MPS Final Report

Household Climate Control System

A.k.a. WIN2K1

Wai Nang Tsang - 660065382
Thomas Lo - 660163469
Tan Cheung - 660064411
Michael Lee - 660063111

Section 1, 2(Tan)
Dec 11™, 2001

MPS Final Report Household Climate Control a.k.a Win2K1

Table of Contents

1. INTRODUCTION.......cciiiunnnmmrmremrrerssssssssssssssssssssssssssessssssassssssssssssssssssasssssassannnnnes 1-3
1.1 Project SUMMATYcccovermrrsessrsessssssnsasssesssssssassssacssssssnans 1-3
1.2 Problem StateIMeEnt ...ccceerirreeeeesessieceisenieissesssssnesassssssssssssnenssstssssssssstsssesssssssssssnsssassasasas 1-3

2. IMPLEMENTATIONS.....iiiiiiiririiirirrrrsrrennesssesssssssssssssssssssssmis s s assaasssssssssnns 2-4
2.1 Materials and Methods . 2-4

2.1.1 IVLAEEIIALS ©.vveeereeeeeeeeeeeeee et e et eateeseeveesbaessaesseesbbeeabeeeresas s eht s e R b e e Rs s e R b e e R e e s R g e e b e h e b e 2-4
2,12 LCD DUSPIAY oottt 2-4
2.13 SEEPPET IMOTOT .. 2-6
214 TEMPEIALUIE SEISOTS ...oeveiiuiiiireis sttt 0L 2-7
2,15 FUZZY LOZIC 1ot 2-8
2.2 Result/Discussion 2-11
2.2.1 LCD DHSPIAY ...ttt e 2-11
222 SEEPPET IMOTOT .ot es s 2-11
223 TEMPETATUTE SEMSOISvovceriacresessiessssees et 2-11
224 FUZZY LOGIC 1.ttt 2-12

3. BACK MATERIALS.cccoiiiiiiiiirrirerrrernesnsssssssssssssnsssssssssss s s s s n s assssssssssssns 313
3.1 REFEIEICES uueeereeerreerseeseesenssssssesanssessasessssissasessssnsssassnessossssassssissesssssssssssnesssasssansases 3-13
3.2 Bibliography......neiicii. 3-13

3.2.1 L8528 ST U T OO OO OO O OO OO PP P PP PP PP TSP TSI EI PP POL 3-13
322 PrINTEA IMALETIALS .o ovveveeereee et et ete e eate st e e et et e skt e et sh e s sa e be e s bbb e e 3-13
3.3 Appendicescceiencnensiisiisinniane soresansanesetsrtsasarsassassenenssteaesensases 3-14
33.1 CHFCUIL HAGTAINS ..o 3-14
332 FLOW CRAIT <. veoeee e e ettt ea e s e et e e b e es e m e s bt e et e b e e e e e as b e ea e s eSS b e bbb s bbbt 3-18
333 COAES e e et e e et et e et eeueeatestseaeesa et e asaes s anseeh e e b e et e e R e e aeehd e b e R e oA s e R e RS e s 3-19

Introduction ¢ 1-1

MPS Final Report Household Climate Control a.k.a Win2K1

FIGURE 2: LM34DZ BOTTOM VIEWcoootiiiiiiiiiiiniieitieie st eee e eese e s e s s e 2-8
FIGURE 3: OP-AMP CIRCUIT FOR SENSORcccooittitiiuiiiiieieteeeeseeseeeseeeessesseeseesessees e s ees oo 3-14
FIGURE 4: KEYPAD CIRCUITccocooiiiiinriiinieiecieieis s sae st ees e s s e s s s s s s se e 3-15
FIGURE 5: LEDS CIRCUIT (HEAT LIGHT) ..ottt veeseeeeeseesees s esees s es s 3-16
FIGURE 6: LCD DISPLAYcooiiiiiiiiiieiniinei ettt et s e e s es s s e 3-16
FIGURE 7: FAN CIRCUIToocoiiiiiiieiieiintineie ettt et e e e s e 3-17

TABLE 1: STEPPER MOTOR TABLEc..ocostititiiinieinintieite e ees et eseeeeeeseeee s seeseeeas 2-7
TABLE 2: FUZZY LOGIC RULE MATRIX ..ottt sttt eeee e eeenens 2-9
TABLE 3: REFERENCEScocociiiiiiiitit ittt e s e e eens et s e eeeeesaneeen 3-13
TABLE 4: FUZZYWUZZY .Ci...cootiiiiiiiiittee ettt sttt ees s s s s 3-28
TABLE 5: KEYPAD . Hcocoiiiiiiiii ettt ettt 3-29

Abstract

Our team’s WIN2K1 is basically a household climate control system that allows user to keep their
home environment as they wish. Money saving and energy conservation is our motivation to design
this project.

Introduction ¢ 1.2

MPS Final Report Household Climate Control a.k.a Win2K1

1. Introduction

1.1 Project Summary

With the ever-increasing climate control systems in households, we feel that these systems are
inefficient with energy conservation. We wish to improve upon current design, to improve
functionality resulting in better energy efficiency and ease of use. We see opportunity in improving
upon these systems by adding more enhancements, i.e. fuzzy logic, user-friendly LCD interface.
Our unit will open or close windows when the temperature is too hot, warm or too cold. We
checked and maintained the temperature by using A/D conversion and interrupts. We used a sensor
to monitor both the current room temperature and the outside temperature for accuracy of our fuzzy
logic cases. Our fuzzy logic will determine trends in temperature and operate in winter, summer and
spring/fall mode.

1.2 Problem Statement

There is a need for out product because of the significant impact of California energy crisis and the
dwindling supply of Tossil fuel. This problem affects the general public and will deplete the supply
of energy for future generations. As a result, by using our products, homeowners will come to
appreciate the savings in energy costs.

Introduction e 1-3

MPS Final Report Household Climate Control a.k.a Win2K1

2. Implementations

This section will go through the details about different parts of our project; materials and methods,

results and discussion wiH-bedncluded.in this section.

2.1 Materials and Methods

2.1.1 Materials

Our project contains various parts:

2 temperature-sensing units (LM34DZ)

1 LCD display

1 keypad

1 12V stepper motor with IC chip package
2 LEDs

1 fan

2 transistors

2 LM301A /LM201A

2.1.2 LCD Display

In our project, we \yifl’lﬂsehhe LCD display to output the menu and a keypad to get user
inputs. In the menu, we have 4 functions: Open window, close window, Smart Mode and display
current temperature. Basically, the LCD display and the keypad is just an interface between the user
and the HC12. It allows the user to gain full control of the system. In the open and close mode, our
program will prompt the user to enter a value to determine how much window is going to be open or
closed. Once the user entered the SMART mode, the LCD panel will temporarily go into a stage
that user don’t have any access to it, until the ‘#* key is pressed, which means the end of the smart
mode. Lastly, when the users choose the display temperature mode, the LCD will display the
current room temperature on the LCD screen.

In order the make our LCD display working; we do this by using all the functions in the
provided header file call LCD12.h. This header file includes all the functions, which are required to
initialize the LCD display and to write data to it. The OpenXLCD function is used to initialize the
LCD before it could be used. The SetDDRamAddr function is used to determine which position the
data will be displayed on the LCD. The BusyXLCD function is used to check whether or not the
LCD is currently doing something. If it is, then the program should wait for the process to be done
before doing anything else with the LCD. The WriteCmdXLCD function is used to write a
command to the LCD controller. It basically uses the WriteDataXLCD and WriteBuffer functions to
write characters to the LCD. /

Beside the header file, we also had to write some C program to make use of the header file.
Since we are displaying the menu and the temperature value to the LCD screen, we have to store all

Implementations e 2-4

MPS Final Report Household Climate Control a.k.a Win2K1

these value as strings for later use. All the items of the menu are stored as individual strings. The
temperature value we will display on the screen also stored as string. The only thing we need to do
is to obtain the temperature value from the temperature sensors’ functions. When outputting the data
to the screen, we first have to clear the display using the WriteCmdCLCD function and passing in a
value of 0x01 to the eight bits of the LCD controller. We then set the starting position of the LCD
display at the upper left-hand corner to write the four choices of the menu. The second item is on
the upper right-hand corner, etc. We do it by passing in the address of the location into the
SetDDRamAddr function. The locations with their corresponding addresses can be obtained in
Figure 4 of the supplement “Interfacing a Hitachi HD44780 to a Motorola 68HC12” at the end of the
68HC12 user’s manual.

In order for us to have the keypad working, we wrote a header file called keypad.h, which is
used to initialize the Key Wakeup Interrupt and contains the code for the Interrupt Service Routine.
In our program, we have to use two global variables. The main program will also recognize these
variables and is a way of transferring data from the results obtained in the header file to the main
program. We first initialized Port J to do a variety of things. Port J must be set to output from bits 4
to 7 and input from bits 0 — 3. Bits 4 to 7 are where the row select of the keypad are connected to
and bits 0 to 3 are where the column selects are connected. All the row selects are pulled low and
the column selects are pulled high normally. It will be pulled low when the button on the keypad is
pressed and the switch closes. Next, falling edges have to be detected to set a flag. Also, Port J
must be configured to enable pull-ups. Pull-ups are then selected for bits 0 to 3 while bits 4 to 7 are
set to low to allow for grounding of the row selects. Then, keypad interrupts are enabled for bit 0 to
3.

The Key Wakeup ISR must do seyen Ehjngs. It must save the state of the Key Wakeup Flags.
It must then determine which column the key pressed is in. Since the column select go low when
pressed, we check to see which columns has been set low by ANDing the value on Port J with 0x08
first. If pin 3 is 0, then the result will be 0 also and the result of the conditional would be true
meaning that the keypad is in column three. If bit 3 is 1 meaning that column 3 is not active, then
the ANDing of Port J with 0x80 will return a 1 and the conditional will return a 0 meaning that the
key pressed is not in column 3. We continue doing this for the other columns until the answer is
obtained.

The hardest thing is to check for the row. When a key is pressed the value of the low bits
determines which column was activated. Since the keypad we are using does not have a common
ground for all the keys, the ground that is seen on the low bit of the Port J is passed in through the
row select bits. In order to determine which row is active the program must write a high to each row
individually and then look at the value of the low nibble of Port J. If the row you wrote a one to is
the row in which the button is pressed then the value on the low bits of Port J will be (- - - - 1111).
The function needs to write a one to each row and look for the (1111). When the (1111) is detected
it will then look at the original value of the low bits to determine which key was activated.

