Master Lockg
Combination Cracker

Matt Leotta
Patrick LaRocque
Jessica Tse

12/10/02
Microprocessor Systems
Section 03

Table of Contents

Table Of CONENLS............ooiiiiiiiii ettt ettt e et eeeeaeeeeteeesaeeeeneeaas il
LSt OF FIUIES. ...ttt ettt ettt eae et e e eseeesseeesesesaeesneenseeeneas il
LSt Of TaBIES ... ettt et iii
ADSITACE ...ttt ettt et e e aa et e e e se e e te e sbe e st e e enneeeeaneeeateeaneas iii
T IMEPOGQUCHION.oiiiiiiiiii ittt eee e e e et e e e te e e easeeenseeenaeeens 1
2 Materials and MethodSc.coooiiiiiiii e 1
2.1 Mechanical COmMPONENES.................oooiuiiiiiiiiiii e 1
2.1.1 SOLENOIA ..ottt 2
212 IMIOTOTttt ettt e e ettt e e e e et e e e e e e enneeeas 2
213 Frame ... e 3

2.2 Electrical and Electronic COMPONENLSccccuiiiiiiiiiiiiiiiiiiiee e 3
221 Power SWItChING ...t 4
222 Encoder Decoding and Counting.................cccoooiiiiiiiiiiiiiiit e 5
223 LCD and Keypadcccoooiiiiiiiiiii e 6

2.3 Software COMPONENLS..............ooiuiiiiiiiiiiiiiie ettt et e e eaae e e eaeeeeesseeeaeaenas 6
23.1 Combination Crackingoccoiiiiiiiiiii e 6
232 MOLOT COMLIOL ..ottt et ens 7
233 KEYPAA ... 10
234 LCD et 12
235 Main Program.............cooiiiiiiiiiiiii e 12

3 RESUIES oottt e 13
4 DESCUSSION.outiitiiiiiiiie ettt ettt ettt et et et e et e e b e eebeeseeaeesaeereeeeeeere e st e eraeenteenseenseenes 14
5 REfEIENCES ..ot 15
6 BIblOGIapRYoooiiiiiiii et 15
Appendix A: Electrical SChematiCsc..oooiiiiiiiiii e 16
APPENdix B: IMAGESoooiiiiiiiiiiiii et 19
Appendix C: Flowcharts and Block Diagrams.................c.occcooiiiiiiiiiiiiiiii e 28
Appendix D: Parts LiSt...........cccooiiiiiiii e 31
Appendix E: Source Code LiStiNgS............ccc.oooiiiiiiiiiiiiiiii e 32
Source Code fOr MAIN.C..............oooiiiiii e 32
Source Code for MOtOT.N...........ooooiiiiiiiiii e 41
Source Code for keypad.h ... 47
Appendix F: AttaChmentsocccoiiiiiiiiiii e 50

List of Figures

Figure 1: Motor Velocity Profile ... 9
Figure 2: Protoboard Circuitry - Motor Control.....................cc.ocoooiiiiiii e 16
Figure 3: Driver Board CIrCUIIYooiiiiiiiiiiiii i 17
Figure 4: LCD and Keypad CirCUItIyooooiiiiiiiiiioi e 18
Figure 5: Multiple Views Of PrOtOtyPeccoooiiiiiiiiiii e 19
Figure 6: Driver Board Layoutccccooiiiiiiiiiiiii e 20
Figure 7: Ribbon Cable and Protoboard Adaptor....................c.oooviviiiiiiiiii e 20

i

Figure 8: Multiple Views of Solenoid Plunger...................cocooiiiicce 21

Figure 9: Motor ASSEMDLYcoooiiiiiiiiii e e 21
Figure 10: Solenoid ASSEmbBIYooiiiiiiiiiii e 22
Figure 11: Solenoid FOrce CUrVESoooiiiiiiiiiiiiiii e e 22
Figure 12: Solenoid SpecifiCationscccoiiiiiiiiiiiiiiiiii e 23
Figure 13: FOTces ASSEIted...........ccoiiiiiiiiiiiiii ettt e 24
Figure 14: LCD SCIeenShOLSooiiiiiiiiiiiiitiiie ettt 25
Figure 15: Protoboard, LCD, and Keypadccoooiiiiiiiiiiiiii e 26
Figure 16: Protoboard ..ot 26
Figure 17: OVerall SYSEIML...........ooiiiiiiiiiiii ittt et 27
Figure 18: Keypad FIOWChArt................coooiiiiiiiiii e 28
Figure 19: Main Program Flowchart ... 29
Figure 20: System Block DIa@ramccooiiiiiiiiiiiiiii e 30
List of Tables

