C-Based Fuzzy Logic Implemented on the
"MC68HC12

By: Jeff Kornblith and Jim Harrow

ECSE-4790-01
Microprocessor Systems

December 11%, 2001

Table of Contents

List of Figures .

Abstract

Introduction

Materials

Methods

Results.

Discussion

References

Appendices
A: Main Header File
B: User Interface Header File .
C: Demonstration Program

D: Demonstration Circuit Diagram

22

24

26

28

35

50

53

List of Figures
Input Member Function Example
Rule Evaluation Example
Initialization of the Data Array
Offset Values Connected to Data Array
Rules in Memory
Inputs Loaded into Data Array
Input Membership Function Values Loaded into Data Array
Rule Structure .

Input/Output Membership Function Structure

10

11

12

14

15

17

18

Abstract

The HC12 comes with built in fuzzy logic routines. However, these routines are
coded only in assembly and do not come with a C interface. In order to make this power
feature of the HC12 available for C programmers, an interface must be created. This
interface does not perform the fuzzy logic functionality, it merely hands the proper data
to the assembly routines. This is powerful because the assembly routines are much faster
than any code that could be written in C. The interface must allow for the programmer to
use any number of inputs with any number of fuzzy input states. The output must also be
available for the programmer to Sg_sjly access. This report describes the steps that were

taken over the past three months to create this interface.
N~
n

INTRODUCTION

Introduction

We set out to implement one of the features on the MC68HC12 that was barely
touched during class, the hardware driven Fuzzy Logic controller. Our goal was to
successfully manipulate the fuzzy logic controls and create a header file that could be
used in anyone’s program for the HC12.

We needed to understand how fuzzy logic worked in the first place. After doing
some research we determined that Fuzzy Logic can be broken down into three steps:
Fuzzification; Rule Evaluation and, De-Fuzzification.

Fuzzification involves taking one or more analog inputs and determine values for
input membership function. A membership function is basically a graph of that describes
based upon an input, when it has a value between 0x00 and OXFF. The solid line below
has a value of OxFF while the input is below 0x32, and then slowly decreases to 0x00
when the input equals 0x7D. The following applies for the other two lines below.

FF

55

=] K]

Once fuzzification determines defined hexadecimal values for each membership
function for all the inputs, rule evaluation occurs. Rule evaluation takes the values from
the input membership functions and adds up each one to determine the value for each
rule. These values become a percentage and are multiplied toward the output
membership function’s values to create a new value to be used in the last step of fuzzy

logic.

2 Inputs Affect Output

Low & Fast

Fast

High & Fast

3 Inputs Affect Output

- 4 Inputs Affect Output

Low & Slow

High & Slow
Low >< High

De-Fuzzification takes the values of each output membership function and adds

Slow

them to the value of the output that the output membership functions are a part of. This
will create a solid analog value that can be used elsewhere.

Once we understood how fuzzy logic operates, we took the assembly routines
provided and translated them into a C based header file. We loaded a set of defined rules
and membership functions to simulate a fuzzy logic system, and demonstrated them with
a basic circuit involves potentiometers and light emitting diodes.

To further our project, we developed a C based interface that allowed users to
define their own membership functions and rules to use in their own programs, followed
by a plethora of translation functions to integrate this data into our existing header file

instructions.
\’\M

MATERIALS

List of Materials

Software:
e ProComm Plus — Terminal Program
e Introl C Compiler
e Microsoft Visual C++ Compiler

e Codewarrior C Compiler

Hardware:

e MC68HC12 Evaluation Board

Demonstration Hardware:

e 2 x 1000 Ohm Potentiometers
e 16 x Light Emitting Diodes

e 16 x 220 Ohm Resistors

METHODS

The Interfacing Code

The interfacing code has two main parts to it; the first is formatting the data to a
format that the assembly routines understand, and the second is to actually call the
assembly routines.

Occasionally in this section the example case will be referred to for clarification.
The example case has two inputs, IN1 and IN2 each with two input states, (LOW HIGH)
and (SLOW FAST) respectively. There is one output called SIZE, which has four output
states SMALL, MEDUIM, LARGE, and HUGE.

The rules for the outputs are as followed:
INILOW & IN2 SLOW => SIZE SMALL

IN1 LOW & IN2 FAST => SIZE MEDIUM
IN1 HIGH & IN2 SLOW => SIZE LARGE
IN1 HIGH & IN2 FAST => SIZE HUGE

The final element of the example case is the output member functions which are
0x00 for SMALL, 0x30 for MEDUIM, 0x80 for LARGE and 0xFO0 for HUGE.

Formatting the Data:

The RunFuzzyLogic() function formats the data. The MC68HC12 expects most of
the data to be placed in sequential bytes in memory. Single byte numbers but usually
nothing separates the sections of datal. The inputs tell the processor exactly when to stop.
The C version of a sequential block of data is an array. So a global array is created (called
_fuzzy data array) that is 512 bytes long. The choice of 512 was tricky. Fuzzy logic
tables can grow very fast. Each membership function requires 4 bytes alone. This means
4 bytes for each input state. Then the rules require a byte for each input, a byte for each
output and 2 separators. So the amount of space needed to hold and process the data
grows geometrically as inputs are added!

S e

On the other hand, the MC68HC12 has limited on board memory capabilities and

since this interface will be distributed to programmers as merely a tool to use in their

design, it cannot be justified to use all of the MC68HC12’s memory (neither can it be
expected that additional memory will be supplied). So a value of 512 was selected.

The first block of data is a storage cell for values that will be computed during
execution. These are the values for the fuzzy input states, the fuzzy output states and the
final output values. For use during execution, markers are kept of the index of the array
that specific data begins. For example the “ fuzzy ins” variable holds the index in the
array where the processor will keep the values of the input states (i.e. — LOW, HIGH,
SLOW, and FAST). So after this first section of reserving data, the example array will
look like this:

< IN1 value
€ IN2 value
< LOW

< HIGH

< SLOW

€ FAST

< SMALL
< MEDIUM
< LARGE
< HUGE

_fuzzy data_array >

_fuzzy ins >

_fuzzy outs >

_fuzzy outs 2>

(e} le] lo} o] (o] lo] o] (o) (o} (o] [o} o}]

After room has been made to hold the input value, the fuzzy input state values, the
fuzzy output state values, and the output value, the program begins writing the
specifications of the fuzzy logic system. The first to write are the input membership
functions. These define which rules will be activated and how much. Each membership
function is defined by 4 byte sized values: two points and two slopes, in that order. The
two points are X intercept points of the membership function. Any input that falls outside
of these two points is evaluated from OxFF to 0x00, and any input between these two
points is OXFF. The exact non-zero value is determined based on the slope values. The
first slope describes how steep the values increase after the first point. The second slope
describes how step the values fall before the second point. Any area after the first slop
has reached OxFF and before the second slope begins to fall is evaluated as OxFF (100%

on).

The staring location of the input membership function bytes is saved for later use
in the _fuzzy inputMFs variable. The four-byte values are stored for each fuzzy input
state without breaks (since the processor can count on them being four bytes apiece) in
the fuzzy data array.

The functions GetNumlInput(), GetNumiState(), and Getlnput() get the
appropriate values from the programmer interface. The next data to be inserted into the
array is the rule list. Again, the starting location of the rules is stored in a variable, this
time called _fuzzy ruleList. A rule is described in the memory based on the starting
location of the fuzzy input state locations. These locations were reserved above and labels
with _fuzzy ins. So both the inputs and outputs of the rules are described based on this
value. In the example, the data array, a 0x00 refers to LOW (since it is O bytes away
from _fuzzy ins) and 0x03 refers to HIGH (since it is 3 bytes away from fuzzy ins)
and SMALL is 0x04 and LARGE is 0x06. Notice that the outputs are indexed based on

the start of the inputs as well!