The next thing that the header file must do is store the inputted value of the keyboard as
another global variable, which needs to be used later in the main program. This final value is
obtained from a two-dimensional array, which was defined earlier storing all the characters of the
keypad into its associated column and row. Afterwards, Port J is reset to all lows and all the

Implementations ¢ 2-5

MPS Final Report Household Climate Control a.k.a Win2K1

interrupt flags are reset. The Keyflag must also be enabled indicating the button has been released.
For more details on the keypad header file, please refer to Appendix.

Now we need to implement these 2 pieces of codes together. After we have initialized the
counter and the LCD we now also have to initialize Port J using the function InitPort] from the
header file. Inside the infinite loop, the function getKeyPadEntry is used to get input from the
keypad. This function makes use of the KeyFlag and Input global variables from the keypad header
file. We then get the user inputted value to determine what the user want to do. We do this by
constructing a switch loop as the following:

Switch(inString([0])
{ .
case ‘1': OpenMode () ;
Break;

case ‘2': CloseMode () ;
Break;

case ‘3': SmartMode () ;
Break;

case ‘4': GetTemp () ;
Break;

default:

break;

In our program, we constructed 2 functions call write2LCD and writenum2LCD.
Write2LCD is a printing function that will only handle strings, and the writenum2LCD will only
handle integers. In the GetTemp() function, we have used the writenum2LCD function in order to
output the integer value we obtained from the A/D conversion to the LCD screen.

2.1.3 Stepper Motor

As a brief introduction to stepper motor, there are two kinds of stepper motor, permanent
magnet and variable reluctance. Permanent magnet motors tend to "cog" as you twist the rotor with
your fingers, while variable reluctance motors almost spin freely. Stepping motors come in a wide
range of angular resolution. The coarsest motors typically turn 90 degrees per step, while high-
resolution permanent magnet motors are commonly able to handle 1.8 or even 0.72 degrees per step,
while the one we used in this project can handle 3.6 degrees per step. For both permanent magnet
and variable reluctance stepping motors, if just one winding of the motor is energized, the rotor will
snap to a fixed angle and then hold that angle until the torque exceeds the holding torque of the
motor, at which point, the rotor will turn, trying to hold at each successive equilibrium point.

The motor we used in this project variable reluctance. In order to spin the motors, we have to
send in control signals to open and close the windings in the motor at the appropriate times. We
therefore use our MC68HC12 Port G to handle this. Although a basic stepper motor has 4 magnetic
windings for turning the motor, we only used two of them due to the limitation of ports in the EVB.
The schematic is shown in Figure-8. Since the motor requires 12V inputs, as seen in the schematic,
we used an integrated circuit (ULN2803) that containing Darlington arrays which we could supply a

Implementations e 2-6

MPS Final Report Household Climate Control a.k.a Win2K1

5V to the IC and produce a 12V on the output. In order for the ULN2803 to work correctly, we have
to supply a 12V on pin 10 and pull pin 9 to ground. Then we connect the EVB J8 pin 15 and 16 to
the ULN2803 pin 4 and pin 3 accordingly. And for the ULN2803, we also need to feed back the
output of pin 13 and 18 to pin 5 and 2 so that the signal to the input will be inverted. These four
signals will be used to drive the motor. Afterwards, we connected the four wires (red, brown, green,
white), which represent the coils 1, 3, 2 and 4, from the motor to the ULN2803 pin 17,16,15 and 14
respectively.

Figure 1: 2 coils Stepper Motor

In the software point of view, we first have to set the data direction of Port G to output (all
bits to 1) by, H12DDRG = OxFF. Then, we send in signals to PORT G pin 0 and 1 in the following
order,

PG 0 0 1 1 0 0 0 1 1

PG1 0 0 1 1 0 1 1 0

Table 1: Stepper Motor Table

In any interval of the above seque‘nce, we put a for-loop in between just to make sure the
motor has enough time to turn. It is done as follow

_H12PORTG = OxOF & 0x00;
for (i=0; i<2000;i++);
_H12PORTG = 0x0F & 0x02;
for (i=0;1<2000;1i++);
_H12PORTG = 0x0F & 0x03;
for (i=0;1<2000;1i++);
_H12PORTG = 0x0F & 0x01;
for (i=0;1i<2000;1i++);

If you want to change the direction of the spinning, just change the sequence of setting port G
as mentioned before.

2.1.4 Temperature Sensors

Implementations e 2-7

MPS Final Report Household Climate Control a.k.a Win2K1

For the temperature-sensing units, we used a LM34DZ thermal transistor. Tt needs a +5V
power supply, and outputs a voltage linearly proportional to the temperature. From the datasheets
provided, 1 degree will result in a .01V output. For example, a temperature reading of 75degrees
Fahrenheit, the output will be .75V and at 65 degrees Fahrenheit, the output is .65V.

Bottom View

Figure 2: LM34DZ Bottom View

For our purposes, this voltage is too minuscule to work with. In order to get a better reading,
the voltage needs to be amplified. We used an op-amp for this purpose. By using an operational
amplifier in a non-inverting configuration with a gain of 5, we can scale the output from the thermal
transistor to a value that’s more suitable for the A/D converter on the M68HC12. For more details
on the configuration of the op-amp, a schematic has been attached at the end of this report.

We use the A/D converter to constantly take readings on its channels. For this reason, we
configure the A/D converter with the MULT and SCAN bits on. We also enable the converter to
generate an interrupt whenever, it’s completed obtaining data since this is an interactive program -
we don’t want to constantly poll the A/D converter and waste precious cycles just waiting for data.
We don’t need to obtain measurements within short periods of time, thus we set the A/D converter to
take samples using a period of 16 cycles, and adjust the P-clock so that the A/D receives a clock
frequency with the allowable range. We must also assign the Interrupt jump vector to the ISR so
that the interrupt is handled correctly.

DB12->SetUserVector (9,ADInt) ;

_H12ADTCTL2 = 0xC2Z; //power up ATD

for (i =0; i < 1000; i++): //wait for ATD to power up
_H12ADTCTL4 = O0x61; //set ATD clock and P-clock

_H12ADTCTL5 = 0x73; //set MULT =1 for multi-channel operation

Now, in the ISR routine, the temperature readings on the outside and inside are updated.

__mod2__ void ADInt()
{

outside temp = _H12ADRZH;
inside temp = _H12ADR3H;
_H12ADTCTLS = 0x73;

2.1.5 Fuzzy Logic

The core idea of our climate control system was to conserve energy. The only way to do that
is to have the system sense differences in temperature inside and outside and adjust the cooling and

Implementations e 2-8

MPS Final Report Household Climate Control a.k.a Win2K1

heating appropriately so that we can use fuel to its full potential and not waste energy. Every
possible combination of scenarios must be identified to ensure that energy used for heating and
cooling is not wasted. We turned to the concept of fuzzy logic. It allows us to attach an unambiguous
numerical meaning to linguistic term such as “warm” and “cool”. There are several processes to do
fuzzy logic for our system. We must take input from the temperatures sensors that have been through
A/D conversion and fuzzify it. We put it through fuzzification to get it in input that we can use. We
then place the results from the fuzzification into our rule matrix and defuzzify it into states for our
system. Our system controls the degree of the opened window the degree of the heating system and
cooling system. Our rule matrix is based on differences on the outside temperature and inside
temperature. Based on our AD conversions we get readings from 40 to 230. After some extensive
testing we determined that below 90 is relatively cold and about 180 is hot. Between 90 and 135 is
“cool” and between 135 and 180 is “warm”.

Below is our fuzzify function where we translate a incoming temperature to a value we can
use. The returned value of 0,1,2 and 3 are form the 4 by 4 rule matrix.

int Fuzzify(int temp)
{
if (temp >= 180)
return 3;
if ((temp > 134) && (temp < 180))
return 2;
if ((temp > 90) && (temp < 135))
return 1;
if (temp <= 90)
return 0;

Here is the rule matrix by this configuration we defuzzify the result and tell the system to
change states accordingly.

~IFan: Off Fan: Off

Fan: Low
Heat: High Heat: Low Heat: Off Heat: Off
'Window: Closed Window: Closed 'Window: Closed Window: Closed
State 1 State 2 State 3 State 4
Fan: Off Fan: Low Fan: High
Heat: Off Heat: Off Heat: Off
Window: Half Window: Half Window: Half
State 6 State 7 State 8
Fan: Low Fan: Low Fan: High
Heat: Off Heat: Off Heat: Off
Window: Full Window: Full Window: Full
State 9 State 10 State 10 State 11
Fan: Off Fan: Low Fan: Low Fan: High
Heat: Off Heat: Off Heat: Off Heat: Off
Window: Full Window: Half Window: Closed Window: Full

Implementations ¢ 2-9

MPS Final Report Household Climate Control a.k.a Win2K1

State 12 State 7 State 13 State 14

Table 2: Fuzzy Logic Rule Matrix

By our calculations for the system we developed there are 14 different states the window, heater and
cooling system can in, however for a bigger model as a real house there will be a lot more states. We
insert the desired states in a 4 by 4 matrix and when we apply the fuzzy logic rules we will get the
one most energy efficient state for that temperature. Below is the fuzz rule for our system.

int FL(int tempout, int tempin)

{
int fuzzrule([4][4] = {{1,2,3,4},{5,6,7,8},{9,10,10,11},{12,7,13,14}};
return fuzzrule [tempout] [tempin];

In our main program we run a smart mode function in a loop until a touch of the keypad
which disengages the smart mode. And returns to user controlled mode. We assume that most of the
time the system should be in smart mode.

void SmartMode (void)
{
int fuzzytempl, fuzzytemp2,I,rule,movewindow;
char stop= '';
stop = Input;
smartmode =1;
while (stop != '#'")
{
stop = Input;
write2LCD("In Smart Mode");
DB12->printf ("\rIn Smart Mode\r\n");
1f(1)
{
inside temp/7);
DB12->printf ("$d\rOutside temp: %d\r\n", outside_temp/7,
outside temp/7);
DBl2->printf ("$d\rWindow Position: $d\r\n", loc,loc);

fuzzytempl=Fuzzify(outside_temp);
fuzzytemp2=Fuzzify(inside temp);
rule = FL(fuzzytempl, fuzzytemp2);
switch (rule) {
case 1: HI2PORTS=0x80;//high heat,both in/outside cold
DB12->printf ("In case 1l\r\n\n");
if (loc < 5)
close _window(5-1loc);
break;
case 2: _H12PORTS=0x40;//low heat,out cold,in cool
DBl2->printf ("In case 2\r\n\n");
if (loc < 5)
close window(5-1loc);
break; //and so on for all 14 states

Implementations e 2-10

MPS Final Report Household Climate Control a.k.a Win2K1

We use the case statement above to select the different mode of our system. Port S on the
HC12’s EVB controls the LEDs, which are to represent our heating system and the fan, which has
two modes a high mode and a low mode.