Table 1: Lock Opening FOrce TeStcooiiiiiiiiiiiiiiiiiiieiit e 2
Table 2: Control Signals Sent to Driver Boardcoociiiii 5
Table 3: Parts LiSt........ccooiiiiiiiii et 31
Abstract

The Master Locke Combination Cracker has two goals: to open the lock given a three-
number combination and to crack the combination given the Master Locke. The Combination
Cracker is a device consisting of several mechanical components which operate jointly and are
controlled by the Motorola M68HC12 microprocessor through software written in C. A 12-volt
DC motor is used to rotate the lock dial and is the chief component in determining which of the
possible combinations will open the lock. A pull-type, 48W solenoid pulls up on the arm of the
lock when the system is opening or cracking the combination. A sixteen-character, two-line
LCD screen and a Greyhill series 96 4x4 keypad provide the interface for data input and output
for the user of the device.

The Combination Cracker provides a creative and clean method for opening a Master Locke
when the user enters the combination and enables the user to retrieve a lost combination for a
given lock quickly, consistently, and efficiently. With the short waiting time (maximum of five
minutes) for the determination of the unknown combination, the Master Locke Combination
Cracker is clearly a viable alternative to the more destructive options available for opening locks
with forgotten combinations. The following report describes in detail the design, construction,
and methodology involved with the Combination Cracker. In addition, it also includes electrical
schematics, software source code listings, and other diagrams to further describe the system and
device.

iii

1 Introduction

The state of today’s society calls for secure storage of one’s material property. From this,
there is inherently a need for small personal locks; one of the most common of which is the
combination Master Locke. In certain cases, the lock owner may not be able to open the lock
easily, due to arthritis or general lack of manual dexterity. In other cases, the combination to the
lock may be forgotten and the owner would like to open the lock without damage and retrieve
the combination so the lock may be reused. The typical lock owner would only need this service
on rare occasions, so this device might be more fitting for a locksmith. Other users of this device
could be owners of storage facilities or health fitness centers. In both businesses, customers
often are allowed to use there own locks to temporarily store person belongings. When
customers fail to remove their locks after the allotted time span, the owner is forced to cut them
off. The Master Locke Combination Cracker provides an alternative in which the owner may
remove the lock and then reuse or resell it at a later date.

According to information on the Master Locke website, retrieving a lost combination for a
lock is much more difficult now than it was in the past. For security reasons, Master Locke no
longer provides combinations over the phone. Extensive paper work and notarization is required
before this information is given out. In some cases this procedure may not be possible or may
take toflong. This is no longer a problem with our device.

The Master Locke Combination Cracker automatically opens Master Locke brand
combination padlocks. The device uses a motor and solenoid to manipulate the lock, a keypad
and LCD display for user I/O, and a Motorola 68HC12 microcontroller to interface these
components and provide a software-based PID controller for the motor. The completed system
opens any Master Locke either by accepting a three-number combination from the user or by
experimentally determining the combination through trial and error. We were also able to
significantly reduce the time required to find the combination by using a known code-cracking
methodology. This enhancement requires precise interaction between the solenoid and motor to
“feel” the notches in the rotating cam within the lock. For the purposes of our prototype, the
lock is placed inside the device, proving the design concepts for opening the lock. A final
production model would be made more portable, and be able to be placed on the lock when it is
still attached to something.

2 Materials and Methods

This section details the materials and methods used to implement the Master Locke
combination cracking device. The various mechanical, electrical/electronic, and software
components of the system are discussed in the following subsections.

2.1 Mechanical Components

The mechanical components of the system are used to physically manipulate the lock.
These include solenoid for opening the lock and a motor with integrated gearhead and encoder
for entering the combinations. Additionally, a variety of parts are used to position and secure the
motor, solenoid, and lock and to interconnect the motor and solenoid with the lock.