_fuzzy data array> | 0 | € IN1 value Offsets from fuzzy ins
0 | € IN2value
fuzzy ins 2| 0 | €LOW € 00
0 < HIGH €< 01
0 < SLOW €< 02
0 €< FAST < 03
_fuzzy outs> | 0 | € SMALL < 04
0 < MEDIUM € 05
0 < LARGE €< 06
0 < HUGE < 07
_fuzzy outs> | 0
0
0

So the first example rule would be 0x00 and 0x02 for the inputs equal 0x04 for
the output. The inputs and the outputs are separated with a OxFE. The end of one rule and
the beginning of another rule is also separated with a OXFE. The end of all the rules must
be ended with a OxFF. So the rules above will go into the array like thi.s)

_ fuzzy ruleList > | 00

02

FE

04

00

03

FE

05

FE

01

02

FE

06

FE

01

03

FE

07

FF

low
slow
<Dbreak
small

< break
low

fast

< break
medium
€ break
high
slow

€ break
large

< break
high

fast

€ break
huge

<< end rules

The functions GetRule(), GetRuleln(), GetRuleOut() and GetNumRule() provide

the loops with loop information as well as the actual data that is placed it the array.

The last piece of data that needs to be placed into the array is the output functions.

These are singleton values that are used in the weighted average calculation of the output.

In the example, MEDIUM has a value of 0x30. This means that if the rules evaluate is
such a way that MEDIUM is 100% on (has a value of OxFF) and all the other fuzzy
input states evaluate to 0%. Then the output will be 0x30. This is of course, the simplest

of examples. The real power of fuzzy logic comes from when MEDIUM is 50% selected

and low is 50% selected. The output would be:

(0x00*50% + 0x30*50%) / (50% + 50%)

These output membership functions, which consist of one value, are just input

straight, byte after byte into the array (with the ever important pointer to the first value

stored in _fuzzy outMFs).

So now all of the data that the HC12 uses during its calculations is stored
sequentially in the array. By using the import command provided by Introl C-Compiler,

all these values are available in the assembly coding section.

Executing the Fuzzy Logic

The RunFuzzy() function actually calls the MC68HC12 assembly routines that
perform the fuzzy logic. The first few lines of this function import the needed variables
from C to assembly using the ‘import’ command. Note that the not only are all of the
location markers imported, but also the fuzzy data array itself. Now this does not import
the conventional idea of an array that can use [] to get values off of it. This imports the
value that C uses to store an array, the memory address of the first location.

The other two variables that are imported are used as temporary variables. Each is
a different size (fuzzy cnt is an integer, and thus is two bytes long, and fuzzy temp is a
char, one byte long).

This routine assumes that the input values from the analog inputs have been
placed into their correct locations at the beginning of the array. So the first step is to
fuzzify these inputs. Fuzzify means to evaluate each of the input membership functions
and determine how much each fuzzy input state is active. This is the job of the MEM
assembly instruction. MEM counts on three things to perform its duty. The first is that
the X register holds the memory location of the input membership functions. Recall that
the index of this value was stored in the fuzzy inputMFs variable. This is the number of
bytes after the first byte of the array that the input membership functions begin. So to get
the exact address the fuzzy inputMFs must be added to the fuzzy data array variable.
This is an important fact to realize, since it is used many times in the assembly code.

The next piece of information that MEM needs is the memory location of the first
of the fuzzy inputs loaded into register Y. This is the fuzzy fuzzylns variable. This is
the location in memory that the 100% or the 50% of LOW, HIGH, etc will be stored.

The third piece of information that is needed is the input value itself in the A
register. To do this, we use the input number _fuzzy cntl as an offset for the memory
array. The inputs are the very first pieces of data on the array so the offset will be from

the beginning of the array.

fuzzy data array > | 0x80 | € IN1 value Offsets from fuzzy ins
OxFF | € IN2 value
fuzzy ins 2| 0 | € LOW < 00
0 < HIGH < 01
0 | € SLOW €< 02
0 < FAST < 03
_fuzzy outs> | 0 | € SMALL < 04
0 | €MEDIUM <€ 05
0 | € LARGE € 06
0 | € HUGE € 07
_fuzzy outs> | 0
0
0

MEM is all ready to evaluate the first membership function. MEM evaluates one
member function at a time in the following manner. It uses the membership points and
the input value to find the Y value. It then places this Y value in the reserved memory
location. This value is the 50% or 100% for the fuzzy input state. The last thing MEM is
required to do is increment both the X register and the Y register. This means, that since
all the membership functions are right next to each other, when MEM exits, X is already
pointing to the next membership function. Incrementing Y means that it is pointing to the
next fuzzy input membership function in memory. So by placing MEM between the
FUZLOOQORP: label and the DBNE instruction, MEM will be executed one time for each
fuzzy input state.

After each input and each input membership function are evaluated, the memory
locations reserved for the fuzzy input states hold a value from 0x00 to OXFF representing
how much that state is active. In the example, if an IN1 value of 0x80 is given, the LOW
fuzzy state would be 50% on and the HIGH fuzzy state would be 50% on. So the data

array would look like this:

_fuzzy data_array = | 0x80 | € INI value Offsets from fuzzy ins
OxFF | € IN2 value

_fuzzy ins 2 | 0x80 | € LOW < 00
0x80 | € HIGH €< 01

0x00 | € SLOW < 02

OxFF | € FAST €< 03

_fuzzy outs 2> < SMALL <04

€ MEDIUM € 05
< LARGE € 06
< HUGE <07

_fuzzy outs >

elle] o] jo] o] [a] fol

The next step in the execution is the evaluation of the rules. The fuzzy temp
variable is loaded with the number of fuzzy output states. Then each of the output states
is cleared to ensure that no previous data remains. The REV (Rule Evaluation)
instruction beings operation here.

The REYV instruction expects three things. The first is for the X register to hold the
memory address of the first rule, so the fuzzy ruleList variable is used to find it. The
second thing that REV expects is that the Y register holds the memory location of the
fuzzy input states, which were calculated in the previous part). The last thing that REV
needs is for the A register to have a OxFF value. Calling REV will evaluate every rule.

What REV does is takes the fuzzy input state value pointed to by the first rule and
stores it. It then moves to the next input and compares this to the previous one, holding
onto lowest one. The REV instruction continues to move through the inputs, keep the
lowest value until it reaches the OXFE, and then stores the lowest value is found in the
memory location after the OXFE (this is the fuzzy output). When it reaches the next
OxFE, it begins looking for the lowest fuzzy input value again. It continues to do this
until the final OXFF is reached. This tells the REV instruction that there are no more rules
and thus, it stops.

After the REV instruction has iterated though each rule and updated the fuzzy
output values, the final step is called de-fuzzification. The key to this step is the WAV

instruction. This instruction takes a weighted average of the output membership

functions, determined by the values in the fuzzy output states. Here is an example of
what the WAV function will do:

These are some sample weights as calculated by the REV instruction
SMALL 0x80 = 50%

MEDIUM 0x40 = 25%
LARGE 0x00 = 0%
HUGE OxFO = 100%

Notice that the weights do not have to add up to 100%

These are the output membership function provided in the example:

SMALL = 0x00
MEDIUM = 0x30
LARGE = 0x80
HUGE = 0xFO

So a weighted average will multiply the corresponding values together and then

divide by the total weight for an answer:

(50% * 0x00) + (25% * 0x40) + (0% * 0x80) + (100% * 0xF0)
(50% + 25% + 100%)

The WAYV instruction will calculate the numerator, and the EDIV function will
find the denominator to calculate the final answer.

The WAV instruction, just like the other instructions, requires certain inputs. It
needs the X register to hold the memory location of the first output membership function,
and the Y register to hold the memory location of the first fuzzy output state value, which
was calculated by the REV instruction. Finally, it needs the B register to hold the number
of output states.

When the WAV and EDIV functions have completed, the Y register holds the
final output. This is the output of the fuzzy logic system. In this code, this value is

transferred to the B register so that is can be saved into a byte in the data array.

User Interface:

The purpose of the user interface is to create an easy to use method of entering the
input membership functions, the output membership functions, and the rules governing
them. The user interface header file also needed to provide a method to extract the
entered information, and translate it into a form in which the main fuzzy logic header file
can use.

The first goal is to create a structure for holding the necessary information
required by the membership functions and rules. For the rules two structures were
needed.

The first structure, Main_Rule, holds the number of total rules and a link to the
second structure, Child Rule. Child Rule contains all the individual information for
each rule including a link to an additional Child Rule. This allows a linked list of all the

rules, allowing any amount of rules for evaluation.

IMAIN_RULE] CHILD_RULE HILD_RULE]

The information required for the child rule included the total number of inputs
which determine the values of the output, the number of outputs effected by the inputs,
and two stings which contain the input and output membership function names. The
stings would be in the following format:

Namel Statel;Name2 State2;.....