The LEDs are connected very simply to the Port S, pin 6 and 7. When it is on low heat pin 6
will light up and when it is on high heat pin7 will light up. For cooling system we choose to use a
computer-cooling fan to represent the air-cooling system of a house. Since the EVB did not supply
enough current to power the fan we must use +5V and +12V to power the fan in the 2 modes. We
use transistors to do this. Signal from port S, pin 4 and 5 are used to activate the transistors and allow
the current to pass. One transistor is connected to the +5V there the fan will be on low. The other
transistor is connected to +12V which when activated will produce high fan.

2.2 Result/Discussion

2.2.1 LCD Display

We have successfully display our desire menu to the LCD screen; users are able to enter their
choices without any problem such ask the key is not responding on the keypad. And correct
functions were called with the correct button being pushed. The display temperature function is
working perfectly, and the LCD output the exact number we obtain from the A/D conversion. If we
have more time to work on this project, we were thinking the implement a better LCD screen, which
will have better visual effects for users. We also think that using the touch screen monitor, as our
LCD screen is one of the enhancements we can do to improve our project design and functionality.

2.2.2 Stepper Motor

For the stepper motor, we successfully control the direction and speed of spinning by using
the method we mentioned. However, due to the nature of this motor, the torque was not enough to
lift up the window we intended to use at the beginning (a plexiglass). We then used a lighter
material, a cardboard, instead of the plexiglass. We also figured that, the more torque you need, the
longer time you should set for the for loops in between each pulse sent, however, there is still a
saturation point that you can’t lift such material if it is too heavy.

The biggest problem we have with the stepper motor and it took us a lot of time to solve is
the torque of the motor. We have never expected the motor cannot even lift up a foam board. So,
we ended up using a piece of cardboard. One way we can improve the torque of our stepper motor is
to implement a very efficient pulley system, since we are doing a project for MPS, so we are not
bothering to think about any mechanical ideas.

2.2.3 Temperature Sensors

Using the temperature-sensing units allows us to obtain accurate readings as input for our
fuzzy logic program. The op-amp is a crucial part of this unit, since without it; the readings were too
low for the A/D converter. Also, it was helpful in that it allowed us to scale the readings into a range

implementations e 2-11

MPS Final Report Household Climate Control a.k.a Win2K1

relevant to our purposes. Since we didn’t need to distinguish between temperatures beyond 120
degrees or lower than 0 degrees Fahrenheit, while we were using fuzzy logic, we could appropriately
limit the range using the op amps characteristics. Our team felt that the temperature sensors were the
best choice we have made for this entire project, the unit is easy to use and it’s very accrue and
efficient.

2.2.4 Fuzzy Logic

The result of the fuzzification procedure produced a smart logical mode for the system to
operate in. In this mode which the system will be in most of the time. It will atomically open and
closed accordingly and turn on and adjust the cooling and heating accordingly. The fuzzification of
the system is easier done in C then with assembly. We ran into problems implement this because of
the lack of information we found on this topic. But we were able to research similar products online
and come up with our own fuzzy model.

Implementations ¢ 2-12

MPS Final Report Household Climate Control a.k.a Win2K1

3. Back Materials

3.1 References

(1] manual

“Interfacing a Hitachi HD44780 to a Motorola 68HC12” at the eﬁd dzt:"che 68HC 12 usér’s ‘

[2] | Software and Hardware Engineering

[3] | Motorola Fast And LS TTL Data

Table 3: References
3.2 Bibliography

3.21 URLs

1. http://'www.cs.uiowa.edu/~jones/step/

2. http:/fwww.fdk.co.jp/fdk_sale-e/html/shop2-e.html

3. http://www.newcastle.edu.au/department/av/bilby/stepper.htm

4. http://www.parallaxinc.com/html_files/component_shop/product_list.htm

5. http://www.parallaxinc.com/html_files/products/BS_Accessories/little_step_u.asp
6. http://www.radioshack.com

7. http://www.efunda.com/home.cfm

3.2.2 Printed Materials

All the printed material has been attached at the end of this report.

Back Materials ¢ 3-13

MPS Final Report Household Climate Control a.k.a Win2K1

3.3 Appendices

3.3.1 Circuit diagrams

This section includes all the circuit diagrams for our project.

-

Figure 3: Op-amp circuit for sensor

Back Materials 3-14

MPS Final Report Household Climate Control a.k.a Win2K1

Kejfpad
PORTJPinD I B I '
L
PORT J Pin 1
L . 2 L 3 > H
PORT J Pin 2
L ? L L -
PORT J Pin 3
11
PORT J Pin 4 PORT J Pin7
"PORTJPInS - popr | Ping

Figure 4: Keypad Circuit

Back Materials 3-15

MPS Final Report Household Climate Control a.k.a Win2K1

+5Y

Port S Pinb | 04 é
P::spil:? 13! > :12 f@a T
: 1] >c 10
st
_g| > 6
3I| > i4

Figure 5: LEDs Circuit (heat light)

OV (GROUND) X SO | LCD GND Pin 1 (right mast)
|
(10K pot isincluded
10 Kahms on the LCD boar d)
+5Y D SO LCD +5V Pin 2
{connected _
inter nalw) <Z>— @ LCD Contr ast Pin 3

Port G4: JB Pin 11 OO—<X> LCDRS Pin 4
Port 63: J8 Pin 14— X> LCDR W Pin 5
Part G&: J8 Pin12X0—<X> LCD Enable Pin 6

Port HO: Jg Pin 37—« X> LCDPInT
Part H1: J8 Pin 38 0—<X> LCDPin 8
Port H2: J8 Pin 35 Q0———<X> LCDPin g
Port H3: Jg Pin 36<XXO———<X> LCDPin10
Port He: J8 Pin 33X—<X> LCDPin 11
Port H5: Jg Pin 34— X> LeDPin12
Part HE: J8 Pin 31— X> LcDPin 13

Part H7: Jg Pin 320————X> LCDPin 14
BEHC1 2 LCD Wiring Connections

B68HC1 2

Figure 6: LCD Display

Back Materials o 3-16

MPS Final Report Household Climate Control a.k.a Win2K1

I
L
T
L}

Port 5 Fin 3 :l Port § Pin 4

To zFan

Figure 7: Fan circuit

Back Materials ¢ 3-17

1% 16

0% s

Stager Hetor Qubolls o

* e (ol L (Red)

a \?3' (6(@@
Col 2 Cepenm)

L
:
b A ? Col U Covide)

togc vIO
A

(LS

-M-m C%ac\/_)

T”%amm . 8

MPS Final Report Household Climate Control a.k.a Win2K1

3.3.2 Flow Chart

Start

N Z
\

Initialize I/0 Ports and
A/D conversion

N\ 2

'

Print menu on terminal and
display menu on LCD

If 1 pressed

If 2 pressed

|

If 3 pressed

g

If 4 pressed

Get open range Drive Motor to
[from keypad J [:> (open window

Get close range Drive Motor to
from keypad |————:> [close window

Determine fuzzy '#' key to end
[logic cases j E:> [smart mode

Display temp on
LCD screen

Figure 8: Software Flow Chart

Back Materials 3-18

MPS Final Report Household Climate Control a.k.a Win2K1

3.3.2 Codes

This section includes two source code:

#include <hc812a4.h>
#include <introl.h>
#include <dbugl2.h>
#include <keypad.h>
#include <lcdl2.h>
#include <hc912b32.h>

__mod2__ void ADInt();

// _mod2__ void Timer();

int Fuzzify(int temp);

int FL(int tempout, int tempin);
void close window(int move);
void open window (int move);
void printMenu(void) ;

void setUpLCD(void);

void displayMenu(void);

void write2LCD(char stringl]);
void randomYesOrNo (void);

void GetTemp (void);

void SmartMode (void) ;

void OpenMode (void) ;

void CloseMode (void) ;

void randomDayOfTheWeek (void);
void randomTrueOrFalse (void);
int intcommand(void);

void writenum2LCD(int num);

void getKeyPadEntry(char string[],int size);

int rantime;

int 1i;

int j;

int loc; // 5 is close totally, 0 is open totally
int outside_temp;

int inside_temp;

int smartmode=0;

void _ main()
{
char inString[255];
/* DB12->SetUserVector (Timer0, Timer);
_HlZINTCR=OxCO;
H12TSCR=0x80;

H12TMSK2=0x02;

“H12TI0S=0x01;
H12TMSK1=0x01;

TH12TCO=_H12TCNT+20000;

*/
DB12->SetUserVector (9,ADInt);
_HI12ADTCTL2 = 0xC2; //power up ATD
for (i =0; 1 < 1000; i++); //wait for ATD to power up

Back Materials ¢ 3-18

MPS Final Report Household Climate Control a.k.a Win2K1
_H12ADTCTL4 = Ox61;
_H12ADTCTLS = 0x73; //set MULT =1 for multi-channel operation
loc = 5;
setUpLCD();

InitPortd();
H12DDRS =0xFF;

_H12PORTS = 0x00;

DB12->printf ("LCD panel is powering up...

while (1)
{
DB12->printf ("$d\rInside temp: %d
inside_temp/7);
DB12->printf ("$d\rOutside temp: %d
outside temp/7);
rantime = H12TCNT & OxOOFF;
rantime = rantime * 113;
displayMenu() ;

getKeyPadEntry (inString, 255);
//DB12->printf ("\n\r\n\r");
switch (inString([0])
{
case '1':
OpenMcde () ;
break;
case '2':
CloseMode () ;
break;
case '3':
SmartMode () ;
break;
case '4':
GetTemp () ;
break; '
default:
break;