2.1.1 Solenoid

Mounted vertically above the lock is a pull-type, 48W solenoid (See Figure 10.). A
solenoid was chosen for the task of pulling the arm of the Master Lock open for two reasons.
The first is that it fires rapidly, and the second is that it has plenty of power. We completed an
experiment on a lock to determine how much force is required to pull the arm and open the lock.
The lock was attached upside-down to a test apparatus, and weights were added slowly to a hook
attached to the arm of the lock with the correct combination already entered. The following data
was collected on ten trials:

Run Mass (grams) Mass (ounces)
1 1300 45.856
2 1250 44.092
3 1250 44.092
4 1250 44.092
5 1220 43.034
6 1240 43.740
7 1260 44 445
8 1260 44 445
9 1150 40.565
10 1200 42.329
Average 1238 43.669

Table 1: Lock Opening Force Test

With this information, we knew that the solenoid needed to be strong enough to pull with
at least 44 ounces of force intermittently. Intermittence was chosen due to the fact that the
solenoid only needed to pull quickly at the lock to open it, and hold up briefly when trying to
crack the lock. The Deltrol D-70 solenoid proved to be strong enough, and exactly what was
required for the job. Figure 11 shows a plot of force versus stroke distance for this particular
solenoid. Opening a lock requires about 0.5 inches of stroke. The solenoid was purchased from
All Electronics Co. Since the solenoid requires 48W, and the lab power supplies can only supply
about 6W, we needed to use an additional power supply. For this, we used standard 250W ATX
computer power supply.

A special apparatus was constructed to connect the solenoid plunger to the lock arm. We
needed a way for the solenoid to tightly grip the arm, yet also be able to attach and detach from
the lock without needing to open the lock. The resulting grip connector is shown in Figure 8.
Two metal clamps are positioned to hold the arm of the lock. These clamps are set to pivot about
a pin so that they may separate and release the lock. However, when the other end of the pin is
inserted into a second hole the clamps are locked together. This pin is also used as a contact
point for success switch lever.

2.1.2 Motor

Mounted horizontally in front of the lock dial is a precision DC motor. This small motor
contains an integrated gearhead and optical encoder (See Figure 9.). It was donated by MicroMo
Electronics, Inc. Unfortunately, the unit is an outdated model and MicroMo was not able to
provide the exact specifications. We do know that this is a 12VDC, 22mm diameter motor. The
maximum speed after gear reduction is approximately 150 RPM.

The encoder provides a two channel quadrature encoded output. Through experimentation
we determined that each channel provides 82900 pulses per revolution of the output shaft.
However, we do not know how much of this is due to the resolution of the encoder and how
much is due to the gear reduction. Through comparisons to similar devices currently
manufactured by MicroMo, we estimate that the encoder provides about 1024 pulses per
revolution and the gear reduction ratio is approximately 81:1.

The output shaft of the motor is connected to the dial of the Master Locke using a specially
designed socket. The socket was molded from 3/4 inch diameter electrical heat shrink tubing
which shrinks to a minimum of a 1/2 inch diameter. A 5/8 inch diameter pinion was attached to
the output shaft of the motor and aligned with the lock dial. A 3/4 inch long section of the heat
shrink tubing was placed over pinion and dial. This tubing was heated with a butane torch to
provide a form fitting rubber socket. To ensure a tight grip with minimal slippage, we wrapped
wires tightly around the tubing over the dial, pinion, and shaft (See Figure 9.).

2.1.3 Frame

When planning the construction of the apparatus, it was important to consider where each
of the mechanical components would be placed. The forces produced within the complete
assembly are shown in Figure 13. The frame was built around the components so that each part
would function as desired. Wood was chosen as the building material of choice since it is strong
yet easy to shape and work with. As can be seen in Figure 5, most of the prototype body was
built with wood. The first step in the construction involved attaching the solenoid and lock to a
vertical piece of plywood measuring 4” x 11.5”. The lock is held onto the prototype by a slot cut
out of the wood with the exact dimensions of the lock, ensuring that there would be no slippage,
and that the lock would be held securely in place. This piece with the slot was elevated from the
piece of plywood mentioned earlier with another piece in between to align the solenoid plunger
with the lock properly. The success switch was mounted next to the solenoid also with a spacer,
so that the switch arm could be triggered by the grip locking pin on the solenoid plunger. This
switch was carefully positioned so that it would only be triggered when solenoid plunger moved
far enough to open the lock.

