the instruction register is active and the data register is active when the input is high. Pin 5 is the Read/Write select. When the input to the pin is high, the HD44780 is in read mode, when the input is low it is set up for a write. Pin 6 is the LCD enable. This is used to clock data and instructions into the HD44780. Pins 7 to 14 are the data pins. Pin 14 also doubles as the Busy Flag for the LCD screen. While many LCD screens use this order for the pins, the exact pin configuration may vary by part type and manufacturer. Be sure to refer to the LCD documentation before using this code to ensure that they are compatible. Schematics for wiring the LCD screen to the 6811 and 6812 are included in appendix A.

The basic operation of the screen is controlled by the state of the Register Select (RS) and the Read/Write (R/W) pins. These operations are summarized in Table 1.

Table 1: Register Selection

[image: image1.png]RS

Operation

IR write as an internal operation (display clear, etc.)

Read busy flag (DB7) and address counter (DBO to DB6)

DR write as an internal operation (DR to DDRAM or CGRAM)

a|lalo]o

EERRE

DR read as an internal operation (ODRAM or CGRAM to DR)

Figure 1: HD44780U Block Diagram

[image: image2.png]RS —»
RW —=

DB4 to
DB7

DBO to
DB3

GND —

0OSC1 0SC2

= CL1
» CL2
Reset =M
C'L‘rgﬂt T Timing
CPG |—— generator
Instruction 7
[| register (IR) =~ ¢ ? =D
! Displ COM1 t
. isplay 0
MPU Instruction data RAM 16-bit || Common | COM16
inter- (DDRAM) L shift signal |
face 80 x 8 bits register driver
A
Y v
Address 7 SEG1 to
counter 40-bit 40-bit || Segment | SEG40
8 . >
7 shift latch signal |—
- ¢ register | | circuit driver
7
Input/ Data 8
output [register +ﬁ;>! 40
buffer (DR)
8 8 LCD drive
voltage
- Busy | ¢ selector
flag l
v v A

Character Character Cursor
generator generator and
RAM ROM blink
(CGRAM) (CGROM)
64 bytes 9,920 bits

Parallel/serial converter

- and
attribute circuit

controller

Vee

AAAAA

V2 V3 V4 V5

Memory:

The HD44780 provides an 80x8 bit Display Data RAM (DDRAM). This is used to store the data that is being displayed on the screen. This allows the HD44780 to store up to 40 characters per line. It is important to note that the DMC-16204 will display only 16 characters per line. The extra memory here can be used to store characters that may then be shifted onto the screen. All data to be displayed must be stored in the form of an 8 bit ASCII code character.

Figure 2: 1 Line Display

[image: image3.png]Display position

(digit) s s 4 s -
DDRAM
address 000102 03] 08 rririiiiiii 4E | 4F

(hexadecimal)

Figure 3: 2 Line Display

[image: image4.png]Display

position 12 3 4 5

DDRAM 0001|0203 04 - oo
address

(hoxadecimal) | 40 | 4142 | 43|44 | ----oooooooee

Instructions:

The HD44780 has a number of different instructions that it can execute. These instructions are listed in the following table:

Table 2: Instructions

[image: image5.png]Code

Instruction RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Description

Execution Time
(max) (when f,, or
fosc i 270 kH2)

Clear 0 0 0 0 0 0 0 0 0 1 Clearsentredisplayand
display sets DDRAM address 0 in

address counter.
Retum 0 0 0 O 0 0 O 0 1 — SetsDDRAMaddressOin 1.52ms
home address counter. Also

returns display from being

shifted to original position.

DDRAM contents remain

unchanged
Entry 0 0 0 0 0 0 0 1 WD S Setscursormovedirection 37 ps
mode set and specifies display shift.

These operations are

performed during data write

and read.
Disjlay 0 0 0 O 0 0 1 D C B Setsentie display (D) onloff, 37ps
on/off cursor on/off (C), and
control blinking of cursor position

character (B).
Cusoror 0 0 0 O 0 1 SC RL — — Movescursorandshits 37ps
display display without changing
shitt DDRAM contents.
Funcon 0 0 0 O 1 DL N F — — Sefsinterfacedatalength 37ps
set (DL), number of display lines

(N), and character font (F).
Set 0 0 0 1 ACGACGACGACG ACG ACG Sets CGRAM address. 37ps
CGRAM CGRAM data is sent and
address received after this setting.
Set 0 0 1 ADD ADD ADD ADD ADD ADD ADD Sets DDRAM address. 37ps
DDRAM DDRAM data is sent and
address received after this setting.
Readbusy 0 1 BF AC AC AC AC AC AC AC Readsbusyfag (BF) Ous
flag & indicating internal operation
address is being performed and

reads address counter
contents.