}

void setUpLCD(void)
{
OpenXLCD (0x3f) ;
WriteCmdXLCD (0x80);
}

void write2LCD(char stringl[])
{
WriteCmdXLCD (0x01);
WriteBuffer (string);
for (i=0;i<10;i++)
for (§=0;3<10000;j++);

\r\n");

\r\n", inside_ temp/7,

\r\n", outside temp/7,

Back Materials 3-19

Household Climate Control a.k.a Win2K1

MPS Final Report

void printMenu (void)

{

char open[] = "1)Open";

char close[] = "2)Close";
char smart([] = "3)Smart";
char tem[] = "4)Temp is";

WriteCmdXLCD(0x01);
SetDDRamAddr (0x00) ;
WriteBuffer (&open);
SetDDRamAddr (0x09)

4

WriteBuffer (&close)
SetDDRamAddr (0x40) ;
)

4

WriteBuffer (&smart

SetDDRamAddr (0x49)

WriteBuffer (&tem);
}

void getKeyPadEntry(char string[],int
{
unsigned int i = 0O;
unsigned char input = '';
unsigned int done =0;

while (!done)
{
while (!KeyFlag);
input = Input;
KeyFlag = 0;
if (input == '*"')
{
string[i] = '\0"';
done = 1;
break;
}
DBl2->putchar (input);
string[i++] = input;
if(i >= (size -1))
{
string[i] = "\O0';
done = 1;
break;

}
DB12->putchar('\n');
DB12->putchar ('\r'");

void displayMenu(void)
{
DB12->printf
DBl2->printf

"
"

size)

1) Open Window\n\r");

(
(
DB12->printf("2) Close Window\n\r");
DBl2->printf ("3) Smart Mode\n\r");

Back Materials ¢ 3-20

MPS Final Report

Household Climate Control a.k.a Win2K1

}

DB12->printf ("4) Show current inside Temp\n\r") ;

printMenu () ;

void OpenMode (void)

{

}

int start = 0;
int i=0;
int 3=0;

" write2LCD("Open Range?");

DB12->printf ("Open Range?");

start = intcommand();
DB12->printf ("\n\r");
if (start <0 || start > 5 || loc - start < 0)

{
write2LCD("invalid range");
DB12->printf ("invalid range");

else

write2LCD("Range: ");
writenum2LCD (start);
open_window(start);

}

for (i=0;1<100;i++)
for (3=0;3<5000;3++);

void CloseMode (void)

{

}

int end = 0;
int i=0;
int 7 = 0;
write2LCD("Close Range?");
DB12->printf ("Close Range?");
end = intcommand();
DB12->printf ("\n\r"); '
if (end <0 || end > 5 || loctend > 5)
{
DB12->printf ("invalid range");
write2LCD("invalid range");

else
write2LCD("Range: ");

writenum2LCD (end) ;
close_window (end) ;

//DBl2->printf ("%d\r\nWindow Position is: %d",loc,loc):

}
for (1=0;1<100; i++)
for (3=0;3<5000;++) ;

void SmartMode (void)

{

int fuzzytempl;

Back Materials ¢ 3-21

MPS Final Report Household Climate Control a.k.a Win2K1

int fuzzytemp?2;

int i;

int rule;

int movewindow;

char stop= '"';

stop = Input;

smartmode =1;

while (stop != '#')
{
stop = Input;
write2LCD("In Smart Mode");

DBl12->printf ("\rIn Smart Mode \r\n");
// if (counter >= 10)
// {
if (1)

{

//read from AD converter

// _H12ADTCTL5 = 0x53;
// while (HI12PORTAD & 0x80) {}
// _H12ADTCTL2 = 0x80; //power up ATD
/7 while (!(_H12ADTSTAT & 0x80)) {}
/1 inside temp=1.8* H12ADR3H;
// outside temp =1.8* H12ADR2H;
DB12->printf ("%d\rInside temp: %d \r\n",
inside temp/7, inside_temp/7);
DB12->printf ("%d\rOutside temp: %d \r\n",
outside temp/7, outside temp/7);
DB12->printf ("%d\rWindow Position: %d \r\n",

loc,loc);
//_H12ADTCTLS = 0x53;

fuzzytempl=Fuzzify(outside_temp);

fuzzytemp2=Fuzzify(inside_temp);

//DBl2->printf ("$d\rDEBUG MESSAGE:
%d\r\n",outside_temp,outside_tempy;

rule = FL(fuzzytempl, fuzzytempZ2);

switch (rule)
{
case 1: H12PORTS=0x80; // high
heat , both inside outside cold
DB12->printf ("In case I\Nr\n\n");
if (loc < 5)
close window(5-loc);

break;

case 2:
_H12PORTS=OX40;
//low heat , outside cold inside cool
DB1l2->printf ("In case 2\r\n\n");
if (loc < 5)
close window(5-loc);

Back Materials o 3-22

MPS Final Report Household Climate Control a.k.a Win2K1

break;

case 3:
_H12PORTS=0x00; // off
everything , outside cold inside warm
DB12->printf ("In case 3\r\n\n");
if (loc < 5)
close window(5-1loc);

break;

case 4:
H12PORTS=0x10;

//low fan , outside cold inside hot
DBl2->printf ("In case 4\r\n\n");
if (loc < 5)
close_window(S—loc);

break;

case 5: _H12PORTS=0x80; //off everything ,
outside cool inside cold
DBl2->printf ("In case 5\r\n\n");
if (loc > 0)
open_window (loc);

break;

case 6: _H12PORTS=0x00; //off everything ,
outisde cool inside cool

DB12->printf ("In case 6\r\n\n");

if ((loc >=0) && (loc<2))
close_window(Z—loc);

if ((loc <=5) && (loc>2))

{
open_window(loc—Z);

}

break;
case 7: H12PORTS=0x10; //low fan , outside
cool inside warm || outside hot inside warm
‘ DBl2->printf ("In case 7\r\n\n");
if ((loc >=0) && (loc<2))
close_window(2—loc);
if ((loc <=5) && (loc>2))
{
open_window (loc-2);
}
break;
case 8: HI12PORTS=0x10; // low fan , outside

cool inside hot
DB12->printf ("In case 8\r\n\n");

if ((loc >=0) && (loc<2))
close_window(3—loc);
if ((loc <=5) && (loc>2))

Back Materials ¢ 3-23

MPS Final Report Household Climate Control a.k.a Win2K1

{
open_window (loc-2);
}

break;

case 9: H12PORTS=0x40; //low heat, outside
warm inside cold
DB12->printf ("In case 9\r\n\n");
if ((loc >=0) && (loc<2))

close window(3-loc);
if ((loc <=5) && (loc>2))
{

open_window (loc-2);
}

break;

case 10: H12PORTS=0x00; //off everything,
outside warm inside cool || outside warm inside warm

DB12->printf ("In case 10\r\n\n");

if (loc > 0)
{

open_window (loc);
}

break;

case 11: HI12PORTS=0x20; //high fan, outside warm
inside hot

DBl2->printf ("In case 11l\r\n\n");

if (loc > 0)
{

open_window (loc);
}

break;

case 12: H12PORTS=0x00; //off
everything, outside hot inside cold //impossible

DBl2->printf ("In case 12\r\n\n");

if (loc >0)
{
open_window (loc);
}
break;

case 13: H12PORTS=0x10; //low fan, outside
hot inside warm

DB12->printf("In case 12\r\n\n");

if (loc <5)
{

close window(5-1loc);
}

break;

case 14: H12PORTS=0x20; //high fan,

Back Materials 3-24

MPS Final Report Household Climate Control a.k.a Win2K1

outside hot inside hot

}

DB12->printf ("In case 12\r\n\n");

if (loc <5)
{

close _window (5-1loc);

}

break;

default:
break;

}
DB12->printf ("End of Smart Mode");
smartmode =0;

void GetTemp (void)

{

//
//

//
//

//

/7

}

int i=0;
int stupid=0;
char temp([5];

while (H12PORTAD & 0x80){}

for (i1=0;1<100;i++);

_H12ADTCTL2 = 0x80; //power up ATD
_H12ADTCTLS = 0x53;

while (!(H12ADTSTAT & 0x80)) {1}

for (i=0;1<100;1i++);

DBl12->printf ("%d\rInside Temperature: $d\n\z", inside_temp/7);
stupid = inside temp/7;

write2LCD ("Temp is: ");

writenum2LCD (stupid);

WriteBuffer ("C");

DB12->printf ("%d\rInside Temperature is: %d C\n\r", stupid, stupid);
_H12ADTCTL5 = 0x53;

for (1=0;1<100;i++)
for (3=0;3<5000;J++);

int intcommand(void)

{

char string[255];

int error = 0;

int done = 0;

int 1 =0;

int number = 0;
getKeyPadEntry (string, 255);

while (!done)

{

Back Materials 3-25

MPS Final Report Household Climate Control a.k.a Win2K1

char ¢ = string[i++];

if(c == "\0")

{
done =1;
break;

}

if(!isdigit(c))

{
done = 1;
error = 5;,
break;

}

number *=10;

number += c - 48;

}

if (error)
{
return -1;

}

return number;

}

void writenum2LCD (int num)
{
int 1i;
int displayed = 0;
for(i = 10000;1i>0;1/=10)
{
int digit = num / i;
if(digit || displayed)
{
WriteDataXLCD(digit + 48);
displayed = 1;
}

num -= 1 *digit;
}

int Fuzzify(int temp)
{
if (temp >= 180)
return 3;
if ((temp > 134) && (temp < 180))
return 2;
if ((temp > 90) && (temp < 135))
return 1;
if (temp <= 90)
return O;

}

int FL(int tempout, int tempin)

{
int fuzzrule[4][4] = ({1,2,3,4},15,6,7,8},{9,10,10,11},{12,7,13,14}};
return fuzzrule [tempout] [tempin];

Back Materials 3-26

MPS Final Report

Household Climate Control a.k.a Win2K1

void open window(int move)

{

int j,i;
_H12DDRG = OXFF;
if (move != 0)
{
for (j=0; j< move*20;j++)

{

// clockwise

_H12PORTG = OxOF & 0x00;
for (i=0; 1<2000;i++);
_H12PORTG = 0x0F & 0x02;
for (i=0; 1<2000;i++);
_H12PORTG = OxOF & 0x03;
for (i=0; 1<2000;i++);
H12PORTG = O0xO0F & 0x01;

for (1=0; 1<2000;i++);