Two pieces of plywood also measuring 4” x 11.5” were attached to the sides of the
prototype allowing it to stand freely, and to provide platforms to mount the track for the motor.
The motor was affixed to a piece of sheet metal measuring 4” x 3.5”. This piece of sheet metal
glides freely between two tracks attached to the side support pieces of wood. Two springs were
attached to the sheet metal on one end, and to the vertical portion of the apparatus on the other.
The springs apply force holding the motor to the face of the lock; they also allow the motor to
smoothly return to operating position. Sheet metal was chosen for implementing the base to
attach the motor to for two reasons. The first is the strength; aluminum is an adequately strong
material for mounting to. The second reason is the flexibility. A thin piece of sheet metal allows
for a small amount of play in the movement of the motor, allowing it to twist and turn just
slightly to accommodate for slight misalignment of the shaft and dial.

2.2 Electrical and Electronic Components

The electrical and electronic components of the system include the power switching
circuitry for the motor and solenoid, the encoder decoding and counting circuitry, the keypad,
and the LCD display. These components are the links between the mechanical components and
the software components. Each of these components is described in detail below.

2.2.1 Power Switching

All of the power switching circuitry is found on a small circuit board mounted on the back
of the combination cracking device. This small driver board is shown in Figure 6 and the
corresponding schematic is shown in Figure 3. The two ICs and one DIP relay are connected to
the board with sockets so that they can be easily replaced if they burn out. The driver board is
powered separately by a computer power supply (via a standard 4-pin connector) to provide the
additional power needed to drive the solenoid. Low power control signals are communicated to
and from the protoboard via a 10-pin dual-row header connected to a 3 ft. ribbon cable. A
special DIP-like adaptor was created to separate the pins enough to plug into the protoboard (See
Figure 7.). An 8-pin single-row header is used to connect to the motor ribbon cable. One of
these pins is not used and plugged on the socket, thus the remaining seven pins can not
accidentally be connected backwards. Two additional 2-pin connectors are used to attach the
solenoid and success test switch.

An active low signal from the protoboard is used to drive the solenoid. This signal is fed
through an inverter and then to the base of an NPN transistor. The emitter of the transistor is
used to drive the coil of a double-throw double-pole DIP relay. When activated, the relay
completes the 12V solenoid circuit. Both switches in the relay are used in parallel because of the
large amount of current. Each switch is rated for 2A and the solenoid draws 4A total. A
transistor is needed to drive the 5V relay coil because the 7404 Hex Inverter chip does not
provide enough power.

The motor is powered with an SN754410NE Dual H-Bridge IC. The H-Bridge maps input
logic signals (OV or +5V) to the required output provided by Vccz (+12V). A motor direction
control signal is passed through inverters and then to the H-Bridge in both its inverted and
original form. This ensures that outputs to the motor are 0V and +12V, but outputs are swapped
depending on the state of the motor direction control bit. When this bit is high, Motor + gets
12V, Motor — gets OV, and the motor spins clockwise. When it is low, Motor + gets 0V, Motor —
gets 12V, and the motor spins counter-clockwise. However, both of these outputs to the motor
are set low if the enable input is low. By sending a pulse-width modulated (PWM) signal to the
enable bit, the motor is quick switched on and off. Thus, the duty cycle of the PWM signal
controls the effective voltage to the motor which controls the motor’s velocity.

The two feedback signals from the encoder are passed from the driver board directly back
to the protoboard. The switch that monitors the lock’s position also sends a signal back to the
protoboard. This signal is normal pulled high with a 1KQ resistor. The seventh and final signal
communicated between the driver board and protoboard is a common ground. This is needed
because driver board and protoboard are powered with different power supplies. The signals
sent between the two boards are summarized in Table 2. Direction is with respect to the driver
board.

Pin # | Name Direction Description
1 GND Bidirectional | Common ground between boards
2 unused
3 CHB Output Channel B encoder signal from motor
4 unused
5 CHA Output Channel A encoder signal from motor
6 unused
7 TEST Output Success test signal from switch (active low)
8 MOT Input Motor PWM signal
PWM
9 SOL EN Input Solenoid enable signal (active low)
10 MOT DIR | Input Motor Direction signal (1=CW, 0=CCW)

Table 2: Control Signals Sent to Driver Board

2.2.2 Encoder Decoding and Counting

The protoboard contains the circuitry to decode and count the encoded position signals (See
Figure 16). The two encoder signal (CH A, and CH B) are fed into a HCTL-2016 Quadrature
Decoder/Counter chip. This chip is designed to sample the channel inputs and increment or
decrement a 16-bit counter accordingly. The counter is then read by the 68HC12 as if it were a
memory chip. Eight data lines are provide by the HCTL-2016, and these are connected to Port D
(J8 pins 29 — 36) of the EVB (See Figure 2.). The high byte and low byte of data must be read
on alternate clock cycles through the same data pins. Thus, the HCTL-2016 would interface
easily with the 68HC12 if it were in Normal Expanded-Narrow mode. However, the 68HC12 is
locked into Normal Expanded-Wide mode by the EVB. This still works, but the HCTL-2016
must be mapped to alternating odd addresses. The bytes are accessed individually and then
combined in the software.