[image: image6.png]Writedata 1 0 Write data Writes data into DDRAM or 37 us.
10 CG or CGRAM. tuop =4 us*
DDRAM
Readdata 1 1 Readdata Reads data from DDRAM or 37 s
from CG or CGRAM. tuop =4 us*
DDRAM
D Increment DDRAM: Display data RAM Execution time
D Decrement CGRAM: Character generator changes when
s Accompanies display shift RAM frequency changes
sIC Display shift ACG: CGRAMaddress Example:
sIC Cursor move ADD: DDRAMaddress ~ When f or fus; is
RIL Shift to the right (corresponds to cursor 250 kHz,
RIL Shift to the left address) 270 _
DL i AC: Addrose countr used for 37 1S X350 = 401
N both DD and CGRAM
F addresses
BF Internally operating
BF Instructions acceptable
Note: — indicates no effect.

After execution of the CGRAM/DDRAM data write or read instruction, the RAM address counter
is incremented or decremented by 1. The RAM address counter is updated after the busy flag
turns off. In Figure 10, t,,, is the time elapsed after the busy flag turns off until the address
counter is updated.

It is important to note that the HD44780 can only execute one instruction at a time. Before sending an instruction to the display, the busy flag must to be read. If the busy flag is zero, then the instruction can be sent to the display, otherwise the instruction must be held by the microprocessor until the current instruction has completed execution and the busy flag is cleared.

Instruction Descriptions:

Clear Display

This instruction writes a 0x20 to all locations in the DDRAM. It also sets the DDRAM address to zero and unshifts the display, if it had been shifted. It also sets the display to increment mode.

Return Home

The DDRAM Address is set to zero and the display is unshifted, if it had been shifted.

Entry Mode Set

This instruction has two parameters, which it controls. The first is I/D. If this bit is high, the display increments the DDRAM address by one every time a character is written to the screen. If it is low, then the display address will be decremented by one every time a character is written. The second parameter is S. When S is high, the display shifts after a character is written to the screen. It will shift to the right if I/D = 0 or to the left if I/D=1. When S is low, the display does not shift when a character is written.

Display Control On/Off

This instruction has 3 parameters that the user can set. The first is D. This turns the display on when it is high and off when it is low. The second parameter is C. This displays the cursor when it is high and turns the cursor off when it is low. The last parameter is B. When this is high the character indicated by the cursor will blink. When it is low the display will not blink.

Cursor or Display Shift
This instruction shifts either the cursor or display by 1 character, without modifying the data stored in the DDRAM. The direction of the shift is determined by the value in the R/L bit. Both lines shift simultaneously. The shifting type and direction are summarized in the following table:

Table 3: Shift Functions

[image: image7.png]siC

Shifts the cursor position to the left. (AC is decremented by one.)

Shifts the cursor position to the right. (AC is incremented by one.)

Shifts the entire display to the left. The cursor follows the display shift.

a|lalo]o

slolalo

Shifts the entire display to the right. The cursor follows the display shift.

Figure 4: 2 Line by 16 Character Display

[image: image8.png]Display
positon 1 2 3 4 56 7 8 9101112131415 16

DDRAM |00|01/02(03|04|05(06|07|08|09|0A|0B|0C{OD|OE]| OF|
address

40| 41/42(43|44|45|46|47|48|49|4A|4B|4CI4D(4E|4F|

y y

h g
HD44780U display Extension driver
display
For o104 03]04]0s]06]o7]o8os]oAogloclodloelor1o]
Shift1eft | 41142| 43144/ 45| 46|47|48 49| 4AlaBlaClAD4E aF |50
For 27/00| 01/02]03{ 04|05 06|07|08| 03 0AloBlocloDloE]
shift right

67|40|41(42(43|44|45|46|47|48(49|4A|4B4Cl4D(4E|

Function Set

This instruction is used to initialize the display and what format the display will be using. This is done only during the initialization process and it may not be changed later in the program. DL is the data length of the interface. For this program, DL is always high, since the only the 8 bit interface is used. N is the number of display lines and F is the font size.

Table 4: Function Set

[image: image9.png]No. of

Display Duty
N F Lines Character Font Factor Remarks
0 0 1 5 x 8 dots 1/8
0 1 1 5 x 10 dots 1711
1 * 2 5 x 8 dots 116 Cannot display two lines for 5 x 10 dot character font

Note: * Indicates don't care.

Set DDRAM Address

This sets the DDRAM to the address included in the instruction. When the display is in single line mode the addresses range from 0x00 to 0x4F. In 2 line mode, the instructions range from 0x00 to 0x27 for the first line and from 0x40 to 0x67 for the second line.

Read Busy Flag

This instruction sends the state of the Busy Flag to the microcontroller. This appears on bit 7 and is used to determine if the LCD screen controller is still executing an instruction. If the bit is high, then there is an instruction executing that must be completed before another instruction can be written to the LCD screen controller

Write Data to DDRAM

This instruction writes an 8-bit pattern to the DDRAM.

Software Operation:

The code to control the LCD screen was developed as both a C header files for the 68HC11 and 68HC12 and as several assembly language subroutines for the 68HC11. The C header files were written to provide an easy interface to the LCD screen. The two files are similar with the only differences being the ports used by the screen and the delay cycles used. The assembly code is much smaller then the C code and is also in many ways far more flexible. The code for these files is included in the Appendices.

C Code:

The C code was written as a header file that could be included in any program that interfaces with an LCD screen. For the 68HC11, the code uses Port C for writing data and Port A[3:5] for the control signals. For the 68HC12, the header file uses Port H for writing data and Port G[0:2] for the control signals.