}
}
loc = loc - move; :
DB12->printf ("%d\rWindow Position: %d\n\r"
for (i=0;1<100;i++) .

for (j=0;3<5000;3++);

}

void close window(int move)

{

int j,1i;
_H12DDRG = OxFF;
if (move != 0)

{
for (j=0; j< move*20;j++)
{
// counter-clockwise
_HI12PORTG = O0x0F & 0x00;
for (i=0; i<2000;i++);
_H12PORTG = OxOF & 0x01;
for (i=0; 1i<2000;i++);
_H12PORTG =0x0F & 0x03;
for (i=0; 1<2000;i++);
_H12PORTG=0x0F & 0x02;
for (i=0; 1<2000;i++);
}
}
loc = loc + move;
DB12->printf ("$d\rWindow Position: %d\n\r"
for (1=0;1<100; i++)
for (§=0;3<5000;3++);
}

/*
__modZ2___ void Timer ()
{

H12TCO = H12TCO + 20000;

4

’

loc, loc);

loc, loc);

Back Materials o 3-27

MPS Final Report Household Climate Control a.k.a Win2K1
if (smartmode == 1)
counter++;

_H12TFLG1=0x01;
for (i=0;1<100;i++)
for (3j=0;3<5000;j++);
}
*/

_ mod2_ void ADInt ()

{
outside temp = _H12ADRZH;
inside temp = _HI12ADR3H;
_H12ADTCTLS = 0x73;

Table 4: fuzzywuzzy.c

#include <hc812a4.h>
#include <introl.h>
#include <dbugl2.h>

char Input:;
int KeyFlag;
char Pad[4][4] =

{{’D'['#','O','*'},{'C','9','8',‘7'},{'B','6‘,'5','4'},{'A’,'3','2'[|1'}};

void InitPortJ(void);
__mod2__ void KeyWakup (void);

void InitPortJd(void) {

DB1l2->SetUserVector (PortJKey, KeyWakup) ;

_H12DDRJ = 0xFO;
_H12KPOLJ = 0x00;
_H12KWIFJ = OxFF;
_H12PUPSJ = OxFF;
_H12PULEJ = OxOF;
_H12KWIEJ = OxOF;
KeyFlag = 0;
Input = '';

}

__mod2__ void KeyWakup (void) {
unsigned int column, row;
unsigned char original;
unsigned char temp;
int i;

KeyFlag = 0;

original = HI12PORTJ;

if (! (_H12PORTJ & 0x08)) {
column = 3;

}

if(!(H12PORTJ & 0x04)) {

Back Materials « 3-28

MPS Final Report

Household Climate Control a.k.a Win2K1

column = 2;

}

if (! (_H12PORTJ & 0x02)){
column = 1;

}

if (! (_H12PORTJ & O0x01)) {
column = 0;

}

_H12PORTJ = (0xFO | original) & 0x80;
for (i=0;1<4000;1i++);
if ((_H12PORTJ & O0xO0F) == 0xOF) {

row = 3;
}
_H12PORTJ = (OxF0 | original) & 0x40;
for (i=0;1i<4000;1i++);

if ((_H12PORTJ & O0x0F) == 0xOF) {
row = 2;
}
_H12PORTJ = (0xFO | original) & 0x20;
for (i=0;1<4000;i++);

if ((_H12PORTJ & OxOF) == 0x0F) {
row = 1;
}
_H12PORTJ = (0xFO | original) & 0x10;
for (i1i=0;1<4000;i++);

if ((_H12PORTJ & OxOF) == 0x0F) {
row = 0; ’

}

Input = Pad[row] [column];

KeyFlag = 1;

_H12PORTJ
_H12KWIFJ

1l

0x00;
_H12KWIFJ;

]

Table 5: Keypad.h

Back Materials o 3-29

Conclusion

Our team had successfully accomplished our tasks stated in the project proposal.
After finishing the project, we gain knowledge in controlling the MC68HC12, along with
our usage of temperature sensor, stepper motor and fuzzy logic. We also learned to
manage our time as the project goes along. Doing researches and reading tutorials from
difference references became one of our main tasks in this project, which we benefit from
this and gain experience as a real engineer. And we can see our project with the potential
and expandability of this project, we see that our WIN2K1 will give users convenience
and upgrade their standard of living. Last but not least, we have to make a special thanks
to Prof. Kraft, Tong , and Shivani during the whole semester, we have received sufficient
and inspiring information.

Lab 6 Temperature Sensor Page 6.1

Lab 6 Temperature Sensor

This laboratory assignment accompanies the book, Embedded Microcomputer Systems: Real Time Interfacing, by
Jonathan W. Valvano, published by Brooks-Cole, copyright © 2000.

Goals * Design the hardware interface between a DS1620 temperature sensor and a microcomputer,
+ Implement synchronous serial communication using simple I/O directly to the clock and data pins,
* Create the low-level device driver that could be used in other applications.

Review * Valvano Section 3.3 about gadfly synchronization,

« Valvano Section 3.4.2 about accurate time delays,

* Valvano Section 3.4.8 about handshaking with the DS1620,

* Reread Lab 1 about binary fixed point format,

» DS1620 data sheets included with this Lab Manual,

* The chapter on the parallel port and output compare in the Motorola Reference Manual.
Starter files * DS1620.C, DS1620.H, DSTEST.C

Background

One of the basic building components of a microprocessor-based control system is the sensor. In this lab,
you will interface a DS1620 to your computer, and use it as part of a temperature controller. We will simulate a
digital control system that applies heat to the room in order to maintain the temperature as close to a desired
temperature setpoint, T*, as possible. This is a closed loop control system because the control signals (heat) depend
on the state variables (temperature). Your system will communicate with the DS1620 to estimate the current
temperature, T*. In this application, the actuator has only two states: on that warms up the room and off that does
not apply heat. Read about the operation of the DS1620 in general and the Tcop signal in particular. For this
control problem to function properly there must be a passive heat loss that lowers the room temperature when the
heater is turned off. A typical digital control algorithm for this type of actuator is Bang-Bang. Other names for Bang-
Bang include Two-position, On-off, or Binary Controller. There are two setpoint temperatures in a Bang-Bang

controller, Tgigy and Trow. The controller turns on the power (activate relay) if the temperature goes below
Trow and turns off the power (deactivate relay) if the temperature goes above Tyjgy. The difference Taiga-TLow

is called hysteresis. Hysteresis extends the life of the relay by reducing the number of times the relay opens and
closes.

Power
Relay Source
microcomputer +5V V()
U(t) @ \
out 9
T'(t)
T — > ;
LOW n < sensor
> out >
Thicn d
gn

Figure 6.1. General Microcomputer-based Temperature Controller

Jonathan W. Valvano

Lab 6 Temperature Sensor Page 6.2

UA U T
On- A A
On- «
e e
Off | ‘ | l ‘ | T
f —> T Off T > time > time
Trow ThicH

Figure 6.2. Algorithm for Bang-Bang Temperature Controller

Bang Bang

>
Estimate T'
too hot too cold
T>Ty6h - T'<TLOW
OK TLow ST'STHIGH
Turn Off Leayg it Turn On
as it 1s

1 1]

Y

Figure 6.3. Software Algorithm for Software Based Bang-Bang Temperature Controller

Once programmed with the two setpoint temperatures, Tyigy and Trow, the DS1620 will perform the
above bang-bang algorithm automatically. The following figure shows an actual DS1620-based controller. The

DS1620 can be programmed at the factory before installing the chip into a system. Here it is shown with a
microcomputer that allows the operator to adjust the setpoints.

Jonathan W. Valvano

Lab 6 Temperature Sensor

Power
Relay Source
+5v
u() [: %@ \
T —> Tl > ‘com
row 5 uC clock——> DS1620
HIGH reset —9

Figure 6.4. DS1620-based Temperature Controller

Instead of a relay and heater, you will connect three LED’s to the DS1620. The middle LED simulates the control
to the heater that would add or not add thermal energy to the room. The other two will help debug your system.
The two setpoint temperatures, Tyigy and Ty ow, will be entered using the InFDec() routine you developed in
Lab 1. The microcomputer will send the two setpoints to the DS1620. Continuous mode will be started, and you
should be able to observe the controller action on the three LED’s. There are five types of communications that you
can perform with the DS1610. See Table 3 and Figures 3,4 of the DS1620 data sheets. Information is sent LSB
first.

1) Execute Function
This type of communication involves sending an 8-bit instruction from the 6812 to the DS1620
and no data. The two examples of this type are StartConvertT (0XEE) and StopConvertT (0x22).
For these commands, you simply send the 8 bits.

2) Send Command
This type of communication involves sending both an 8-bit instruction and an 8-bit command
from the 6812 to the DS1620. The only example of this type is WriteConfig. For this command,
you first send the 8 bits (0x0C), then you send the 8 bits of data.

3) Receive Status
This type of communication involves first sending an 8-bit instruction to the DS1620 then
receiving back an 8 bit data from the DS1620. The only example of this type is ReadConfig. For
this command, you first send the 8 bits, next you switch the direction register bit for the data pin
so it is an input, and then you receive the 9 bits of data.

4) Send Data
This type of communication involves sending both an 8-bit instruction and a 9-bit data from the
6812 to the DS1620. The two examples of this type are WriteTH and WriteTL. For these
commands, you first send the 8 bits, then you send the 9 bits of data.

5) Receive Data
This type of communication involves first sending an 8-bit instruction to the DS1620 then
receiving back a 9 bit data from the DS1620. The three examples of this type are ReadTH ReadTL
and ReadTemperature. For these commands, you first send the 8 bits, next you switch the
direction register bit for the data pin so it is an input, and then you receive the 9 bits of data.

Jonathan W. Valvano

Lab 6 Temperature Sensor Page 6.4

+5V
= 2000
LED
6812 PV Ty >O
T gnd GND SV

N = |'Ds1620 |, I
TuigH o Q >O§Z LED
5V

in/outf[<€—>{ DQ
out —> CLK 7405 2000
out >| RST TrLow | 2 LED

Figure 6.5. Simulated microcomputer-based temperature controller that you will build.

Preparation

Show the required hardware connections. Label all hardware chips, pin numbers, and resistor values. Ask your
TA for the name and location of a demo program that communicates with the DS1620. Modify the port and bit
locations to make your hardware.