Namel and Name2 represent a name of an input or output, and Statel and State2
represent the name of a membership function within that input or output. The Name and
State are connected with an underscore and a semicolon separates additional inputs or
outputs. This also allowed for unlimited inputs or outputs required for each rule.

The second structure required held all the information required by the output
membership functions. It was determined that three structures were necessary for
holding this information. |

The first structure, Fuzzy Out, contained the number of outputs that are modified

by the input and a link to the second structure, Out_Info. Out_Info contained the number

of output membership functions for that output, a name for the output, a link to another
Out_Info structure, and a link to the third structure, Out_State. Out_State holds the name
of the output membership function, the value that defined the output state, ad a link to
another Out_State structure. This structure for the output allowed for any amount of

outputs as well as any amount of membership functions for each output.

FUZZY_OUT OUT_INFO OUT_INFO

/ -

OUT_STATE OUT_STATE
OUT_STATE *
*

The last structure needed is for the input information, and follows the same format
as the output structure. The only differences are the name Fuzzy Out, Out_Info, and
Out_State are replaced with Fuzzy In, In_Info, and In_State respectively, and the
In_State structure holds different information. In_State still contains a name variable and
a link to another In_State structure, but instead of holding a value, if contains two points
and two slops which determine the shape of the input membership function.

Now that we have the necessary structure for storing information, the next goal
was to create function to enter the information into them. Five functions are what is
needed and they are as followed:

e AddIState(char *a, char *b, char *c, char *d, char *e, char *f)

Adds an input membership function based on the passed parameters.

o “a” is the name of the input in which this membership function belongs.
o “b” is the name of the input membership function.

o “c” and “d” are two character long strings that represents the hexadecimal values for the
two points. '
o “e” and “f” are two character long strings that represent the hexadecimal values for the
two slopes.
e AddInput(char *a)
Adds an input with the name “a” to the Fuzzy In structure.
e AddOState(char *a, char *b, char *c)

Adds an output membership function based on the passed parameters.

o “a” is the name of the output in which this membership function belongs.
o “b” is the name of the output membership function.

o “c” is a two character long string that represent the hexadecimal value for the output

value.
e AddOutput(char *a)
Adds an output with the name “a” to the Fuzzy Out structure
e AddRule(int a, int b, char *c, char *d)
Adds a rule based upon the passed parameters.
o “a” is the number of input membership functions that drive the output membership

functions.

o “b” is the number of output membership functions that are driven by the input
membership functions.

o “c¢” and “d” are the strings containing the input and output information as described

earlier.
With a combination of these five functions, the user can successfully enter all
information required to run a fuzzy logic based program. Had this user interface been
integrated into the main header file, the following code would have been used to simulate

our demonstration:

AddInput("IN1");

AddIState("INl ")"LOW“’ "00"’ " 60"’ "00"’ "OB N);
AddIState("INl "’ "I_]IGH"’ "40", IIFF"’ |IOB "’ IIOO");
AddInput("IN2");

AddIState("IN2"," SLOW", uoon’ "60", "OO","OB");
AddIState("INZ"’ "FAST"’ "40"’ "FF"’ HOB "’ " OO");
AddOutput("SIZE"),
AddOState("SIZE","SMALL","00"),
AddOState("SIZE","MEDIUM",“30"),

AddOState("SIZE","LARGE","80");
AddOState("SIZE","HUGE" “FO");
AddRule(2,1,"IN1_LOW;IN2_SLOW","SIZE_SMALL");
AddRule(2,1,"IN1_LOW;IN2_FAST","SIZE_ MEDIUM");
AddRule(2,1,"IN1_HIGH;IN2_SLOW","SIZE_LARGE");
AddRule(2,1,"IN1_HIGH;IN2_FAST","SIZE_HUGE");

The last part required for this structure system to work is a series of functions to

extract the necessary information from the three information structures. As determined

by the methods used for the C implementation of the fuzzy logic program, the following

function were deemed necessary:

GetNumOutput()

Returns the total number of inputs driving the user system.

GetNumlInput()

Returns the total number of outputs needed by the user system.

GetNumRules()

Returns the total number of rules governing the inputs and outputs.
GetNumlIState(int a)

Returns the number of input membership functions for input “a”.
GetNumOState(int a)

Returns the number of output membership functions for output “a”.

GetInput(int a, int b)

Loads the input membership function information for the a™ input and b™ state
into a globally defined variable FuzzInState. |

GetOutput(int a, int b)

Loads the output membership function information for the a™ input and b™ state
into a globally defined variable FuzzOutState.

GetRule(int a)

Loads the a" rule information into a globally defined variable FuzzRule.
GetRuleIn(int a)

Reads from FuzzRuleinval the a™ input membership function, where
FuzzRule.inval is the string containing the inputs for a particular rule.

GetRuleOut(int a)

Reads from FuzzRule.outval the a™ output membership function, where
FuzzRule.outval is the string containing the outputs for a particular rule.

e GetTotalInState()
Returns the total number of input membership functions for every input.

e GetTotalOutState()
Returns the total number of output membership functions for every output.

e IndexInputState(char *a, char *b)
For the purposes of memory mapping, this determines a number based upon the
two strings passed as parameters. Had we used the five input functions described

earlier, the following results would occur from these commands:

IndexInputState(“IN1","LOW") yields a value of 0
IndexInputState("IN1","HIGH") yields a value of 1
IndexInputState("IN2","SLOW") yields a value of 2
IndexInputState("IN2","FAST") yields a value of 3

e IndexOutputState(char *a, char *b)
For the purposes of memory mapping, this determines a number based upon the
two strings passed as parameters. Had we used the five input functions described

earlier, the following results would occur from these commands:

IndexOutputState("SIZE","SMALL"), yields a value of 0
IndexOutputState("SIZE","MEDIUM"), vyields a value of 1
IndexOutputState("SIZE","LARGE"); yields a value of 2
IndexOutputState("SIZE","HUGE"), yields a value of 3

The indexes received from IndexInputState() and IndexOutputState() would be
different if the inputs/outputs or the input/output membership functions were entered in
different orders.

With the combination of these structures, the input functions, and the information

grabbing functions, all that is needed to create a universal fuzzy logic header file exists.

RESULTS

Results

We had a series of goals for this project.

The first was to understand, and be able to relay the concepts behind fuzzy logic.
It took us a few lab periods to research other paper on fuzzy logic, and eventually was
able to create our own fuzzy logic systems.

Our second goal was to translate the assembly programs using fuzzy logic
provided in the textbook into C. We used embedded some membership functions and
rules into this C/assembly program to mimic a simple system, and demonstrated i
perfectly.

Our third goal was to create a series of C procedures that would allow a normal
MC68HC12 programmer to input their own membership functions and rules.
Furthermore, we wrote translation functions to take the information out of the user
inputted data and relay it to our original C/Assembly program with hope to integrate the
two at a later point. All of these functions were tested endlessly to make sure that no
flaws existed, and none were found.

Our last goal was to combine the two programs and create a generic header file
that could be used by any programmer to integrate fuzzy logic into their programs. This
is where our project fell short, and led to a demonstration using the hard coded

membership functions and rules.

DISCUSSION

Discussion

The initial goal of this lab was to an interface the fuzzy logic functionality of the
HC12 for C programmers. The final design had two separately working parts. One part
that implements the fuzzy logic and the other gets data from the programmer. For some
reason, the two would not work together. The part that holds the process up is figuring
out exactly what the C compiler is doing. An example of this is realizing that an integer
variable in C is two bytes of memory, while a ‘char’ is only one. This is a simple example
of just how well one must know the C compiler to get the memory addressing and storage
to work just right. Despite hours and hours of tedious debugging (and endless irritation),
the two would just not merge.

With more time perhaps the functions could be integrated slowly. Perhaps the
code could be converted line by line so that the exact problem could be determined.

Some thoughts for future expansions are to use the header file as a tool to teach
future classes how fuzzy logic works. Perhaps by supplying this header file and a

description of its functionality.

REFERENCES

References

Texts:
Software and Hardware Engineering — Motorola M68HC12
By: Frederick M. Cady
James M. Sibigtroth

Online Material:
Intelligent Systems with Mathematica: A Team Design Workshop

http://www.asee.org/conferences/international/proceedings/Stachowicz.pdf

By: Marian S. Stachowicz

Christopher R. Carroll
Fuzzy Logic
http://www.egr.msu.edu/vesl/teamprojects/ee482_s98/progress/fuzzy.pdf
By: Daniel Franklin

Niki Prince

Mel Tsai

Robert Yu

APPENDIX A
MAIN HEADER FILE

// Main Header File for Fuzzy Logic Demo
// By Jeff Kornblith and Jim Harrow

// Provides hard coded in membershiop functions and rules for
// demonstration purposes.