The header file contains six functions to control the LCD screen. These are OpenXLCD, SetDDRamAddr, BusyXLCD, WriteCmdXLCD, WriteDataXLCD, and WriteBuffer. These functions provide all the basic features needed to display data on the screen and to position the cursor.

OpenXLCD:

This function executes all the initialization routines required by the HD44780 before it can be used. This routine sets the controller for 8-bit data entry and also initializes the number of display lines and the character font of the LCD screen. This is done by passing the desired type of display to the controller when OpenXLCD is called. The choices available are:

Screen Display

Value

5x8 single line

0x30

5x8 double line

0x3F

5x10 single line

0x34

These values may only be changed on startup. They can not be changed after the LCD screen has been initialized. The initialization routine ends by turning on the display and cursor, clearing the entire display and setting the DDRAM address to 0.

It is important to note that this function must be customized for the processor on which it is running. This is because there are several delay loops that are executed by this routine. These are all time dependant and were designed around the microprocessor’s clock, 2 MHz for the 6811 and 8 MHz for the 6812. If this code is ported to other processors then these, the delay loops will need to be rewritten to take into account the clock frequency of the processor you are using.

Figure 5: 8 Bit Interface

[image: image10.png]Power on

Wait for more than 15 ms
after Vo rises to 4.5V

Wait for more than 40 ms
after Vg rises to 2.7V

RS RAWDB7 DB6 DB5DB4 DB3DB2 DB1DBO
0 0 0 O

11 * = x =

Wait for more than 4.1 ms.

BF cannot be checked before this instruction.

Function set (Interface is 8 bits long.)

RS RAWDB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO|

0

0

0

0

11 * = *x =

Wait for more than 100 ps

BF cannot be checked before this instruction.

Function set (Interface is 8 bits long.)

RS RWDB7 DB6 DB5 DB4 DB3 DB2 DB1DBO)|

00 0 0 1 1 = * x =
RS RAWDB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO|
0 0 0 0 1 1 N F * =
0 0 0 0 00 1 0 0 0
0 0 0000 00 0 1
0 0 00 00O 0 11D S

BF cannot be checked before this instruction.

Function set (Interface is 8 bits long.)

BF can be checked after the following instructions.
When BF is not checked, the waiting time between
instructions is longer than the execution instuction
time. (See Table 6.)

Function set (Interface is 8 bits long. Specify the
number of display lines and character font.)

The number of display lines and character font
cannot be changed after this point.

Display off
Display clear

Entry mode set

WriteCmdXLCD:

This function is used to write commands to the LCD screen. The command to be issued is passed in as a parameter of the function.

There are several different commands, which can be issued to the LCD controller. These are for clearing the display, resetting the DDRAM address to 0, turning the display and cursor on or off, and shifting the display and cursor. The basic format of each of these is summarized in Table 2 above.

WriteDataXLCD:
This function is used to write data to the LCD screen. The data to be written is passed in as a parameter of this function. This is very similar in operation to the WriteCmdXLCD routine. The data to be displayed must be written to the display as an ASCII character. The character set stored in the controller is listed in Table 5 below.

Table 5: Character Set

[image: image11.png]q|

I

dl =

E A

=[]

=

I

-

p/E]

TEE |

-7

o | FF45
EIES

17

- [A[F1
Ell)

¥ 72

4 [F[1

ﬁﬁijH

M EDO= R

#2034 A
alZN R T
3[EE" R

PRl |

[T ¥

BaF - F

2 Edeu

V1 AE &~
"ZEEB
#3C[5c]=

& [F LI

" PGS
C[SHER[
AT

+3 KL K[L
2[4 L]

« [F[MI™ R

S0 _ale

Upper 4]
®*gis| 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111|1000 | 1001| 1010 | 1011 1100|1101 | 1110 | 1111

- =
=t n Il
3 Illll. —
Ll *
= = =l =l &l 21l =l =21 21 =l =21 =l a2/ 21 =] =
S|l S 2| = gl el E|l= o gl TE||leEll=
o | = o | - s | =l o <=2 = o | = o | = o | -
g8 | 3 2| = gl | 2| =8|z 2| = S | 3 2| <
8| 8 5| 5 gl el =| =88 5|3 e | e T | =
S| g g8 | 8 S| 5| 38| 3 g g SR < b b b
(]S 2 2 2 2 2 2 % % % % % % % %
34 X % % % % % % S S S ¥ ¥ ¥ ¥ ¥
R]]]]]]]]] £ £ £ £ £
g % X X X X X X]]]

RAM.

-ator

specify any pattern for character-gener:

Note: The user can

SetDDRamAddr:

This function sets the address of the cursor. This is a special case of the WriteCmdXLCD function. The function is almost identical to WriteCmdXLCD, the only difference being that the value passed into the function is logically ORed with 0x80, which places a 1 in the leading location. This is used to signify that an address is being sent to the display as opposed to a character or other command.