To actually access the HCTL-2016 registers from within the 68HC12, address decoding is
required. This is done with some external glue logic on the protoboard. The HCTL-2016 is
mapped to the $2000 to $2FFF address space. Although only two addresses are actually needed,
the logic is simpler when the entire range is used. The upper four addresses lines, Port A 4-7 (J9
pins 3-6), are passed through a 4-input NAND gate after inverting the appropriate signals. This
produces a low asserted signal whenever the most significant nibble is a binary 0010 ($2). This
signal is combined with the low asserted CSD signal with an OR gate. Thus the resulting signal
goes low only when accessing memory in the $2000 to $2FFF range.

The HCTL-2016 also requires clock, select, and reset signals. The clock is used as the
sampling period for the input channels A and B. For this we used the E-clock signal provided by
PE4 (J8 pin 34). The frequency of the clock must be at least three times faster than the fastest
frequency of the encoder channels for correct operation. At the maximum speed of150 RPM, the
frequency of the encoder channel is a little over 20KHz. The E-clock runs at 8MHz so this is
definitely sufficient.

The select signal is used to select which byte (high or low) is presented on the data bus. We
used PB1 (J8 pin 60) for the select signal; this signal is address line 1. Since we can only access
the HCTL-2016 with odd addresses, this causes the high and low bytes to map to alternating odd
addresses.

The reset set signal is provided by G1 (J8 pin 16). This low asserted signal must be manual
asserted in the software whenever the chip needs to be reset.

2.2.3 LCD and Keypad

The LCD and Keypad hardware was wired exactly as described in the ECSE-4790

Microprocessor Systems: Motorola 68HC12 User’s Manual. Refer to the schematic in Figure 4.
A single unit containing both the LCD and keypad components was provided by the lab to

be interfaced with the 68HC12. The keypad was connected to the microcontroller through Port J
to allow control by the Key Wakeup Interrupt. In the keypad, as shown in Figure 4, eight pins
connected to the EVB, where four were used for the row select and four were used for the
column select. The column select pins were connected with pull-up resistors. The four row
select pins were connected to the four higher bits of Port J (bits 4-7) and were configured as
output bits that were normally held low. When a button was pressed, one of the column select
pins was then pulled low, triggering the Key Wakeup Interrupt. The Key Wakeup Interrupt had
to then determine which row was activated and return the correct character for that button. Refer
to Section 2.3.3 for the software involved with the interrupt handling.

The sixteen-character by two-line LCD and corresponding controller were connected to Port
H and three open pins of Port G for data lines and control bits. This enabled the microprocessor
to feed in the appropriate characters to the LCD to be displayed. Bit PG5 was used as an enable
bit, PG3 indicated read/write direction, and PG4 corresponded to RS on the LCD controller. The
remaining eight lines (Port H) were used as the data lines. The LCD control is further described
in Section 2.3 .4.

2.3 Software Components

The software components consist of five main parts: combination cracking, motor control,
keypad, LCD, and overall integration (main program). Each of these is discussed in detail in the
following subsections.

2.3.1 Combination Cracking

Three main steps are involved with cracking the combination. First, the last number of the
combination must be found. Every recent Master Locke has twelve notches in one of its cams.
The notches can be felt by pulling up on the latch of the lock while rotating the dial until it gets
stuck. Eleven of these notches are decoys and one corresponds to the last number in the
combination. Traditional methods of combination cracking rely on estimating which notches are
centered over which numbers on the dial. Of the twelve notches, seven of them are between
numbers in the dial, and four of the remaining notches have the same ones digit (e.g. 8, 18, 28,
38). The last number in the combination is the remaining number corresponding to the twelfth
notch. This method is rather imprecise and difficult to implement in code. Fortunately, through
experimentation we determined that the width of the real notch is slightly wider than that of the
decoys. Although average notch size varies from lock to lock, the real notches tend to be around
1.5 times as wide as the decoys. Although this is difficult to detect by hand, it is rather easy for
our device to take these measurements. The motor ‘feels’ where the 12 notches are around the
dial of the lock and measures each. The largest notch corresponds to the last number in the
combination.