// Several dummy functions were created for the ease in combining the user
// interface when the time comes.

// Initialize fuzzy logic program by running RunFuzzylogic():
// Send inputs using LoadInput(}s

// Calculate output using RunFuzzy ()3

// Receive Qutputs using GetResult()s

// Usage of these function is described below.

#include <hc8l2a4.-h>
#include <introl.h>
#include <dbugl2-h>

// Global Variables

char inks
char ings
char testoluts
int whymes

int _fuzzy_cntl.
_fuzzy_cntes

char _fuzzy_temps

int _fuzzy_index = O3

int _fuzzy_inputMFsa.

_fuzzy_fuzzyIns-
_fuzzy_rulelista
_fuzzy_fuzzyluts-
_fuzzy_outputhMFsa
fuzzy_outputss

char _fuzzy_data_arrayL51213
char looks
int lookAts

L1171 17 7777707777777 707777707777777777777777777777777777727777777777777
// The following funcitons would be replaced by the funtions in

// the user interface header file when they are readyto be combined
L1177 777

// Dummy structures to mimic user interface structures
struct whoCares
{
char start-end.sslope-seslopes’
} FuzzInStates

struct whoCaresg
{

char value:
} FuzzOutStates

struct who(Cares3
{

char numin. numout?:
} FuzzRulex

~// Dummy information for testing
char inputlf41 = { Ox00- OxCO-. Ox00. Ox02 X3
char input2C4l = { Ox40- OxFF. Ox02. Ox0O0 }3 ‘

'

char input3C4l
char inputulul

{ Ox00- OxCO- DOx00-

char GetNumInput()

{

// Dummy information for testing
~ return 23

T

char GetNumIState(char num)

{
// Dummy information for testing
return 23

¥

void GetInput(char num. char numl)
{
char * inputs

// Dummy information for testing
if(num==0 && numl==0) input
if(num==0 && numl==1) input
if(num==1 && numl==0) input

if(num==1 &2 numl==1) input
FuzzInState.start = inputlOls
FuzzInState-end = inputLl3x
FuzzInState-.sslope = inputE2ls
FuzzInState.eslope = inputL31s

i

char GetNumOutput ()

{
// Dummy information for testing
return La

T

~ char GetNum(State(char num)
{
// Dummy information for testing
return 43
¥

void GetOutput(char nums char numl)
{
// Dummy information for testing

if(num==0 88% numl==0) FuzzOutState.
if(num==0 && numl==1) FuzzOutState.
if(num==0 &8 numl==2) FuzzOutState.

if(num==0 && numl==3) FuzzOutS

i

char GetNumRule()

{
// Dummy information for testing
return 45

i

void GetRule(char num)

{
// Dummy information for testing
returns;

b

char GetRuleIn(char rule.: char inpu
{
// Dummy information for testing
char arrayC43f2] = { Ox00. Ox0O2.

return arraylrulelLinputls

Ox02 s

inputls
input2s
input3s
inputlus

t)

Ox004

value
value
value
tate.value

{ Ox40. OxFF. OxO02-+ Ox00 ¥»

O0x03-

&
) o~

Ox004
Ox304
Ox804
OxFOa

Ox0LA

Ox02-

Ox01-

Ox03Xx

char GetRuleOut(char rule. char output)

{
// Dummy information for testing
char arrayL4ILC11 = { Ox0O4, Ox05~ OxDOk- Ox07 &
return arrayLrulelfoutputls

i

char GetTotalNumIn()

{
// Dummy information for testing
return Ui

i

char GetTotalNumQut()

{
// Dummy information for testing
return U3

T

L1717 77777777777777777777777777777777777777/777/7/77777
1177171777777 777777777777777777777777777777777/77/77777

// Prototypes

void RunFuzzylogic()s

void RunFuzzy()3

void LoadInput(int . char)3
char GetResult(int)s

// Receives input from user program
// in - the input number that this information is for
// num - the hexadecimal value that this input should be set to
void LoadInput(int ins char num)
{
_fuzzy_data_arrayl in 1 = num3
¥

// Sends output desired to user program
// out - the output number that the user wants
char GetResult(int out)
{
return _fuzzy_data_arrayl _fuzzy_outputs + out 13
T

// Debug function to show memory locations
void showDataArray(int upTo - int pause)

{
int i3
for(i=0% i<upToi i++)
{
DBLEZ->printf("Zx\r %d --> Zx\n\r". i. _fuzzy_data_array[il)x
if(pause 88 (i % 15 ==0))
{
DBl2->getchar()s
T
i
i

// Initialization Function
void RunFuzzylLogic()
{

FuzzInState.start = Ox4035
FuzzInState.end = 0OxCOx
FuzzInState-sslope Ox0B3
FuzzInState.eslope Ox0Bx

FuzzOutState.value Ox803 “

FuzzRule.numin = 23
FuzzRule.numout = 13

7/ 330K K oK 3K oK K 3k oK 3K 3 oK K K ok 3K 3 3K 3K K 3K 5K 3 3 oK 3 3 oK K o oK ok ok K o ok K 3 oK K 3 oK K 3 oK

//% Make room for the real inputs

7/ 33K oK K 3 oK K 3 KK 3 oK 3K K oK 3K 3 oK 3K 3 3K oK 3 ¢ oK 3 3k oK 3k o oK K 3 oK K 3 ok ok 3 ok K o ok Kk ok
_fuzzy_index += GetNumInput()s

e

/ /3% 3k 3k 3k ok kK 3K 5K 3K 5K 3K 5K 3K 3K 3k 3 o ok K ok 3K 3K 3K K 3K 3K 3k o o 3 K 3K 3K 5K 5K 5K 5K 3K 5K 3k 3K 3K K K K K K

//% Make room for the fuzzy inputs
7/ KKK K 3K K 5K oK 3K K 3K 3 oK 5K K K K 3K oK 5K K 3 3 3K oK 3K K 3 o oK oK K 3 3 ok ok ok K ok ok ok oK Kk ok oK

// Store fuzzyins location
_fuzzy_fuzzyIns = _fuzzy_indexs

_fuzzy_index += GetTotalNumIn()j

/7 KKK K 3K K K 3K 3K K K 3K 3K 3K 3K 5K 3K 3K 3K 3K 5K 3K 3K 3K 3K 5K 3K 5K 3K 3K 3K 3 3K 5K 3 5K 3 K 3K 3 5K 3 K ok oK oK %K
// % Make room for the fuzzy outputs
/7 Kk oK K K oK 3K K oK K oK 3 3K oK 3 5K 3 3K 3K 3K oK 3 K 3K K 3K 3K 3K 3K 3 5K 3 K ok 3 5K 3 K ok 3 5K 3k K ok ok ok %k /
_fuzzy_fuzzyOuts = _fuzzy_indexs
_fuzzy_index += GetTotalNumOut()x

7/ R KK K KK 3K oK K oK K 3K 3K 3K 5K 3K oK 3K oK 3K 3K 3K 3K 3K 3K 3K 3 5K 3 5K 3 oKk 3k K 3K K 3 oK 3 oKk oK 3k ok
// % Make room for the real outputs
/7 KKK KK K K oK 3K oK 3K 3K 5K 3K 5K 3K 5K 3K 5K K 3K K 3k 3K 3K 5K 3 oK 3k ok 3k ok 3 oK ok ok oK 3 oK o oK 3k ok ok K
_fuzzy_outputs = _fuzzy_indexs
_fuzzy_index += GetNumQutput()s

/7 ok ko ko ok K K 5K 3K 3K 3K 3k 3K o 3K ok K ok K K 3K 3k 3K 3K 3K 5K 5K 3K 5K 3K 5K 3K 3K K 3K K oK oK 5K 5K 5K 3K 3K 3k 3k K

// % Write the input membership functions *
77 RORAAK KK KK K 3K KK K oK K 3 oK K 3 oK K 3K oK K 3 oK 3k 3K oK 3k o ok K 3 ok K oK oK 3 o oKk 3k ok e ok ok /
// the beginning of the MFS