BusyXLCD:

This function is used to check the busy flag of the LCD screen. When the busy flag is high, the LCD controller is still processing a previous command and cannot accept any new instructions. As a result, the busy flag must be checked before each attempt to write a command or data to the LCD screen. This step is incorporated in the WriteCmdXLCD, WriteDataXLCD and SetDDRamAddr functions, as they all call the BusyXLCD instruction as their first operation, and wait until the flag is cleared before proceeding to issue a new instruction.

WriteBuffer:

This command is used to write a string of characters, stored in a buffer, to the LCD screen. This function contains a while loop that simply makes repeated calls to the WriteDataXLCD function until the entire buffer has been transmitted. The only limitation on the use of the buffer is that only data can be sent to the screen. Instructions must be sent separately by calling WriteCmdXLCD.

Test Code:

There are two C programs included with this document. One is LCDtest11.c and the other is LCDtest12.c. Both programs execute the same set of operations and are used to exercise the LCD Screen to ensure that it is working properly by issuing a variety of instructions to the LCD screen.

The code initially turns the display off for a short time. It then prints:

|Good Morning |

|Dave |

After another short delay, the cursor moves to address 0xCA and prints "Hello" at this location.

|Good Morning |

|Dave Hello|

Following yet another delay, "ABCDE" is written to Address 0x41 and the display is shifted left 5 times.

|Morning ABCDE|

| Hello |

The last instruction clears the display after another delay.

| |

| |

Assembly Code:

The assembly code for the LCD screen consists of two subroutines that can be included with any program to provide an interface to the LCD controller to the Motorola 68HC11. It is a good idea when using these programs to allow for a large stack, since all parameters are passed via the stack. The subroutines that are used are Writelcd, which writes the data to the LCD screen and Initlcd which executes all the screen initialization routines.

Writelcd:

This subroutine handles all data and instruction writes to the LCD screen. The data to be written is passed to the subroutine by the A register and the RS and R/W states are passed by the B register. In the subroutine, these values are then pushed onto the stack. The subroutine then checks the busy flag. Once the busy flag is clear the data is popped off the stack and written to Port C. Then the control pin states are then popped off the stack and written to Port A. Several clock cycles later the enable is pulsed and the data is written to the HD44780. The control pins are then cleared and the subroutine returns control to the calling function.

Initlcd:

This subroutine functions identically to the OpenXLCD function in the C code. The screen type is passed to the subroutine in the A register and is then pushed onto the stack. It is popped off the stack later in the subroutine so that it can be written to Port C. The user does not need to specify any other information when using this subroutine.

Test Code:

This is very simple code that shows how the Writelcd and Initlcd subroutines are used in a program. This is not, however, intended in any way as a diagnostic tool to check the functioning of the screen. If there is a question as to whether or not the screen is bad, it is recommended that the sample C code be run, as it provides a far more comprehensive test of the functions and features of the HD44780.

Function differences between the C code and Assembly code routines

There are very few actual differences between the C header file and the assembly code subroutines. The differences between them are summarized briefly below.

1) The assembly code version reduces the number of different operations need by the programmer as it combines the WriteCmdXLCd, WriteDataXLCD, DDRamAddr, and BusyXLCD functions into a single subroutine. This can be done since the only difference between the first 3 instructions is the state of the RS and R/W pins. As the programmer must pass the state of the control pins to the subroutine from the main code, the functions can be combined into a single subroutine. In addition as there is only one subroutine, the BusyXLCD functions can be included in that subroutine since it is not called by any other subroutine.

2) The C header file provides a function to write a string of ASCII characters to the screen. This function was omitted from the assembly code subroutine. This was left as an exercise for the students. To write a string of data or a sequence of data and instructions, the Writelcd subroutine must be slightly modified.

The programmer simply pushs the data or instructions, and the control signals for them, onto the stack in reverse execution order. The new Writelcd subroutine must recieve the number of instructions stored on the stack and continue processing them until all the instructions have been transmitted. This has an advantage over the C header WriteBuffer function in that it can handle both instructions and data since the control signals are passed along with the data to be written to the screen.

Appendix A: Wiring Connections

[image: image12.wmf]
[image: image13.wmf]
Appendix B: LCD11.h and LCDtest11.c

LCD11.h

// LCD Screen routines for the Motorola 6811 using a Hitachi // HD44780

// Written by Lee Rosenberg - rosenl@rpi.edu

// Developed for use with Introl C 4.0

// October 21, 1998

#include <HC11A1.h>

void OpenXLCD(char);

// configures I/O pins for external LCD

void SetDDRamAddr(char);
// sets display data address

char BusyXLCD(void);

// returns busy status of the LCD

void WriteCmdXLCD(char);
// write a command to the LCD

void WriteDataXLCD(char);
// writes data byte to the LCD

void WriteBuffer(char *buffer); //Writes a string to the LCD

/***

Write Buffer

Function: Write a string of bytes to the HD44780

Input Parameters: char *buffer

Return Type: None

***/

void WriteBuffer(char *buffer)

{

while(*buffer)

// while buffer not empty

{

while(BusyXLCD());

// check if screen busy

WriteDataXLCD(*buffer);
// write a character

buffer++;

// increment pointer

}

return;

}

/**

OpenXLCD

Function: This configures the LCD screen.

Input Parameters: char lcdtype

Return Type: None

Notes: This function must be run before the LCD screen

 can be used.