Write the low-level DS1620 software interface routines. At the lowest level you should be able to send
commands and send/receive data. At the next level you will develop commands to read temperature and write
setpoints. Pass data into/out of these programs using signed 16-bit binary fixed-point format. Refer to Table 1 of the
DS1620 data sheets and Table 1.1 in Labl for more information about this binary fixed-point format. You must
have a separate DS1620.H and DS1620.C files to simplify the reuse of these routines. You are not allowed to
perform serial port I/O (e.g., InFDec OutString printf) within the DS1620.C files. These operator interactions
will occur in the main program. Write a main program that inputs desired temperature setpoints from the user, and
transmits them to the DS1620. Implement a simple interpreter that allows the operator to perform each of the
individual 9 operations with the DS1610. In addition, add a thermometer mode that runs a continuous loop
repeating these steps over and over until the operator stops the command (use InStatus)

- read the current temperature from the DS1620,
- convert the temperature to °F and displays it on the PC screen (using OutFDec).

Procedure

Run the demo program to test the hardware interface. Start with the lowest level routines and test your
DS1620.C functions in small pieces. Write a main program that performs the same operation over and over so that
you can observe the synchronous serial communication on a dual channel scope.

Checkout
You should be able to demonstrate your ability to execute all 9 functions individually. Connect the Dual
Channel scope to CLK,DQ and explain the signals generated when running thermometer mode.

Hints

1) Make sure the wires are securely attached to your board.

2) You can increase the temperature of the DS1620 with your finger, and decrease it with a fan. You could use one of
those frozen cubes you put in your cooler, but I suggest you avoid using liquids (e.g., ice) in this lab.

Jonathan W, Valvano

@ MOTOROLA

Octal High Voltage,
High Current Darlington
Transistor Arrays

The eight NPN Darlington connected transistors in this family of arrays
are ideally suited for interfacing between low logic level digital circuitry (such
as TTL, CMOS or PMOS/NMOS) and the higher current/voltage
requirements of lamps, relays, printer hammers or other similar loads for a
broad range of computer, industrial, and consumer applications. All devices
feature open—collector outputs and free wheeling clamp diodes for transient
suppression.

The ULN2803 is designed to be compatible with standard TTL families
while the ULN2804 is optimized for 6 to 15 volt high level CMOS or PMOS.

MAXIMUM RATINGS (Ta = 25°C and rating apply to any one device in the
package, unless otherwise noted.)

Order this document by ULN2803/D

ULN2803
ULN2804

OCTAL PERIPHERAL
DRIVER ARRAYS

SEMICONDUCTOR
TECHNICAL DATA

Rating Symbol Value Unit
Output Voltage Vo 50 \Y
Input Voltage (Except ULN2801) \ 30 \Y A SUFFIX
Collector Current — Continuous Ic 500 mA PLAS(I L%EPA787K AGE
Base Current — Continuous B 25 mA
Operating Ambient Temperature Range TA O0to +70 °C
Storage Temperature Range Tstg -55to +150 °C
Junction Temperature Ty 125 °C PIN CONNECTIONS

Rgya = 55°C/W
Do not exceed maximum current limit per driver.

ORDERING INFORMATION

Characteristics

Operating
Input Temperature
Device Compatibility Vce(Max)Ig(Max) Range

ULN2803A | TTL,5.0VCM
s 50 V/500 mA Ta=0to+70°C

ULN2804A | 6to 15V CMOS, PMOS

FlEEFFEFEFE
¥
EBRERNEERESEERERSEE

[©]
a
(=}
|||—I
[

© Motorola, Inc. 1996 Rev 1

ULN2803 ULN2804
ELECTRICAL CHARACTERISTICS (Ta = 25°C, unless otherwise noted)

Characteristic Symbol Min Typ Max Unit

Output Leakage Current (Figure 1) ICEX pHA
(Vo =50V, Ta =+70°C) All Types . - - 100
(Vo =50V, Tp = +25°C) All Types - - 50
(Vo =50V, Tp=+70°C,V|=6.0V) ULN2802 - - 500
(Vo =50V, Tp=+70°C,V|=1.0V) ULN2804 - - 500

Collector—Emitter Saturation Voltage (Figure 2) VCE(sat) \
(Ic =350 mA, Ig = 500 pA) All Types - 1.1 1.6
(Ic =200 mA, Ig = 350 uA) All Types - 0.95 13
(Ic =100 mA, Ig = 250 pA) All Types - 0.85 11

Input Current — On Condition (Figure 4) li(on) mA
(V|=17V) ULN2802 - 0.82 1.25
(V|=3.85V) ULN2803 - 0.93 1.35
(VI=5.0V) ULN2804 - 0.35 0.5
Vi=12V) ULN2804 - 1.0 1.45

Input Voltage — On Condition (Figure 5) Vion) v
(VCE=2.0V,Ic =300 mA) ULN2802 - - 13
(VCE=2.0V, Ic =200 mA) ULN2803 - - 24
(VCE=2.0V,Ic =250 mA) ULN2803 - - 2.7
(VCE=2.0V,Ic =300 mA) ULN2803 - - 3.0
(VCE=2.0V,Ic =125mA) ULN2804 - - 5.0
(Vce=2.0V,Ic =200 mA) ULN2804 - - 6.0
(Vce=2.0V,Ic =275mA) ULN2804 - - 7.0
(Vce=2.0V,Ic =350 mA) ULN2804 - - 8.0

Input Current — Off Condition (Figure 3) ' All Types l|(off) 50 100 - HA
(Ic =500 A, Tp = +70°C)

DC Current Gain (Figure 2) ULN2801 hFe 1000 - - -
(VCE=2.0V, Ic =350 mA)

Input Capacitance Ci - 15 25 pF

Turn—On Delay Time ' ton - 0.25 1.0 us
(50% E| to 50% EQ)

Turn—Off Delay Time toff - 0.25 1.0 us
(50% E| to 50% EQ)

Clamp Diode Leakage Current (Figure 6) Ta = +25°C IR - - 50 A
(VR=50V) TA = +70°C 100

Clamp Diode Forward Voltage (Figure 7) VE - 15 2.0 \
(IF =350 mA)

2 ’ MOTOROLA ANALOG IC DEVICE DATA

ULN2803 ULN2804
TEST FIGURES

(See Figure Numbers in Electrical Characteristics Table)

Figure 1. Figure 2.

Open

Open Ve I

Figure 5.

Open

Figure 7.

MOTOROLA ANALOG IC DEVICE DATA

I, COLLECTOR CURRENT (mA)

1IN, INPUT CURRENT (mA)

ULN2803 ULN2804

TYPICAL CHARACTERISTIC CURVES - Tp = 25°C, unless otherwise noted
Output Characteristics

Figure 8. Output Current versus Figure 9. Output Current versus

Saturation Voltage Input Current
=z
/ E
600 % £ 600
w
/ &: y
All Types / 3 All Types /
400 @ 400 A
/ S /
/ [}
/ - / f
wad
200 7 3 200 v
// < //
0 l 0 P
0 05 1.0 15 20 0 200 400 600 800
VCE(sat) SATURATION VOLTAGE (V) I INPUT CURRENT (uA)
Input Characteristics
Figure 10. ULN2803 Input Current Figure 11. ULN2804 Input Current
versus Input Voltage versus Input Voltage
2.0 20
L~ =z
15 /’ E 15
7 =
< 2
10 / % 10 — L~
=
/ — //
05— £ 05 //
0 0
20 25 30 35 40 45 50 55 60 50 60 70 80 90 10 1 12 13
VN, INPUT VOLTAGE (V) V|N, INPUT VOLTAGE (V)
Figure 12. Representative Schematic Diagrams
1/8 ULN2803 1/8 ULN2804

MOTOROLA ANALOG IC DEVICE DATA

2003 rurv
2024

4¥0€62
}o8ys EleQ

Dwg. No. A-9594

Note that the ULN20xXA series (dual in-line
package) and ULN20xxL series (small-outline
IC package) are electrically identical and share
a common terminal number assignment.

ABSOLUTE MAXIMUM RATINGS
Output Voltage, V

(ULN200xA and ULN200xL) 50V

(ULN202xA and ULN202xL) 95V
Input Voltage, V, .eoeereemeieenenennuninns 30V
Continuous Output Current,

500 mA
Continuous Input Current, L 25 mA
Power Dissipation, P _

(one Darlington pair)........c.cceeeveuen. 1.0 W

(total package)........ccccevenunne See Graph
Operating Temperature Range,

T, e -20°C to +85°C
Storage Temperature Range,

Ty oo -55°C to +150°C

HIGH-VOLTAGE, HIGH-CURRENT
DARLINGTON ARRAYS

Ideally suited for interfacing between low-level logic circuitry and
multiple peripheral power loads, the Series ULN20xxA/L high-voltage,
high-current Darlington arrays feature continuous load current ratings
to 500 mA for each of the seven drivers. At an appropriate duty cycle
depending on ambient temperature and number of drivers turned ON
simultaneously, typical power loads totaling over 230 W (350 mA x 7,
95 V) can be controlled. Typical loads include relays, solenoids,
stepping motors, magnetic print hammers, multiplexed LED and
incandescent displays, and heaters. All devices feature open-collector
outputs with integral clamp diodes.

The ULN2003A/L and ULN2023A/L have series input resistors
selected for operation directly with 5 V TTL or CMOS. These devices
will handle numerous interface needs — particularly those beyond the
capabilities of standard logic buffers.

The ULN2004A/L and ULN2024A/L have series input resistors for
operation directly from 6 to 15 V. CMOS or PMOS logic outputs.

The ULN2003A/L and ULN2004A/L are the standard Darlington
arrays. The outputs are capable of sinking 500 mA and will withstand
at least 50 V in the OFF state. Outputs may be paralleled for higher
load current capability. The ULN2023A/L and ULN2024A/L will
withstand 95 V in the OFF state.

These Darlington arrays are furnished in 16-pin dual in-line plastic
packages (suffix “A”) and 16-lead surface-mountable SOICs (suffix
“L”). All devices are pinned with outputs opposite inputs to facilitate
ease of circuit board layout. All devices are rated for operation over the
temperature range of -20°C to +85°C. Most (see matrix, next page) are
also available for operation to -40°C; to order, change the prefix from
“ULN” to “ULQ".

FEATURES

B TTL, DTL, PMOS, or CMOS-Compatible Inputs

H Output Current to 500 mA

H Output Voltage to 95V

M Transient-Protected Outputs

M Dual In-Line Plastic Package or Small-Outline IC Package

x = digit to identify specific device. Characteristic shown applies to family of
devices with remaining digits as shown. See matrix on next page.