_fuzzy_inputMFs = _fuzzy_indexs
for(_fuzzy_cntl=03 _fuzzy_cntl<GetNumInput ()i _fuzzy_cntl++)
{
— for(_fuzzy_cnte=03 _fuzzy_cntE2<GetNumIState(_fuzzy_cntl)s _fuzzy_cntg++)
{
GetInput(_fuzzy_cntl. _fuzzy_cntd)3
_fuzzy_data_array[l_fuzzy_indexl = FuzzInState.starts
_fuzzy_index++3
_fuzzy_data_arrayl_fuzzy_index]1 = FuzzInState.end:x
_fuzzy_index++3
_fuzzy_data_array[_fuzzy_index] = FuzzInState.sslopesx
_fuzzy_index++3
_fuzzy_data_arrayl_fuzzy_index] = FuzzInState.eslopes
_fuzzy_index++5
¥
i

77 ¥R K K oK oK K oK 3 ok 3 oK K o K 3k K ok K o 3K 3K 5Kk oK 5 5K K oKk 3K K 3K 5K 3K 3K o oK 3 oK 3 oK K 3K K
// % Urite the rule list
7/ RRAK KK K K K 3K 3 oK o K 3K 3 5K 3 ok oK 3 5K 3K K oK 3K 5K 5K 3 5K 3K 3K oK 3 3K 5K 3K 5K ok 5K 3K 3K oK 3k K K K K K /

_fuzzy_rulelList = _fuzzy_indexs
for(_fuzzy_cntl=03 _fuzzy_cntl<GetNumRule()s _fuzzy_cntl++)
{
GetRule(_fuzzy_cntl)3
for(_fuzzy_cnt2=05 _fuzzy_cnt2<FuzzRule.numins _fuzzy_cnt2++)
{
_fuzzy_data_array[l_fuzzy_indexd = GetRuleIn(_fuzzy_cntl. _fuzzy_cnte) 1
_fuzzy_index++4
¥
_fuzzy_data_arrayl_fuzzy_index1 = OxFEx
S~ _fuzzy_index++5

for(_fuzzy_cntg=0x _fuzzy_cntE<FuzzRu‘F-numouta _fuzzy_cntd++)

_fuzzy_data_array[_fuzzy_index1 = GetRuleQut(_fuzzy_cntl- _fuzzy_cntd)3
_fuzzy_index++5

i
_ if(_fuzzy_cntl t= GetNumRule()-1)
{
_fuzzy_data_arrayl_fuzzy_index1 = OxFEs
_fuzzy_index++s
1

T

_fuzzy_data_arrayl_fuzzy_index1 = OxFFs
_fuzzy_index++3

/7 KKK KK KKk K o ok K K oK kK ok o oK 3K 3K 5K 3K 3K 5K 5K 5K 3K 3K K 3 K K K 5K K 5K oK 5K 5K 5K 3K 3K 3K K K K K

// % Write the output membership functions
7/ KKK K KK oK 3K 3K 5K 5K oK 3K 3K oK 3K 3K 3K 3K 5K 3K K 3K 3K 5K 3 3K 3K 3 5K 3K 3K 3K 3 5K 3K ok oK 3 5K 3K K oK oK oK 5K K oK
_fuzzy_outputMFs = _fuzzy_indexs
for(_fuzzy_cntl=03 _fuzzy_cntl<GetNumOutput()as _fuzzy_cntl++)
{
for(_fuzzy_cnté=03 _fuzzy_cnt2<GetNumOState(_fuzzy_cntl)s _fuzzy_cntg++)
{
GetQutput(_fuzzy_cntl. _fuzzy_cnte)x
DBL2->printf("Zx\rcntl: “x cnt2: Z“x\n\r". _fuzzy_cntl. _fuzzy_cnt2)3
_fuzzy_data_array[l_fuzzy_indexd = FuzzOutState.valuex
_fuzzy_index++5
i
T

T

// Run this to calulate values based on inputs
void RunFuzzy()

{
/7 KA KKK AR K KK K 3K 35K 3K K K 3 oK 5K 3K K 35K 5K K K 3 o oK oK K K 3 ok oK K K o oK oK oK K ok oK oK K
// % Import all the needed variables

ST /7 RKKAKAAK KK KKK K KKK K KKK KK KK K KKK KKK K KKK KK KKK K KoKk KK
asm(™ import looka.testOut™)s
asm(" import _fuzzy_cntl._fuzzy_temp™)s
asm(™ import _fuzzy_data_array™):
asm(™ import _fuzzy_inputMFs._fuzzy_fuzzyIns._fuzzy ruleList™)s
asm(" import _fuzzy_fuzzyOuts._fuzzy_outputMFsa_fuzzy_outputs™)s
77 KKK K 3K K K KK 3K 3K oK 3K oK K 3K 3K 3K 3K 3K 3K 3K 5K 3 5K 3K 5K 3 oK K 3K K ok oK 3 ok 3 oK 3 ok ok ok K ok K
// % BEGIN WORK
/7 KEKAK K K KK K K K K oK 3K 5K 3 K 3 3K 3K 3K 3K 3K 3K K 5K 3K 5K 3K 5K 3K 3K 3K 3K 3K 3K K K oK 3 oK 3 ok k ok K K K

asm("START: E@QU x")3

7/ RRRAAK KKK KK ok K o K o ok K o ok K o oK Kk ok K o ok K 3 oK oK o oK K K 5K oK K oK oK K ok K
/7% FUZZIFY
7/ KKK KKK K ok 3 ok 3 oK K ok K o K 3 ok 3 oK koK o oK 3 ok K ok K oK K oK K K oK 3 oK K oK K K K K K

asm("FUZZIFY: EQU *x™)3

asm(" LDD _fuzzy_ inputMFs™)i
asm("™ LDX #_fuzzy_data_array™)s
asm(™ LEAX DaX")3

asm("™ LDD _fuzzy_ fuzzyIns™)si
asm(" LDY #_fuzzy_data_array™)s
asm(" LEAY Da¥"™)3

for(_fuzzy_cntl=03 _fuzzy_cntl<GetNumInput()i_fuzzy_cntl++)
{
_fuzzy_temp = GetNumIState(_fuzzy_cntl)3
asm(™ PSHX")3
~ asm(" LDD _fuzzy_cntl™)s
asm("™ LDX #_fuzzy_data_array™):
asm(™ LEAX D X")3

asm(™ LDAA O.X")a
asm(™ STAA look™)3
asm(™ PULX™):3
asm(" LDAB _fuzzy_temp™)3
asm("FUZLOOP: EQU *")j4
asm("” MEM™) 5
asm(" DBNE B-FUZLOOP™) 4
¥

_fuzzy_temp = GetTotalNumOut()s

// *x (lear all the inputs
asm(" LDAB _fuzzy_temp™)3 // <- Number of output variables

asm("RULEEVAL:"™)3
asm(" CLR LaY+™)3
asm(" DBNE B-RULEEVAL™) 4

asm(" LDD _fuzzy_rulelList™)s
asm(" LDX #_fuzzy_data_array™):
asm(" LEAX DaX")a

asm(" LDD _fuzzy_fuzzyIns™)i
asm("” LDY #_fuzzy_data_array™)s
asm(" LEAY D.Y™)4

asm(" LDAA #5FF™) 5
asm(" REV™) 3
fuzzy_temp = GetTotalNumOut()s

asm("DEFUZ:")4

asm(" LDD _fuzzy_outputMFs™)3
asm(" LDX #_fuzzy_data_array™)s
asm(" LEAX DaX")3

asm(" LDD _fuzzy_fuzzyOuts™)s
asm(” LDY #_fuzzy_data_array™)s:
asm(" LEAY DaY™)a

asm(" LDAB _fuzzy_temp™)a // <- All outputs need same number of fuzzyOuts
asm(" WAVT™) 3

asm("” EDIV™) 3

asm(" LDD _fuzzy_outputs™)s
asm(" LDX #_fuzzy_data_array™)s
asm(" LEAX DaX")3

asm(" TFR YaD™)s

asm(" STAB 0.X")3

asm(" STAB testOut™)s

asm("END: EQU x")3

APPENDIX B
USER INTERFACE HEADER FILE

// UserlInterface-h
// Uritten by Jim Harrow and Jeff Kornblith

// Included functions for the universal fuzzy logic header file
‘ // for the purpose of entering input/output/rules for fuuzzy logica
~// as well as the translation functions to integrate into the hardcoded
// header file.