***/

void OpenXLCD(char lcdtype)

{
int i;

_H11PORTC = 0;

// initialize control port A and

_H11DDRC = 0x00;
// Data port C

_H11PORTA = 0x00;

// delay for 15ms. This is customized for the HC11 and must //be changed for other processors

for(i=0; i<40,000; i++);

// set up interface to LCD

_H11DDRC = 0xFF;

_H11PORTC = 0x3F;
// Function set command (8 bit)

_H11PORTA = 0x20;
// clock command in

for(i=0; i<30;i++);
// delay for ~ 15 us

_H11PORTA = 0x00;

// delay for at least 4.1 ms

for(i=0;i<9000;i++);

// setup interface

_H11PORTC=0x3F;

// Function set command (8 bit)

_H11PORTA = 0x20;
// clock in command

for(i=0;i<30;i++);
// delay for ~15 us

_H11PORTA = 0x00;

// delay for at least 100us

for(i=0;i<500;i++);

// set up interface

_H11PORTC = 0x3F;
// function set command (8 bit)

_H11PORTA = 0x20;

for(i=0;i<30;i++);
// delay for ~15 us

_H11PORTA = 0x00;

WriteCmdXLCD(lcdtype); // function set 8 bit interface

WriteCmdXLCD(0x0C);

WriteCmdXLCD(0x01);
 //
turn off display

return;

}

/**

WriteCmdXLCD

Function: Writes a command to the controller

Input Parameter: char cmd

Return Type: None

Notes: Before writing the command the function checks

 that the display is not busy by calling

 BusyXLCD.

***/

void WriteCmdXLCD(char cmd)

{

int i;

while(BusyXLCD()); // Check LCD is not in use

_H11DDRC = 0xFF;

_H11PORTC = cmd;
// write cmd to port

_H11PORTA = 0x00;
// set control signals

for(i=0; i<30; i++);
// delay for ~15 us

_H11PORTA=0x20;

// clock in the command

for(i=0;i<30;i++);

// delay for ~15 us

_H11PORTA=0x00;

for(i=0;i<30;i++);

// delay for ~15 us

_H11DDRC=0x00;

return;

}

/**

SetDDRamAddr

Function: Set the address of the LCD controller

Input Parameter: char DDaddr

Return Type: None

Notes: This function sets the address of the LCD screen

 to the address that is passed in as a char. The

 address is automatically modified to the correct

 format for the screen.

**/

void SetDDRamAddr(char DDaddr)

{

int i;

while(BusyXLCD());

// check if screen is in use

_H11DDRC=0xFF;

_H11PORTC=(DDaddr | 0x80);// write cmd and addr to port

_H11PORTA=0x00;

for(i=0;i<30;i++);

// delay for ~15 us

_H11PORTA=0x20;

// clock in the command

for(i=0;i<30;i++);

// delay for ~15 us

_H11PORTA=0x00;

for(i=0;i<30;i++);

// delay for ~15 us

_H11DDRC =0x00;

return;

}

/***

BusyXLCD

Function: This checks the busy status of the HD 44780

Input Parameter: None

Return Type: char

Notes: This is necessary to ensure that the LCD screen

 is ready to recieve data.

**/

char BusyXLCD(void)

{

int i;

_H11DDRC=0x00;

_H11PORTA=0x08;

// set control bits

for(i=0;i<30;i++);

// delay for ~15 us

_H11PORTA=0x28;

// clock them in

for(i=0;i<30;i++);

// delay for ~15 us

if(_H11PORTC & 0x80)
 // read busy flag

{

_H11PORTA = 0x00;
// if set

return 1;

}

else

{

_H11PORTA = 0x00; // if clear

return 0;

}

}

/***

WriteDataXLCD

Function: Writes data to the LCD

Input Parameter: char data

Return Type: None

Notes: This function takes ascii data and writes it to

 the LCD screen. All data is passed in as a char.

**/

void WriteDataXLCD(char data)

{

int i;

while(BusyXLCD()); // check if screen is ready

_H11DDRC = 0xFF;

_H11PORTC = data;
// write data

_H11PORTA = 0x10;

for(i=0;i<30;i++);

// delay for ~15 us

_H11PORTA=0x30;

// clock in data

for(i=0;i<30;i++);

// dlay for ~ 15 us

_H11PORTA=0x00;

_H11DDRC= 0x00;

return;

}

LCDtest11.c

/* Basic test program for the Hitachi HD 44780

This will test all the major functions and commands to ensure that the screen is functioning correctly. */

// All necessary include statements

#include <HC11A1.h>

// register declarations

#include <introl.h>

// Introl functions

#include <stdio.h>

// I/O commands

#include <stdlib.h>

// Standard C functions

#include <lcd11.h>

// LCD functions

void main()

{

int i, j;

char buffer[]="hello";

OpenXLCD(0x3F);

//intialize the screen

WriteCmdXLCD(0x80);
// set address to 0

WriteDataXLCD(0x47);
// write "Good Morning Dave"

WriteDataXLCD(0x6F);

WriteDataXLCD(0x6F);

WriteDataXLCD(0x64);

WriteDataXLCD(0x20);