Second, the first and second numbers in the combination are calculated. The first number
modulus 4 (firstNum%4) will be the same as the last number modulus 4 (lastNum%4), and the

second number plus 2, modulus 4 ((secondNum+2)%4) will be the same as the last number plus
2, modulus 4 ((lastNum+2)%4), so there are 10 possible numbers for each the first and second
numbers of the combination. These numbers were stored in two arrays of 10 char values each.
Third, the possible combinations are tried in a particular order to minimize the number of
rotations that need to be done to the dial. The combinations start with the smallest possible first
number. The initial second number is the first possibility to the right of (or larger than) the first
number. The combinations are tried in order from there. When done in this order, the first three
full rotations are not needed between combinations that differ only in the second number. After
the first number is entered, the dial is rotated to the second number and then the third number,
and if this combination is not successful, the dial is moved back to the next second number and
then the third number, and so on. Afier all of the second number possibilities are tried, the full
three rotations are done to initiate the set of combinations with a new first number. For example,

a possible sequence could be:
2-4-18
2-8-18
2-12-18
2-16-18
2-20-18
2-36-18
2-0-18
6-8-18
6-12-18

This methodology allows the system to move through the combinations much more quickly, and
allows lock to be cracked within five minutes or less.

The function findPossibleCombos () finds the possible first and second numbers in the
combination that correspond to the third number that is returned from the motor control code. It
determines the order in which the possible combinations should be tried and makes the
appropriate calls to the motor functions.

After trying the combinations, a message is displayed to the user indicating whether or
not the attempt to crack the lock was successful. This is done in crackCombination (). Ifit was
a successful crack, the message “cracked Combo:” is displayed with the correct combination.
Otherwise, if the system was unable to open the combination for any particular reason, the
message “Could not crack lock combo” is displayed to the user. Theoretically, the system
should always be able to find the combination of the lock unless a mechanical part of the system
fails, so this message would likely not be displayed. All of the code performing this
functionality can be found in Appendix E in the main. c source code.

2.3.2 Motor Control

Since the motor used is not a stepper motor, precise positional control must be obtained
through a feedback loop. The motor feedback is provided by the integrated optical encoder.
Pulse counting is done in hardware as described above. The motor control portion of the code
relies heavily on the real time interrupt service routine to perform most of the work. At regular
intervals, the position counter is read and the motor PWM is updated accordingly. All of the
motor control is contained in motor.h, which is listed in Appendix E.

The only restriction on the RTI period is that it must occur often enough so that the
positional register in the HCTL-2016 does not overflow. Since the 2-byte register is read as a

signed integer, and the direction of the motor is variable, the RTI must occur before 32768
encoder counts occur. At the maximum of 150 RPM with 82900 counts per revolution, the RTI
must occur at least once every 158 ms. We decided to run the RTI much more frequently (every
8.192 ms) for faster response and better control.

The motor speed itself is controlled by producing a pulse-width modulated signal. This is
done automatically by the 68HC12 by configuring the timer output compares accordingly.
TOCO is configured to set Port T pin 0 on each successful compare of Hi2Tco. Similarly,
TOC7 is configured to reset Port T pin 0 on each successful compare of Hi2Tc7. The first of
these registers is adjusted to adjust the duty cycle and the latter is permanently set to 0.

The RTI and PWM described above are initialized in a routine named MotorInit (), which
must be called early in the main program. This routine also initializes some global motor control
flags and sets the default state for the motor PWM and solenoid position. To make the code
more readable, many of the low level hardware commands have been encapsulated in macros.
Macros include setting motor direction, setting solenoid state, and reset the pulse width. Each
macro involves accesses a specific bit on one of the ports using masking. The
RESET PULSE_CNT () macro, for example, sets bit 1 of Port G low and then immediately high
again,; this creates the short low asserted pulse needed to reset the HCTL-2016 register.

After it is initialized, the RTI service routine occurs once every 8.192 ms. On each
occurrence, the change in position is read from the HCTL-2016 by accessing the bytes pointed to
by *pulsesHigh and *pulsesLow (addresses $2001 and $2003 respectively). The HCTL-2016
is then immediately reset. These two bytes are combined to form the signed integer that
represents the change in position since the last RTI. This is effectively the rotational velocity
measured in encoder counts per RTI (roughly revolutions per 679 seconds).