#include <hc8l2al.h>
#include <introl.h>
#include <dbuglz.h>

#define NULL '\DO'
LILI1LL7777777777777777777777777777777770777777777777777770777777077777727777777777

// Structures for the rules
struct child_rule

£
int numins // number of inputs deciding output
int numout? // number of outputs effected by input
char *xinvals // Input string
char *outvals // Qutput string
struct child_rule *nexts // next rule
¥s
struct main_rule
{
int numrulesi // Number of rules
struct child_rule rules // rules
¥a

L11777777077777777777777777777777777777777777777077777777777777777777777777777777
// Structures for the fuzzy outputs
struct out_state

{
char xnames // Name of State
~ char *xvalues // state value
struct out_state *nexts // next state associated with this output
X4
struct out_info
{
char *namei // name of output
int numstatess // Number of of QUTPUTMFs for this output
struct out_state states // states
struct out_info *nexts // next output
}s
struct fuzzy_out
{
int numouts // number of outputs
struct out_info *nexts // first output
}5

L1117 7777777777777 777/77777777
// Structures for the fuzzy inputs
struct in_state

{
char *name’ // Name of State
char *starts // Point 1
char *xsslopes // Slope 1
char *ends // Point 2
char *xeslopes // Slope 2
struct in_state *nexts // next state associated with this input
}s
struct in_info
~— £
char *names // Name of Input
int numstatess /7 Num%fr of INPUTMFs for this Input

struct in_state states // states
struct in_info *nexts // next input
5

struct fuzzy_in

{
int numini // number of inputs
struct in_info *nexts // first input

3

L1011 10 0777707077777 777770777770777777777777777777777777777777777707777777777777777
L1177 77

// Various String Manipulation Functions
int slen(charx)s

charx scopy(charx)s;

int scomp (char*.charx)s;

// Function (and helper) that translates a two characeter ascii string into
7/ the appropriate hex value.

int helpctohex(char)s

int ctohex(charx)s

// Initialization function to set up structures
void InitializeFuzzy()3

// Helper functions to search if an input exists for adding states
int SearchInput(char *name)s3
int Searchlutput(char *name):

// The five fucntions the user must call to successfully enter the
// fuzzy logic information

int AddIState(charx.char*xachar*.char*.chark.charx)s

int AddInput(charx)s

int AddOState(charx*.char*acharx)s

int AddOutput(charx)s:

void AddRule(intainta.charxa.charx)s

// Various data grabbing fucntions for integration with c-implementation
// of fuzzy logic

int GetNumInput()s

int GetNumQutput()s

int GetNumRules()3

int GetNumIState(int)s

int GetNumOState(int)s

// Loads an input member fucntiona an output member fucntiona. or a rule

// into a global structure for data grabbing. This is for the integration
// with the other header file.

int GetInput(int.int)s

int GetlOutput(int.int)s

int GetRule(int)s

// Grabs a separates a certain input member function name from the input/output
// information in the gloabl rule structure

charx GetRuleIn(int)s

char* GetRuleOut(int)s

// Data grabbing funciton for the other header file
int GetTotalInState()s
int GetTotalldutState()s

// Indexing functions for the other header file
int InputNum(char x)3

int InputStateNum(int+ char *)3

int IndexInputState(char *. char x)3

int QutputNum(char *)3

int QutputStateNum(int. char x)3

int IndexOutputState(char *. char %x)3

//é///////////////////////////////

27

L1777 77727777777777777777777777777777777
// Global Variables

struct fuzzy_in fuzzyins
struct fuzzy_out fuzzyouts
struct main_rule rulelists

struct in_state FuzzInStatex
struct out_state FuzzOutStates
struct child_rule FuzzRulex

1171777777777 7777777777777707777777777777077777770777707777777777707777777777777777
L1777

// Returns length of 'name!
int slen(char *name)

{
int x=03%
while (namelx1!=NULL) x++3
return xi

i

// Returns a copy of 'name'
charx* scopy(char *name)
{
int x=03%
char xbuffers
buffer= malloc(slen(name) +1)3
for (x=0 3 x<slen(name) 3 x++) bufferlxlI=nameLlx13
bufferCxJ=NULL3

return buffers

¥
// Compares 'a' and 'b'... return 0 if not equal and 1 if equal
int scomp(char *a. char *b)
{
int x5
int lenA = 0. lenB = O&
char templ. temp2s
lenA = slen(als
lenB = slen(b)s
if (lenA != lenB) return Ox
for (x=0 3 x<lenA 3 x++)
{
templ = alxJy tempZ=bLx1xa
if (templ !'= temp2) return Oi
T
return 13
¥

// Helper function for 'int ctohex(charx)’
// Returns the appropriate number for each hexadecimal character 'a'.
// Returns a -1 if bad data was passed to 'fa’'.
int helpctohex(char a)
{
switch (a)
{
case '0': return O3
case 'l': return 1i P

iy

case '2': return 23
case '3': return 33
case "4': return Y
case '5': return 53
case 'h': return kax
case '?': return 73
case '8': return 83
case '9': return 93
case 'A': return 103
case 'B': return 1ls
case '"C': return l2x
case 'D': return 133
case 'E': return 1llu:
case 'F': return 153
default : return -1i

// Converts a 2 character hex value to an actual number ("FF™ to 255
// return -1 if error
int ctohex(char x*val)

{

¥

int temps
char a=vall0ls
char b=valllls

if (slen(val)!=2) return -1l3

if (helpctohex(a)) temp=helpctohex(a)*lhx
else return -13 i

if (helpctohex(b)) return temp+helpctohex(b)x
else return -13

// Initialization function for the user implementation

7/

Initializes the three global structures for data insertion

void InitializeFuzzy()

— 1

by

fuzzyin.numin=03
fuzzyin.next=NULLs

fuzzyout.numout=03
fuzzyout.next=NULL:A

rulelist.numrules=03
rulelist.rule.numin=03
rulelist.rule-numout=0%
rulelist.rule-inval=NULLs
rulelist-rule-outval=NULLxA
rulelist.rule.next=NULL3

// Helper function for "AddInput()™ and "AddIState()"™

//
//

Returns 1 is 'name' exists on the input list.
Returns 0 if not.

int SearchInput(char *name)

1

int x=03
struct in_info *as

if (fuzzyin-numin==0) return 0Ox
a=fuzzyin.nexts

while (x<fuzzyin.numin)

{
if (scomp(a->name.name)) return 1x
a=a->nexts
X++3

i g

)

¥

return O3

// Helper function for "AddOutput()™ and "AddOState()"

/7
//

Returns 1 is 'name'! exists on the input list.
Returns 0 if not.

~ SearchQutput (char *name)

N

{

¥

int x=0%
struct out_info *as

if (fuzzyout.numout==0) return 03
a=fuzzyout.nexts

while (x<fuzzyout.numout)

{
if (scomp(a->name-name)) return 1:
a=a->nexts
X++3

X

return 03

// Add Input State (Membership Function)

int AddIState(char *name. char *al. char *ag2. char *a3. char xal4. char *a5)

{

name = name of input that membership function is related to
al = name of membership function

ac = point 1

a3 = point 2

al = slope L

asb = slope 2

This function adds a state (membership function) to the input structures.