WriteDataXLCD(0x4D);

WriteDataXLCD(0x6F);

WriteDataXLCD(0x72);

WriteDataXLCD(0x6E);

WriteDataXLCD(0x69);

WriteDataXLCD(0x6E);

WriteDataXLCD(0x67);

WriteCmdXLCD(0xC0);

WriteDataXLCD(0x44);

WriteDataXLCD(0x61);

WriteDataXLCD(0x76);

WriteDataXLCD(0x65);

WriteCmdXLCD(0x08);
// turn off display

for(i=0; i<10; i++)

// delay

for(j=0; j<40000; j++);

WriteCmdXLCD(0x0C);
// turn on display and cursor

for(i=0; i<10; i++)

// delay

for(j=0; j<40000; j++);

SetDDRamAddr(0xCA);
// set cursor address to 4F

WriteBuffer(&buffer);
//write buffer to screen

for(i=0;i<10;i++)
// delay

for(j=0;j<40000;j++);

SetDDRamAddr(0x90);
// go to address 16

WriteDataXLCD(0x41);
// write ABCDE

WriteDataXLCD(0x42);

WriteDataXLCD(0x43);

WriteDataXLCD(0x44);

WriteDataXLCD(0x45);

WriteCmdXLCD(0x18);
// shift display left 5 times

WriteCmdXLCD(0x18);

WriteCmdXLCD(0x18);

WriteCmdXLCD(0x18);

WriteCmdXLCD(0x18);

for(i=0;i<10;i++)
// delay

for(j=0;j<40000;j++);

WriteCmdXLCD(0x01);
// clear display

}
Appendix C: LCD12.c and LCDtest12.c

LCD12.c

// LCD Screen routines for the Motorola 6812 using a Hitachi

// HD44780

// Written by Lee Rosenberg - rosenl@rpi.edu

// Developed for use with Introl C 4.0

// October 21, 1998

#include <hc812a4.h>

// register declarations

#include <dbug12.h>

// D-Bug12 monitor

void OpenXLCD(char);
// configures I/O pins for LCD

void SetDDRamAddr(char);
// sets display data address

char BusyXLCD(void);
// returns busy status of the LCD

void WriteCmdXLCD(char);
// write a command to the LCD

void WriteDataXLCD(char);
// writes data byte to the LCD

void WriteBuffer(char *buffer); // Writes a string to LCD

/***

Write Buffer

Function: Write a string of bytes to the HD44780

Input Parameters: char *buffer

Return Type: None

***/

void WriteBuffer(char *buffer)

{

while(*buffer)

// while buffer not empty

{

while(BusyXLCD());
// check if screen busy

WriteDataXLCD(*buffer);
// write character

buffer++;

// increment pointer

}

return;

}

/**

OpenXLCD

 Function: This configures the LCD screen.

 Input Parameters: char lcdtype

Return Type: None

Notes: This function must be run before the LCD screen

 can be used.

***/

void OpenXLCD(char lcdtype)

{
int i;

_H12PORTH = 0;

_H12DDRH = 0x00;

_H12PORTG = 0x00;

_H12DDRG= 0xFF;

// delay for 15ms. This is customized for the HC12 and must // be changed for other processors

for(i=0; i<130,000; i++);

// set up interface to LCD

_H12DDRH = 0xFF;

_H12PORTH = 0x3F;
// Function set command (8 bit)

_H12PORTG = 0x20;
// clock command in

for(i=0; i<100;i++);
// delay for ~12.5 us

_H12PORTG = 0x00;

// delay for at least 4.1 ms

for(i=0;i<40000;i++);

// setup interface

_H12PORTH=0x3F;

// Function set command (8 bit)

_H12PORTG = 0x20;
// clock in command

for(i=0;i<100;i++);
// delay for ~12.5 us

_H12PORTG = 0x00;

// delay for at least 100us

for(i=0;i<1000;i++);

//
set up interface

_H12PORTH = 0x3F;
// function set command (8 bit)

_H12PORTG = 0x20;

for(i=0;i<100;i++);

// delay for ~12.5 us

_H12PORTG = 0x00;

WriteCmdXLCD(lcdtype);
// function set command 8 bit

WriteCmdXLCD(0x0C);

WriteCmdXLCD(0x01);

// clear screen

return;

}

/**

WriteCmdXLCD

 Function: Writes a command to the controller

Input Parameter: char cmd

Return Type: None

Notes: Before writing the command the function checks

 that the display is not busy by calling

 BusyXLCD.

***/

void WriteCmdXLCD(char cmd)

{

int i;

while(BusyXLCD());
// check status of LCD

_H12DDRG = 0xFF;

_H12DDRH = 0xFF;

_H12PORTG = 0x00;
// set control signals

_H12PORTH = cmd;
// write cmd to port

for(i=0; i<100; i++);
// delay for ~12.5 us

_H12PORTG=0x20;

// clock the command in

for(i=0;i<100;i++);

// delay for ~12.5 us

_H12PORTG=0x00;

for(i=0;i<100;i++);

// delay for ~12.5 us

_H12DDRH=0x00;

return;

}

/**

SetDDRamAddr

Function: Set the address of the LCD controller

Input Parameter: char DDaddr

Return Type: None

Notes: This function sets the address of the LCD screen

 to the address that is passed in as a char. The

 address is automatically modified to the correct

 format for the screen.