2003 THRU 2024
HIGH-VOLTAGE,
HIGH-CURRENT
DARLINGTON ARRAYS

DEVICE PART NUMBER DESIGNATION

VCE(M AX) 50V 95V
IC(MAX) 500 mA 500 mA
Logic Part Number

5v ULN2003A* ULN2023A*

TTL, CMOS ULN2003L* ULN2023L
6-15V ULN2004A* ULN2024A
CMOS, PMOS ULN2004L* ULN2024L

* Also available for operation between -40°C and +85°C. To order, change

PARTIAL SCHEMATICS prefix from “ULN” to “ULQ”.
ULN20x3A/L (Each Driver)

—p+——o0 COM
2.7K _I:_'—f_° 25
O———WA——1 H
: I: A
: 72K [3K) §
P €G- 20 \
V4
SUFFIX A", R g = 60°C/W

Dwg. No. A-9651

INQN
| LN

AN

ULN20x4A/L (Each Driver)

ALLOWABLE PACKAGE POWER DISSIPATION IN WATTS

05 AN
—>+—o COM SUFFIX 'L', R g = 90°CIW \
10.5K _I:——?—'°
O————MA— :
: 12K 3KL/1 2 %25 50 75 100 125 150
: A W : AMBIENT TEMPERATURE IN °C
----------------- K---;i---‘ Dwg. GP-006A
Dwg. No. A-9898A X = Digit to identify specific device. Specification shown applies to family of

devices with remaining digits as shown. See matrix above.

115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
Copyright © 1974, 1998 Allegro MicroSystems, Inc.

2003 tHRU 2024
HIGH-VOLTAGE,
HIGH-CURRENT

DARLINGTON ARRAYS

Types ULN2003A, ULN2003L, ULN2004A, and ULN2004L
ELECTRICAL CHARACTERISTICS at +25°C (unless otherwise noted).

Test Applicable Limits
Characteristic Symbol Fig. Devices Test Conditions Min. Typ. Max. | Units
Output Leakage Current IcEx 1A All Ve =50V, Ty =25°C — <1 50 pA
Ve =50V, Ta=70°C — <1 100 pA
1B ULN2004A/LL | Vce=50V, Tp=70°C,V|N=1.0V — <5 500 pA
Collector-Emitter VcE(sAT) 2 All Ic =100 mA, Ig = 250 pA — 0.9 1.1 \
Saturation Voltage Ic = 200 mA, Ig = 350 pA — 11 13| v
Ic =350 mA, Ig = 500 pA — 1.3 16 \'
Input Current lIN(ON) 3 ULN2003A/L | V|y=3.85V — 093 135] mA
ULN2004A/L | VIN=5.0V — 035 05 mA
Vin=12V — 1.0 145 mA
lIN(OFF) 4 All Ic =500 pA, Tp =70°C 50 65 — pA
Input Voltage VIN(ON) 5 ULN2003A/L | Vce=2.0V, Ic=200 mA — - 24 \Y
Vece=2.0V, Ic =250 mA — — 27 \Y
Ve =2.0V, I =300 mA — — 3.0 \
ULN2004A/LL | Vce=2.0V,Ic=125mA — — 5.0 \
Vce =2.0V, Ig =200 mA — — 6.0 \
Vce=20V,Ic=275mA — — 7.0 \
Ve =20V, Ic=350 mA — — 8.0 \
Input Capacitance CiN — Al — 15 25| pF
Turn-On Delay tpLH 8 All 0.5ENt0 0.5 Equt — 025 1.0 us
Turn-Off Delay tPHL 8 All 0.5 Ento 0.5 EouTt — 025 1.0 us
Clamp Diode IR 6 All VR =50V, Ta=25°C — — 50 uA
Leakage Current VR =50V, Tp = 70°C _ _ 100 iy
Clamp Diode VE 7 All IF =350 mA — 1.7 20 \Y
Forward Voltage

Complete part number includes suffix to identify package style: A = DIP, L = SOIC.

www.allegromicro.com

2003 taruU 2024

HIGH-VOLTAGE,
HIGH-CURRENT
DARLINGTON ARRAYS

Types ULN2023A, ULN2023L, ULN2024A, and ULN2024L

ELECTRICAL CHARACTERISTICS at +25°C (unless otherwise noted).

Test Applicable Limits
Characteristic Symbol | Fig. Devices Test Conditions Min. Typ. Max. Units
Output Leakage Current IcEX 1A All Ve =95V, Ta=25°C — <1 50 pA
Ve =95V, Tp=70°C — <1 100 HA
1B ULN2024A/L | Veg=95V, Tp=70°C, V=10V — <5 500 pA
Collector-Emitter VCE(SAT) 2 All Ic =100 mA, Ig = 250 pA — 0.9 1.1 \%
Saturation Voltage Ic = 200 mA, I = 350 pA — 11 13V
Ic =350 mA, Ig = 500 uA — 1.3 16 \
Input Current IiN(ON) 3 ULN2023A/LL | V|y=3.85V — 093 135 mA
ULN2024A/L | VIN=5.0V — 035 05 mA
ViN=12V — 1.0 145 mA
lIN(OFF) 4 All Ic =500 pA, Tp =70°C 50 65 — uA
Input Voltage VIN(ON) ULN2023A/LL | Vce=2.0V,Ic=200mA — — 24 \
Vce=2.0V,Ic =250 mA — — 2.7 \Y
Vce=2.0V, Iz =300 mA — — 3.0 \
ULN2024A/L | Vcg=2.0V,Ic=125mA — — 5.0 \
Vce=2.0V, Ic =200 mA — — 6.0 \Y
Vce=2.0V,Ic=275mA — — 7.0 \
Vee =2.0V, Ig =350 mA — — 8.0 '
Input Capacitance Cin — All — 15 25 pF
Turn-On Delay tpLH 8 All 0.5 Ejy to 0.5 Equt — 025 10 us
Turn-Off Delay tpHL 8 All 0.5EN10 0.5 Eout — 025 1.0 us
Clamp Diode IR 6 All VR=95V, Ta=25°C — — 50 LA
Leakage Current VR =95V, Tp = 70°C _ _ 100 HA
Clamp Diode Vg 7 All IF =350 mA — 17 20 \
Forward Voltage

Complete part number includes suffix to identify package style: A =DIP,L = SOIC.

115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000

2003 THRU 2024
HIGH-VOLTAGE,
HIGH-CURRENT

DARLINGTON ARRAYS

TEST FIGURES

FIGURE 1A FIGURE 1B FIGURE 2

oPEN VCE OPEN

Dwg. No. A-9729A Dwg. No. A-9730A Dwg. No. A-9731A

FIGURE 3 FIGURE 4 FIGURE 5

OPEN oPEN VCE OPEN

0 OPEN
ViN
Vee T e T
Dwg. No. A-9732A Dwg. No. A-9733A Dwg. No. A-9734A
FIGURE 6 FIGURE 7 FIGURE 8
i o}
OPEN Ve
Vh\
Dwg. No. A-9735A Dwg. No. A-9736A ULN20X3* 3.5V azf:"ki?m
ULN20X4* 12V PRR .-‘5%‘"1

* Complete part number includes a final letter to indicate package.

X = Digit to identify specific device. Specification shown applies to family of devices with remaining digits as shown.

www.allegromicro.com

2003 tHRU 2024
HIGH-VOLTAGE,
HIGH-CURRENT
DARLINGTON ARRAYS

ALLOWABLE COLLECTOR CURRENT TYPICAL APPLICATIONS

AS A FUNCTION OF DUTY CYCLE

(Dual In-line-Packaged Devices, Suffix ‘A’) Wss W

600
1
\ N
g \ 2
z N ~ ™
< 400 L U ~ ‘
S 3
E %\\\ 4 \\
: \\\ s \'\
ol 6
E : 7 \QE\\
E 00 EESS
e NUMBER OF OUTPUTS B
5 CONDUCTING OUTPUT
g SIMULTANEOUSLY [Ta=+70C |
5 Rai = 60°C/IW
Dwg. No. A-9652
(4]
0 20 40 60 80 100 +V

DUTY CYCLE IN PER CENT
Dwg. GP-070

(Small-Outline-Packaged Devices, Suffix ‘L’)

600
Ta=+70°C

. | Roua = 90°CW |

w ———

Z

E 400 A \\ 2\ A \\ \\ o

S NN N

z \ \ N 2 - 0 2N4901

E \ \ \ \~ 3 - \\

g \ \\;\ 4 ™ =

2 200 NS 5

o N6 LN

2 7 Q§\ L cMos

5 l — L OuTPUT 1

3 [T —— - -

. SIMULTANEOUSLY Dwg. No. A-9B54A
0 20 40 60 80 100
DUTY CYCLE IN PER CENT
Dwg. GP-044A
SATURATION VOLTAGE COLLECTOR CURRENT AS A
AS A FUNCTION OF COLLECTOR CURRENT FUNCTION OF INPUT CURRENT
600 600 7
l"
li yi ./'
"{ I"
E /’ E /" /
Zz 400 A Zz 400 A
e A S £ /
& o"\"o" 0‘/‘3 & oVyt" /
£ ‘«7 A E & &,
g "] Q§ g o" \S‘O&
o i S o g 4
& 20 # & G 200 £ {'\\A
| S | A<
al 'o - " \‘y"«.‘
o 0" 8 '0' /
/' / 'l"
"4' / 'o' /
. o . Vv /
0 05 10 15 20 0 200 400 600
COLLECTOR-EMITTER SATURATION VOLTAGE INPUT CURRENT IN pA
Dwg. GP-067 Dwg. GP-068

115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000

2003 THRU 2024
HIGH-VOLTAGE,
HIGH-CURRENT

DARLINGTON ARRAYS

TYPICAL APPLICATIONS INPUT CURRENT
AS A FUNCTION OF INPUT VOLTAGE

Types ULN2003A, ULN2003L, ULN2023A, and
ULN2023L

A

+Vee +V

2.0 7
N
@‘/ .
‘x\?d\ » e
15 L
’ 7 e
P 'p&
,4{«9\0

1.0

INPUT CURRENT INmA —1 v

TTL 05
OUTPUT AREA OF NORMAL OPERATION
= WITH STANDARD OR SCHOTTKY TTL
Dwg. No. A-9653A 0 | | | I
2.0 3.0 4.0 5.0 6.0
INPUT VOLTAGE
Dwg. GP-069

+Vee Types ULN2004A, ULN2004L, ULN2024A, and
ULN2024L
20
! . 15
:{ Rp T /
< /
£
z o
E 10 “/Pﬁ// -
E / -l .——---" ==
8 / - __-_?;;\C-P\-\--
TTL - ="
OUTPUT ; 05 SIS s
Dwg. No. A-10,175
.
5 6 7 8 9 10 1 12
INPUT VOLTAGE
Dwg. GP-069-1

www.allegromicro.com

2003 TaruU 2024
HIGH-VOLTAGE,
HIGH-CURRENT
DARLINGTON ARRAYS

PACKAGE DESIGNATOR “A”

Dimensions in Inches
(controlling dimensions)

9

0.280
0.240

=T d o
,‘ 0.100 L 8'._._0.005

0.775 BSC MIN
0.735
i
0.210
MAX
0.015
MIN

_,| L 0:022 Dwg. MAGO-16A

Dimension in Millimeters
(for reference only)

9
Y O O O e O s A s A

7.11
6.10

8
_Jz.54|.__ L_._o‘13
19.68 BSC MIN
18.67

f

5.33 =

MAX !