Returns -1 on error

struct in_info *xinput=NULL>s
struct in_state *state=NULL3
int xs3

int good=1l3

if (!SearchInput(name)) return -1x
input = fuzzyin.nextx

while ((input != NULL) && (!scomp(name.input->name)))
{

input=input->nexts
¥

input->numstates = input->numstates+ls

if (input->numstates==1)

{
input->state.name=scopy(al)s
input->state.start=scopy(ad)s
input->state.end=scopy(a3d)s
input->state-.sslope=scopy(al)x
input->state.eslope=scopy(as)s
input->state-next=NULLA
return 13

¥

if (input->numstates==2)

{
input->state.next= malloc (sizeof (struct in_state)
input->state.next->name=scopy(al)s
input->state.next->start=scopy(ag)x
input->state.next->end=scopy(ad)s
input->state.next->sslope=scopy(al)s &

‘N n

input->state.next->eslope=scopy(as)s
input->state.next->next = NULL#%
~ return 1i
}

state=input->state.nexts

while (state->next != NULL) state=state->nexts

state->next=malloc (sizeof (struct in_state)):s

state = state->nexts

state->name=scopy(al)s
state->start=scopy(ad)s
state->end=scopy(a3d)x
state->sslope=scopy(alls
state->eslope=scopy(alb)a
state->next = NULL3
return i

T
// Add Input

// name - name of input to be added
//

// If "name' does not already exist on the input list. it is

// and appropriate values are initialized
int AddInput(char *name)

{
int x5
struct in_info *a3s
int good=1s

if (SearchInput(name)) return -13
fuzzyin.numin++s

if (fuzzyin.numin==1)
{

fuzzyin.next= malloc (sizeof (struct in_info))a

fuzzyin.next->name=scopy(name)s
fuzzyin.next->numstates=03
fuzzyin.next->state.start=NULLA
fuzzyin.next->state.end=NULL3
fuzzyin.next->state.sslope=NULLA
fuzzyin.next->state.eslope=NULL3
fuzzyin.next->state.next=NULL#%
fuzzyin.next->next = NULL#%
return lx

t

a=fuzzyin.nexts
x=fuzzyin.numiny

while (good)

{
x=x-1k3
if (x==1)
{
a->next= malloc (sizeof (struct in_info))a
good=03
¥
a=a->nexts
i

a->name=scopy(name)s
a->numstates=03
a->state.start=NULL3
a->state.end=NULL3>
a->state.sslope=NULLx
a->state.eslope=NULLA
a->state.next=NULLA

added

return 1x
}

// Add Output State (Membership Function)
/7 name = name of output that membership function is related to

7/ al = name of membership function
4 ac = point 1
//

/7 This function adds a state (membership function) to the output structures.
/7 Returns -1 on error
int AddOState(char *name. char *al. char xag)

{

struct out_info *output=NULL#A

struct out_state *state=NULLs

int x3

int good=ls

if (!SearchOutput(name)) return -13

output = fuzzyout.nexts

while (!scomp(name-output->name))

{
output=output->nexts

by

output->numstates = output->numstates+ls

if (output->numstates==1)

{
output->state.name=scopy(al)x
output->state.value=scopy(ad)s
return 13

¥

if (output->numstates==¢)

{

— output->state.next=malloc (sizeof (struct out_state))s
output->state.next->name=scopy(al)ls
output->state.next->value=scopy(acd)s
return Li !

by
state=output->state.nexts
x=output->numstatess
while (good)
{
X=xX=-13
if (x==2)
{
state->next=malloc (sizeof (struct out_state))s
good=03
T
state=state->nexts
iy
state->name=scopy(al)x
state->value=scopy(ac)s
return 1i
3

// Add Output
// name - name of output to be added
/7
// If '"name' does not already exist on the output list. it is added
// and appropriate values are initialized
int AddOutput(char *name)
{
_ int xa
struct out_info *a3
int good=1x Py

if (SearchOutput(name)) return -13
fuzzyout.numout++3

if (fuzzyout.numout==1)

{
fuzzyout.next=malloc (sizeof (struct out_info))s
fuzzyout.next->name=scopy(name)x
fuzzyout.next->numstates=03
fuzzyout.next->state.value=NULL#%
fuzzyout.next->state.next=NULLx
return 1ls

¥

a=fuzzyout.nexts
x=fuzzyout.numouts

while (good)

{
X=x-Lk3
if (x==1)
{ il
a->next= malloc (sizeof (struct out_info)):
good=0s ‘
X
a=a->next:
}

a->name=scopy(name)s
a->numstates=03
a->state-value=NULLA
a->state.next=NULL:3
return 1

¥

// Add Rule

// il = number of inputs that drive the output
// ic = number of outputs driven by the input
// al = input string

// ac = putput string

//

// This function adds a rule to the rule list.
//

// The input (and output) strings are in the following format:
// INPUTNAMEL_STATENAMELSINPUTNAMEZ_STATENAME

7/ where '_' link the input(or output) name and state name and 's!
// seperate multiple inputs(or outputs)
void AddRule(int il- int i2. char *al. char *a2)
{
struct child_rule *rule=NULL#%
int xs
int good=14

rulelist.numrules+=13

if (rulelist.numrules>l)

{
if (rulelist.numrules==2)
{
rulelist.rule.next= malloc (sizeof (struct child_rule))s
good=03
}

rule=rulelist.rule.nexts

x=rulelist.numruless
while (good)
{

Xx=x-1L3

if (x==2)
{

rule->next= malloc (sizeof (struct child_rule))a

good=03

i

rule=rule->nexts
¥
rule->numin=ils
rule->numout=igs
rule->inval=scopy(al)s
rule->outval=scopy(ad)s

else

rulelist.-rule-numin=ils
rulelist.rule.numout=igs
rulelist.rule.inval=scopy(al)x
rulelist.rule.outval=scopy(a2)s

T

// Returns the number of inputs
int GetNumInput()
{
return fuzzyin.numins
¥

// Returns number of outputs
int GetNumOutput()
{

return fuzzyout.numouts
¥

// Returns number of rules
int GetNumRules()
{

return rulelist.numruless
i

// Returns number of states for input #'a!
int GetNumIState(int a)
{

int x=1s

struct in_info xbs

if (a>GetNumInput()) return 0Ox
b=fuzzyin.nexts

while (x < a)
{
b=b->nexts
X++3
¥
return b->numstatess
}

// Returns number of states for output #'a’
int GetNum(State(int a)
{

int x=04

struct out_info xbs

if (a>GetNumOutput()) return 0Ox
b=fuzzyout.nexts
while (x < a-1)

{
=ph-> :
b=b nexts ‘

~—

T

// Loads input 'a'. state 'b!

X++5

¥

return b->numstatess

int GetInput(int a-int b)

{

iy

int x=14
struct in_info *bigs
struct in_state xlits

if (a>GetNumInput()) return O3
if (b>GetNumIState(a)) return O3

big=fuzzyin.nexts

while (x < a)

{
big=big->nexts
X++5

by

x=15

xlit=big->states
while (x < b)
{

lit=1lit->nexts

X++5
X
FuzzInState.name=scopy(lit->name)s
FuzzInState.start=scopy(lit->start)a
FuzzInState.end=scopy(lit->end)s
FuzzInState.sslope=scopy(lit->sslope)s
FuzzInState.eslope=scopy(lit->eslope)s

return i

// Loads output 'a'. state 'b' into the global
int GetOutput(int a.int b)

{

int x=13
struct out_info *bigs
struct out_state x1lits

if (a>GetNumQutput()) return 03
if (b>GetNumOState(a)) return 03

big=fuzzyout.nexts

while (x < a)

{
big=big->nexts
X++35

by

x=1L3

xlit=big->states
while (x < b)
{
lit=1lit->nexts
X++5
¥
FuzzOutState.name=scopy(lit->name)s
FuzzOutState.value=scopy(lit->value)s

structure

into the global structure 'FuzzInState'

"Fuzz0utState™

return 13
}

// Loads rule 'a' into the global structure "FuzzRlue"
int GetRule(int a)
{
-~ int x=03
struct child_rule *rules

if (a>GetNumRules()) return 0Os

if (a==1)

{
FuzzRule.numin=rulelist.rule.numinx
FuzzRule-numout=rulelist.rule.numouts
FuzzRule.inval=scopy(rulelist.rule.inval)s
FuzzRule.outval=scopy(rulelist.rule.outval)s
return 03

¥

rule=rulelist.rule-nexts
if (a!'=2) while (x < a-2)
{
rule=rule->nexts
X++5
}

FuzzRule-numin=rule->numins
FuzzRule.numout=rule->numouts
FuzzRule.inval=scopy(rule->inval)s
FuzzRule.outval=scopy(rule->outval)s
return O3

¥

// Parses the string "FuzzRule.inval™ and returns the 'a'th INPUTNAME_STATENAME
// string. GetRule(n) must be called prior to calling this function
~ char* GetRuleIn(int a)
{
char xbuffers
int x=Lx
int y=03
int d=01
if (a>GetNumRules()) return NULL:A

buffer=malloc(slen(a) + 1)3

while (x!=a)
{
if (FuzzRule.invalLyJl=='3"')
{
y++3
X++3
¥
else y++;4
¥
while (FuzzRule.invalLyl!='3' &8 y<slen(FuzzRule.inval))
{
bufferfdI=FuzzRule.invalLlylx
d++3
y++3
i
bufferCdI=NULLA
return buffers
¥