**/

void SetDDRamAddr(char DDaddr)

{

int i;

while(BusyXLCD());

// check status of LCD

_H12DDRG = 0xFF;

_H12DDRH=0xFF;

_H12PORTH=(DDaddr | 0x80);// write cmd and addr to port

_H12PORTG=0x00;

for(i=0;i<100;i++);

// delay for ~12.5 us

_H12PORTG=0x20;

// clock command in

for(i=0;i<100;i++);

// delay for ~12.5 us

_H12PORTG=0x00;

for(i=0;i<100;i++);

// delay for ~12.5 us

_H12DDRH =0x00;

return;

}

/***

BusyXLCD

Function: This checks the busy status of the HD 44780

Input Parameter: None

Return Type: char

Notes: This is necessary to ensure that the LCD screen

 is ready to receive data.

**/

char BusyXLCD(void)

{

int i;

_H12DDRG = 0xFF;

_H12DDRH=0x00;

_H12PORTG=0x08;

// set control bits

for(i=0;i<100;i++);

// delay for ~12.5 us

_H12PORTG=0x28;

// clock in the command

for(i=0;i<100;i++);

// delay for ~12.5 us

if(_H12PORTH & 0x80)
// Read the busy flag

{

_H12PORTG = 0x00;
// if it is busy return 1

return 1;

}

else

{

_H12PORTG = 0x00;
// if it is not busy return 0

return 0;

}

}

/***

WriteDataXLCD

Function: Writes data to the LCD

Input Parameter: char data

Return Type: None

Notes: This function takes ASCII data and writes it to

 the LCD screen. All data is passed in as a char.

**/

void WriteDataXLCD(char data)

{

int i;

while(BusyXLCD());
// check if the LCD is busy

_H12DDRG = 0xFF;

_H12DDRH = 0xFF;

_H12PORTH = data;
// Write the data

_H12PORTG = 0x10;

for(i=0;i<100;i++);

// delay for ~12.5 us

_H12PORTG=0x30;

// clock the data in

for(i=0;i<100;i++);

// delay for ~12.5 us

_H12PORTG=0x00;

_H12DDRH= 0x00;

return;

}

LCDtest12.c

/* basic test program for the Hitachi HD 44780

This will test all basic functions of the LCD screen to ensure it is functioning properly. */

#include <hc812a4.h>

// register declarations

#include <introl.h>

// Introl functions

#include <lcd12.h>

// LCD functions

#include <dbug12.h>

// D-Bug12 functions

void __main()

{

int i, j;

char buffer[]="hello";

OpenXLCD(0x3F);

// initialize the screen

WriteCmdXLCD(0x80);
// set address to 0

WriteDataXLCD(0x47);
// write "Good Morning Dave"

WriteDataXLCD(0x6F);

WriteDataXLCD(0x6F);

WriteDataXLCD(0x64);

WriteDataXLCD(0x20);

WriteDataXLCD(0x4D);

WriteDataXLCD(0x6F);

WriteDataXLCD(0x72);

WriteDataXLCD(0x6E);

WriteDataXLCD(0x69);

WriteDataXLCD(0x6E);

WriteDataXLCD(0x67);

WriteCmdXLCD(0xC0);

WriteDataXLCD(0x44);

WriteDataXLCD(0x61);

WriteDataXLCD(0x76);

WriteDataXLCD(0x65);

WriteCmdXLCD(0x08);
// turn off display

for(i=0; i<10; i++)

// delay

for(j=0; j<40000; j++);

WriteCmdXLCD(0x0C);
// turn on display and cursor

for(i=0; i<10; i++)

for(j=0; j<40000; j++);

SetDDRamAddr(0xCA);
// set cursor address to 4F

WriteBuffer(&buffer);
//write buffer to screen

for(i=0;i<10;i++)
// delay

for(j=0;j<40000;j++);

SetDDRamAddr(0x90);
// go to address 16

WriteDataXLCD(0x41);
// write ABCDE

WriteDataXLCD(0x42);

WriteDataXLCD(0x43);

WriteDataXLCD(0x44);

WriteDataXLCD(0x45);

WriteCmdXLCD(0x18);
// shift display left 5 times

WriteCmdXLCD(0x18);

WriteCmdXLCD(0x18);

WriteCmdXLCD(0x18);

WriteCmdXLCD(0x18);

for(i=0;i<10;i++)
// delay

for(j=0;j<40000;j++);

WriteCmdXLCD(0x01);
// clear display

}
Appendix D: LCD.asm

* 6811 assembly code to interface with the Hitachi HD44780

* LCD Screen Controller.

* This code contains all the necessary subroutines to write

* to the screen.

* It also includes a simple main program that will execute

* the instructions.

* The subroutines are designed to be transferred to other

* programs and simply dropped in.

*

* Important Note: This program requires a significant amount

* of space on the stack. Be sure to initialize the stack

* before beginning to run these routines.