The absolute position of the motor is found by integrating rotational velocity over time. In
the discrete domain, this is done by taking the summation velocities at each time step. This
value would quickly overflow a 16-bit register after less than one full rotation. For this reason
we sum the velocities after dividing them by 16. With this method, up to ten revolutions can be
completed without overflow. At this resolution, there are still about 130 counts between each
number on the dial. Dividing by 16 provides an accurate enough representation of position while
allowing for multiple rotations without overflow. However, simply dividing by 16 introduces
error in the position count due to the truncation of the least significant nibble. The truncated
nibble must be stored as well, and added to the next velocity value before division. If this is not
done, a small amount of error will accumulate in opposite directions for clockwise and counter
clockwise rotations. The number of counts in one rotation is approximately 82900/16 = 5181
and is represented by the defined constant: ONE ROTATION.

After determining the current position and velocity, the error in velocity and position are
calculated. The error in velocity (actually the error in speed) is calculated as the difference
between the desired speed and the absolute value of the velocity. This value is multiplied by a
gain factor of 2. The error in position is calculated as the difference between the current position
and the target position.

The error in position is used to determine the desired velocity depending on the programs
current state. If the motor is not currently active (that is, it should not be moving), then the
desired velocity is O regardless of the error in position. It is assumed that the target position
value (and therefore positional error value) is only valid when the motor is active. When the
motor is active and feeling a notch, the desired velocity is always 200. However, when the
motor is active and moving to a new position, the desired velocity is directly related to the error

in position according to the simple velocity profile shown in Figure 1. In general, this means
that the motor spins at a relatively fast constant velocity when far (more than a half of a rotation)
from the goal. As it approaches the goal, velocity decreases linearly with distance to goal.

When it is within three numbers (27 degrees) of the goal, deceleration is even faster. The
velocity and deceleration values were determined experimentally to find a good balance between
speed and accuracy.

Velocity Profile
1800
1600 / V'S
1400
1200 /
1000

s /

oo /
400 /

200 -

Desired Velocity (Encoder Counts/8.192ms)

0 T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Error (Encoder Counts /16)

T T T T

Figure 1: Motor Velocity Profile

In each RTI, the motor PWM is updated according to the error in speed. The scaled error
factor is added to the current PWM value so that the motor continually adjusts its PWM to meet
the desired output speed. The advantage of this method is that it causes the device to perform
uniformly over differences in friction. Thus, a rusty old lock can be cracked as accurately and
quickly as a brand new lock. The motor will simple need to apply more torque to meet the needs
of the rusty lock. This property of the feedback system is exploited in the lock feeling process
discussed later.

To initiate a motor movement, the MotorMove () function is called. This function sets a
targets position and the direction of motion before enabling the motor by setting the
motorActive flag. This flag indicates that the motor is active and also indicates the commanded
direction: O for off, 1 for clockwise, and -1 for counter-clockwise. The calling code must then
wait for the flag to be cleared before making the next move.

The DoCombo () function makes use of the MotorMove () function to enter a three-number
combination. This function accepts the three combination numbers and then calculates the
corresponding motor positions. The absolute position is set back by three rotations so that the
motor will then move forward three rotations, clearing the lock, before entering the combination.
Due to the cyclical nature of the numbers on the dial, additional rotations are inserted depending

on the size of each number relative to its neighbors. After determining the absolute positions, the
dial is moved sequentially to each position using MotorMove (). While waiting for each motion
to complete, a while loop monitors the motorkill flag. This flag is set by a keypad interrupt
and indicates that the current combination should be aborted. If an abort is detected, the value 2
is returned. Otherwise, this function returns the value of openLock ().

The NextCombo () function is similar to the Docombo () function but enters only the last
two numbers in a combination. This is useful for when trying multiple combinations in a row
when each combination has a common first number. If done correctly, the last two numbers can
be entered without disturbing the first.

The openlLock () function activates the solenoid for a short time while monitoring the
status of the success test switch. If the switch is triggered, then the lock was opened and the
function returns a 1. If not, the solenoid is deactivated, releasing the latch, and the function
returns a 0.

The GetLastNum () function is used to feel the notches in the lock and determine the last
number. As described in Section 2.3.1, the motor must measure the width of each of the twelve
notches in the lock. A for-loop with twelve iterations is used to accomplish this. Each iteration
involves measuring one notch and storing its width and value only if wider than the current
widest notch. The motor is then moved approximately one twelfth of a rotation so that the next
notch can be felt. When all twelve notches have been measured, the dial is moved back to zero
and the last number is returned. As in the combination entering procedures, a motorKill signal
causes the routine to end prematurely. In this case, 40 (the first invalid value) is returned.