'J_‘P_ —
0.39 3.81
MIN 2.93

—_—
_.| |..o.558
Dwg. MA-001-16A mm

0.356

NOTES: 1. Leads 1, 8, 9, and 16 may be half leads at vendor’s option.
2. Lead thickness is measured at seating plane or below.
3. Lead spacing tolerance is non-cumulative.
4. Exact body and lead configuration at vendor’s option within limits shown.

115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000

2003 TaruU 2024

HIGH-VOLTAGE,
HIGH-CURRENT
DARLINGTON ARRAYS
PACKAGE DESIGNATOR “L”
"ot reforance onlyy
1 AAHHH S I 00075
0.1574 0.2440
0.1497 0.2284 0.050
¢ .016

0.020_¢ |1

!

'H IR
0.013 kil 0.3937_j__l:

-0.050

0.3859

\

0.0688
0.0532

T

IR[R|RISIBIRISY

Tt

0.0040 MIN.

BSC

Dimension in Millimeters
(controlling dimensions)

AAAAAARNA

4.00
3.80

0.51_4.|

0.33

HHHHHHHG
fee o o

10.0

- 1.27
BSC

{

9.80

1.75
1.35

It

0.10 MIN.

NOTES: 1. Lead spacing tolerance is non-cumulative.
2. Exact body and lead configuration at vendor’s option within limits shown.

—
0°TO 8°‘,I\(

Dwg. MA-007-16 in

- Dwg. MA-007-16A mm

www.allegromicro.com

MPS Interim Project Report

Student's name & ID: ’F'aw\ C,.\I\?_ULV\O\
Student's name & ID: V\;")'\M'\ |l eo
Student's name & ID: ’ﬁnow\ » | p

Wau Nawg "o
Project Title Jﬁw,rm) (limare §\’l-s‘rw~
Date: 1| [2)]2°°]

Notes:

POINTS
Proj. description & Purpose (3 points max.) 3
Accomplishments/Progress to date (3 points max.) ?
Analysis & Practical adjustments (4 points max.) 4-
Revised Schedule & assessment (3 points max.) }
Style, grammar, organization (2 points max) ya
TOTAL iy

Grader's signature: ZT

To: Prof. R.P. Kraft

From: Tan Cheung

Michael Lee

Thomas Lo

Wai Nang Tsang
Subject: Project Interim Memo for Housing Climate System (a.k.a WIN2K1)
Date: November 15, 2001

Project and Purpose
Our project is to redesign the household climate control system. We are doing this

to improve energy conservation and make a design with improved efficiently. We
planned to implement fuzzy logic fo improye upon current design. Our project will open
and close windows when the climate 15 too warm or too cold. We will check and maintain
the temperature by using A/D conversion and interrupts. We use a4emperatute sensor to
%’éﬁ‘fﬁe current temperature. We will simulate a cooling and heating system and a
windows frame that opens and closes according to temperature. Our fuzzy logic will
determine trends in temperature and operate in winter, summer, and spring/fall mode.

Progress Made

We have bought and implemented a temperature-sensing unit onto the HC12
EVB. The temperature sensor gives a voltage between .2V to .4V. We needed to use an
op-amp circuit to up the voltage to between 2V and 4V. We connect the sensor to the
PD2 of the EVB, which is the A/D conversion port. The port takes the voltage and
converts to a number, which we can use to determine temperature.

We have also worked on the LCD display. We maintain the same configuration as
the magic eight ball lab. As the same in the magic eight ball lab, we have 4 choices for
the user to choose from. User could control the windows opening, closing, displaying
current temperature, and using smart mode. Basically, the LCD display and the keypad is
just an interface between the user and the HC12. It allows the user to gain full control of
the system. As for now, we have accomplished to have the LCD panel to display the
menu and get all the user entered information, however, we are in the progress of
working to interface with the other parts. In the OPEN mode and the CLOSE mode, our
program will prompt the user to enter a value to determine how much the window is
going to be open or closed. Once the user entered the SMART mode, the LCD panel will
temporarily go into a stage that user don’t have any access to it, until the # key is pressed,
which means the end of the SMART mode.

Due to the ability to control its speed and rotations, a stepper motor was chosen to
control the movement of the window. This is a 12V motor, with a step of 3.6 degrees.
To control the motor, an IC package containing Darlington arrays were used. To rotate
the motor, the 4 separate coils need to be engaged in a sequence. But because of the
limited IO ports on the EVB, it was better to use a two-coil excitation scheme, and use
two IO data bits to control the motor instead of four. The disadvantage of this is that we
cannot half step the motor. In addition, the motor does not rotate as smoothly and
consumes more power. Although, it does produce more torque. Since we will be using
this to control the movement of a large, heavy window, this arrangement will suffice.

L

7

We have built the window frame for our project to simulate the opening and
closing due to changing climates. The frame consists of plywood and a sliding plexiglass
pane. The stepper motor slides the window up and down.

Practical Implications
We did not foresee the difficulty in implementing all the parts of out project onto

one program. We are having trouble interfacing the different subsystems on the whole.
We plan to spend more time on interfacing and making everything work smoothly. The
fuzzy logic part of our project has been pushed to a later date because we plan to do
additional research on how to best implement this. If we have additional time, we will
implement light sensing abilities into our project. We will use photo resistors to
determine the light level and turn on or off light automatically. We also might require a
clock or timer into our project to make it smarter. We will use the interrupt as a basis for
doing this. We plan to use a hair dryer and a small fan to simulate heating and cooling,
therefore we will need these components.

.\@ew _ﬂ

Oc tobar

\Co,\m;s\,rk\r\

QAELU&{

Wina kil

Led Paned.
Kewpad

Motry Controd .
Thevmostat
.ﬁ\&ww Fo@_,o_

H@mﬁfv 3 d@rsuuﬂ:w ‘

Window Frama .

Hs\mkx.@?ny_:u .

S _v\ q

lo :\;‘
"y .
Qmawi}iszaifz‘%%%izi;!;% - &
Ao\.y\ 3\.
o .
«c\\ wx M.a\.
Cooermm O
1o/2y A
NV et
.c\N 2 h \—
© Lol
V{l'e
O
{o \w 3 :\w
o —0|. -7
:\\ﬁ
[

71

¢/ !

9

s<&
" '

To: Prof. R. P. Kraft
From: Tan Cheung
Michael Lee
Thomas Lo
Wai Nang Tsang
Subject: Project Proposal for Household Climate Control System (a.k.a WIN2K1)
Date: October 11, 2001

Summary of Project

With the ever-increasing climate control systems in households, we feel that these
systems are inefficient with energy conservation. We wish to improve upon current
design, to improve functionality resulting in better energy efficiency and ease of use. We
see opportunity in improving upon these systems by adding more enhancements, i.e.
fuzzy logic, LCD user interface. Basically, we are planning to redesign the home climate
control so that by using the Timer Output Compare, we could control motors for opening
and closing windows, check/maintain temperature and/or humidity using A/D converters.
Our design would include fuzzy logic to automate the climate controller looking at the
user’s usage patterns so that the climate would be more suitable to him/her.

Problem Statement

There is a need for our product because of the significant impact of California energy
crisis and the dwindling supply of fossil fuel. This problem affects the general public and
will deplete the supply of energy for future generations. As a result, by using our
products, homeowners will come to appreciate the savings in energy costs.

Proposed Project, Goals, and Approach

Our project, if programmed properly, can be more energy efficient by reducing the usage
of air conditioning and heat by analyzing usage patterns, and calculating energy usage
patterns. Alternatives that can be considered would be alternative fuels, for instance,
nuclear power, solar energy, or hydropower, which may come in the future. Users will
benefit from this design by being able to live comfortably, yet conserve the few precious
reserves of energy left.

Plan of Activities with Deadline

Our project would require the M68HCI12 EVB, an LCD display, a Fuzzy Logic
Controller, Temperature Sensitive Transistors, a Real Time Clock/Calendar Chip, relays,
and motors.

Evaluation
The project can be seen to solve the problems mentioned above simply by comparing
energy usage, and by measuring the level of comfort of the user.

—ri L
Lo o 5,‘\‘97{...

T e Msbor | Ty Loae
,,,,,,,,,, "Slog | (-
?
i .
(o[~ Wt (1 '%@jhoyc'
_ vy IL*QH@,X ; /*F;\Z/?“{ LquC y Led

0w _ Yoyad

o e *’m@ I mgfm

(2 Tfsk\%,af\”‘gavé : % :

}L{o‘('DY - b\)w\ /Va«u% —TSWA , Th/oma,s l\o

en

e

13

‘FLL%%? [oﬂ(\c_ — lema; Le L e /‘JMG_EM%, MM hoed oo , Tan JL%)
Thevmestat . — Tan &Myww(}' Michned lee

heD. = Wok Ny Teauq | Thomas Lo
ké’}?a&* T duuwﬁ o Michoe . hee

sk

Octsloes

4V ST wale ¢

A %«&m%@

e — ;g[,
O'.,l:; Vo , 105& o
. - F oi_,maff B)
0fnt oé% ;

el

w1y

wip

R

I T