* Equates

* buffalo operations

outa

equ
$ffb8 output the ASCII character in A

outstrg
equ
$ffca output string at x

outcrlf
equ
$ffc4 output crlf

outlhlf
equ
$ffb2 output left nibble of a in ASCII

outrhlf
equ
$ffb5 output right nibble of a in ASCII

out2bsp
equ
$ffc1 output 2byte value at x in HEX

input

equ
$ffac a=input() ; a=0 if no char entered

inchar
equ
$ffcd a=input() ; loop till user enters char

upcase
equ
$ffa0 a=upcase(a)

wchek
equ
$FFA3 z=1 if A={space,comma,tab}

dchek
equ
$FFA6 z=1 if A={space,comma,tab,CR}

* Port Declarations

porta

equ
$1000

portc

equ
$1003

ddrc

equ
$1007

* This is the main program that calls the subroutines.

org $c000

jmp start

temp

rmb 1

* data to be displayed on the screen

test1
fcc "point a"

fcb $04

test2

fcc "point b"

fcb $04

start
lds #$DFFF
; initialize the stack.

ldaa #$3F

; Load the screen type

jsr initlcd
; initialize the screen

ldaa #$80
; set address to 0

ldab #$00 ; set control pins

jsr writelcd

ldaa #$47
; write a character

ldab #$10

jsr writelcd

ldaa #$6F
; write a character

ldab #$10

jsr writelcd

ldaa #$6F
; write a character

ldab #$10

jsr writelcd

ldaa #$64
; write a character

ldab #$10

jsr writelcd

ldaa #$20
; write a character

ldab #$10

jsr writelcd

ldaa #$4d
; write a character

ldab #$10

jsr writelcd

ldaa #$6f
; write a character

ldab #$10

jsr writelcd

ldaa #$72
; write a character

ldab #$10

jsr writelcd

ldaa #$6e
; write a character

ldab #$10

jsr writelcd

ldaa #$69
; write a character

ldab #$10

jsr writelcd

ldaa #$6e
; write a character

ldab #$10

jsr writelcd

ldaa #$67
; write a character

ldab #$10

jsr writelcd

ldaa #$c0
; write address

ldab #$00

jsr writelcd

ldaa #$44
; write a character

ldab #$10

jsr writelcd

ldaa #$61
; write a character

ldab #$10

jsr writelcd

ldaa #$76
; write a character

ldab #$10

jsr writelcd

ldaa #$65
; write a character

ldab #$10

jsr writelcd

swi

*
Initlcd

*

*
This subroutine initializes the LCD screen. The LCD

*
screen format is passed in by the A register and is

*
stored on the stack.

**

initlcd
psha

; save the lcdtype

ldaa #$00
; clear ports A and C

staa portc

staa porta

staa ddrc

ldx #$9c40
; wait for ~15ms

loop

dex

cpx #$0000

bne loop

ldaa #$ff
; set port C for output

staa ddrc

ldaa #$3f
; write the function set command

staa portc

jsr delay
; delay function

ldaa #$20
; pulse the enable bit

staa porta

jsr delay

ldaa #$00
; turn off enable

staa porta

staa portc

ldx #$2328
; wait ~4.1 ms

loop2
dex

cpx #$00

bne loop2

ldaa #$3f
; write the function set command

staa portc

jsr delay

ldaa #$20
; pulse the enable bit

staa porta

jsr delay

ldaa #$00
; turn off enable

staa porta

staa portc

ldx #$1f4
; wait ~100 us

loop3

dex

cpx #$00

bne loop3

ldaa #$3f
; write the function set command

staa portc

jsr delay

ldaa #$20
; pulse the enable bit

staa porta

jsr delay

ldaa #$00
; turn off enable

staa porta

pula

; get the lcd type from the stack

ldab #$00

jsr writelcd
; write the # of lines and font

ldaa #$0C

; clear screen

ldab #$00

jsr writelcd
; write it to the screen

ldaa #$01

; set cursor to address 0.

ldab #$00

jsr writelcd

rts

**

* Writelcd

*

* This function checks the busy flag and then writes

* either data or instructions to the LCD screen.

* The data to be written is stored in register A

* and the control pin settings are stored in register

* B. These are stored on the stack until they are

* needed.

writelcd
pshb

; store the rs and rw values

psha

; store the data

ldaa #$00

staa ddrc
; set port C for input

loop4

ldaa #$08
; checking the busy flag

staa porta

jsr delay

ldaa #$28
; pulse the enable

staa porta

jsr delay

ldaa portc ; read port C

anda #$80 ; check the busy flag

cmpa #$80
 ; if flag set loop else

beq loop4

ldaa #$00
; clear the enable

staa porta

ldaa #$ff
; set port C for output

staa ddrc

pula

; write data to port C

staa portc

pulb

; write control pins to port A

stab porta

stab temp

jsr delay

ldaa temp

oraa #$20
; set the enable and write it to port A

staa porta

jsr delay

ldaa #$00
; clear control pins

staa porta

rts

*
delay

*

* This function creates a delay to allow pins time to set up * and stabilize.

**

delay

ldab #$1E
; wait 18 counts

waitloop
decb

cmpb #$00

bne waitloop

rts
17