// Parses the string "FuzzRule.outval™ and returns the 'a'th OQUTPUTNAME_STATENAME
// string. GetRule(n) must be called prior to calling this function
— char* GetRulelut(int a)
{
char xbuffer:s Py

a0

int x=13
int y=03
int d=03
if (a>GetNumRules()) return NULL3

buffer=malloc(slen(a) + 1)1

while (x!=a)

{
if (FuzzRule.outvalLyl=='5'")
{
y++5
X++5
X
else y++;5
i
while (FuzzRule.outvalLyl!='3' 28 y<slen(FuzzRule-.outval))
{
bufferfdl=FuzzRule.outvallyls
d++4
y++5
T

bufferCLdI=NULL3%
return buffers

}

// Returns the total number of input states (membership functions)
int GetTotalInState()
{

struct in_info *a3x

int x3

int total=0x

a=fuzzyin.nexts

for (x=0 3 x<fuzzyin.numin 35 x++)
{
total=total+a->numstatess
a=a->nexts
X
return totals
Y

// Returns the total number of output states (membership functions)
int GetTotallOutState()
{

struct out_info *a3

int xa

int total=03

a=fuzzyout.nexts

for (x=0 3 x<fuzzyout.numout 3 x++)
{
total=total+a->numstatess
a=a->nexts
}
return totals
}

// Returns the index of Input 'in'. state 'state' for the purpose of
// memory mapping when integrated with the other header file.
int IndexInputState(char * ina char * state)
{
int index = DO&
int input = s
int inputNum = InputNum(in)3
int stateNum = InputStateNum(inputNum. state)3

for(input=13 input < inputNumi input++) »

47

index += GetNumIState(inputNum)&
index += stateNum-L&

return indexs
¥
-
// Helper function for "IndexInputState!
/7/ Returns the index for input name 'input’
int InputNum(char x input)

{
int x=1s
struct in_info *bigs
big=fuzzyin.nexts
while (big != NULL && !scomp(input. big->name))
{
big=big->nexts
X++5
¥
if(big == NULL) return -13
return xs:
X

// Helper function for "IndexInputState"
// Returns the index for input number 'input'. state name 'state?
int InputStateNum(int input. char * state)
{
int x=l.y=03%
int numStates = GetNumIState(input)=
struct in_info xbigs
struct in_state x1its
— char *name3s

if ¢ input > GetNumInput()) return -23
big=fuzzyin.nexts

while (x < input)
{
big=big->nexts
X++3

by
y=13

if(!scomp(big->state.name. state))
{
y++5
lit=big->state.nexts
while (y<=numStates &8& !scomp(lit->name. state))
{
lit=1lit->nexts
y++3

¥
if(y>numStates) return -13

return ya
}

// Returns the index of Output 'out’. state 'state'! for the purpose of
/7 memory mapping when integrated with the other header file.
int IndexOutputState(char * outa. char x state)

1 | 1»

40

int index = D&

int output = 13

int outputNum = OQutputNum(out)3

int stateNum = QutputStateNum(outputNum. state)3

for(output=13 output < outputNum3i output++)
index += GetNumOState(outputNum)3

index += stateNum-13

return indexs
¥

// Helper function for 'IndexOutputState’
// Returns the index for output name 'output’
int OutputNum(char * output)

{
int x=1s3
struct out_info xbigs
big=fuzzyout.nexts
while (big != NULL &% !scomp(output~ big->name))
{
big=big->nexts
X++3
3
if(big == NULL) return -1l3
return xsi
}

// Helper function for "IndexOQutputState"
// Returns the index for output number 'output'. state name 'state!
int OQutputStateNum(int outputa char * state)
N
{
int x=1l.y=0x
int numStates = GetNum0State(output)3
struct out_info xbigs :
struct out_state x1its
char *names

if (output > GetNumQutput()) return -23
big=fuzzyout.nexts

while (x < output)
{
big=big->nexts
X++3

iy
y=13

if(!scomp(big->state-name. state))
{
y++3

lit=big->state.nexts

while (y<=numStates &8& !scomp(lit->name. state))
{
lit=1lit->nexts
y++5
¥
¥
~ if(y>numStates) return -1i

return ya ’

APPENDIX C
DEMONSTRATION PROGRAM

// James Jarrow & Jeff Kornblith
// Microprocessor Systems

// Test Program for Fuzzy Logic Demonstration
// Uses to Potentiometers connected to PADL & PADZ2 for analog input
// Uses PORTS H & J for LED Output Display

#include <hc8l2al4.h>
#include <introl.h>
#include <dbugl2.h>

#include "fuzzylogic.h"

void __mod2__ ADInt()3
void DisplayOutput(int)s

unsigned int val2.valls

void __main()
{
int cntls

// AtoD Initialization
DBl2->SetUserVector(AtoD. ADInt)
_H1L2ADTCTLE (_HL2ADTCTLZ | Ox82)1
_HL2ADTCTLY Ox01s

HL2ADTCTLS OxL0%

// Port Initialization
_H12DDRH = OxFF3
_H12DDRY OxFF4

DBL2->printf ("\033L2J")3

// Initializes Fuzzy Logic
~ RunFuzzylLogic()3
while (1)
{
// Load AtoD Input
LoadInput(O+ vall)3
LoadInput(L. valg2)s

// Calculate Output
RunFuzzy ()3

// Display Output of LEDs
DisplayQutput(GetResult(O))&

DBlL2->printf ("“xInputs: “x “x\n\r". vall. val2)i
DBlE2->printf ("/ZxOutput: Z“x\n\r". GetResult(0))3

by

// AtoD Interrupt Code
void __mod2__ ADInt()

1
if ((_HLZADTSTAT & OxOk) == 0Ox0Ok)
1
valg = _HLZADRZHx
vall = _HLZ2ADR1H3
_HL2TSCR = 0Ox&80a
iy
_HLZ2ADTCTLS = Ox10A
X

/7 Ugly LED output display code
~—'void DisplayOutput(int val)
{
_HL2PORTJ=0OxFF4 ()

_HL2PORTH=0xFFx

if
if
if
if
if
if
if
if

if
if
if
if
if
if
if
if

PN NN SN NN NS

e e Re e lealala ke

val
val
val
val
val
val
val
val

val
val
val
val
val
val
val
val

VVVVVYVVYV

VVVVYVVYVYV

8
o4
40
5k
7e
a8

104
120

13k
152
1k8
L8y
200
2lb
23c
248

R N I N

R R "

AmhAAAAA A L T W e W W W B M)

_HL2PORTJ=0xFE3s _HL2PORTH=0OxFFx
_H12PORTJ=0xFCs _H12PORTH=0xFF3
_HL2PORTJ=0xF83 _HLZPORTH=OxFF3
_H12PORTJ=0xFO3 _H12PORTH=0xFF3
_HLE2PORTJ=0xEOD> _HL2PORTH=0OxFF3
_H12PORTJ=0xCO5 _H1Z2PORTH=0xFF3
_HLE2PORTJ=0x803 _HLZPORTH=0OxFF4
_H12PORTJ=0x005 _H12PORTH=0xFF3

_HL2PORTH=0OxFEs _HL2ZPORTJ=0x00%
_HL2PORTH=0xFCs _H1L2PORTJ=0x00x
_HL2PORTH=OxF&83 _HL2ZPORTJ=0x00%
_H1LZ2PORTH=0xFO5 _HL2PORTJ=0x004
_HL2PORTH=0OxEDs _HLZ2PORTJ=0x00%
_H1LEPORTH=0xCO5 _H12PORTJ=0x004
_H12PORTH=0x805 _HLZPORTJ=0x00%
_H1L2PORTH=0x005 _H12PORTJ=0x004

B N A

APPENDIX D
DEMONSTRATION CIRCUIT DIAGRAM

Circuit Diagram for Demonstration

A5V
1%
+5v Potentiometer 45y
e f ¢
30- yRN
25-PM2 =
28- pPAS) 1w
é Psvertiometec
24 - VRL
+ *

— G— —an— — o— o

53

2 - PH7)
3\ - PHO kD l ‘m
34 - PHS D W
A~ . :

33 o e M A\l Resiskrs are 2290
35- PH2 o MWWA————4
38 -PrL <) :Nv
P D —Aw—t
2 -PI% — AW
| - °36 ﬂ A
a-e35 = WA
3 - P34 Y , ‘yv'
6 -F33 ‘N: E— -
5-¢72 —WA————
Yy ~ MM
_’_93,0 » AVM‘

¥ nd Al