The FeelNotch () function is used to actually take measurements on the current notch.
First, the solenoid is activated. Then, the motor moved left once and right once to stick the dial
in one of the notches (if not there already). As mentioned earlier, feeling exploits the fact the
motor PWM is continually adjusted to meet the desired speed. If the dial is stuck, the motor
torque will increase until it causes movement or it reaches its maximum. During “feeling” a low
desired velocity and high torque threshold (PWM value limit) are set. The motor attempts to
move until reaching this threshold. Two more of these “feeling” motions are performed in each
direction. The motor position is stored in an array after each motion. The width is calculated as
the difference between the average left and right side measurements. The dial number is
determined by averaging all measurements and converting back to dial coordinates. These
results are returned to GetLastNum () via pointers passed into the function.

If any of these function are aborted by the users, the calling program is responsible for
detecting the failure return value and then calling MoveTozero (). This function moves the dial
back to zero and then clears the motorkill flag.

2.3.3 Keypad

In order to get the Greyhill series 96 4x4 keypad to interface with the rest of the system, a
header file was written containing the Key Wakeup Interrupt initialization routine and Interrupt
Service Routine.

The keypad itself was connected to the microcontroller with the Key Wakeup Interrupt of
Port J to allow the keypad to operate on an interrupt-based method. In the keypad, as shown in
Figure 4, there were 8 pins connected, where 4 were used for the row select and 4 were used for
the column select. The 4 row select pins were connected to the 4 higher bits of Port J (bits 4-7),
which were configured as output bits that were normally held low. When a button was pressed,
one of the column select pins was then pulled low, triggering the Key Wakeup Interrupt. The

10

Key Wakeup Interrupt had to then determine which row was activated and return the correct
character for that button.

In the header file, the function initKeyWakeupInterrupt () was written for the
initialization for the Key Wakeup Interrupt. This function mapped the ISR (keyWakeupISRr) to
PortJKey. Various settings were then set for Port J to accomplish the following: detect falling
edges with Port J, select pull-ups for Port J, enable pull-ups, enable bits 0-3 (column selects) for
generating interrupts, set up row select bits (4-7) for output, and write lows (0’s) to row select
bits in Port J. This was all accomplished in the code in Appendix E with the keypad.h source
code.

The second function of the header file was the Interrupt Service Routine, called
keyWakeupISR(). First, the state of the Key Wakeup Flags (contents of register H12KWIFJ) was
saved. The values of the 4 low order bits on Port J were then isolated by using the following

line, which provides a mask for the lower 4 bits with the 0xOF:
lowOrderBits = keyWakeupFlags & OxOF;

Next, the ISR parsed through the different rows to determine which key was pressed. To
do this, a high value was first written to row 1 (_ H12PORTJ = 0x10), and the lower 4 bits were
checked. Then, each consequent row was then checked (up to and including row 4). If the row
written to was the row in which the button was pressed, the value on the low bits of Port J would
be 1111. If this were the case, the function determineKey () checked the previously saved 4
low bit values to see which column the key was pressed in. If a key of column 1 was originally
selected, the low bits would read 0x1. If column 2 was the selected column, the saved low bits
would have a value of 0x2. If column 3 was selected, low bits would be 0x4. Also, if column 4
was selected, the low bits would be 0x8.

The determineKey () function then determined the value corresponding to the row and
column of the key pressed. For example, if the row pressed was 1 and the column was 1, the key
pressed was ‘D’. If the column was 2, the key pressed was ‘#’, if the column was 3, the key
pressed was a ‘0’, and if the column was 4, the key pressed was a ‘*’. In the next row (if the
button was pressed in row 2), if the column was 1, the key pressed was ‘C’, if the column was 2,
the key pressed was ‘9, etc. The value of the key was saved as a global variable so that the
value could also be accessed from within the main program including the header file.

The key ‘*’ was also used as a global exit of the system. In other words, when this key
was pressed, two additional flags were set. The flag exitstate was setto a 1 to indicate that the
program was in a state to exit. Also, the flag motorkill was set to a 1 to stop the motor in any
function it is executing and return to the zero notch on the dial.

After the determination was made of which key was pressed, the output bits of Port J
were all reset to low outputs (the 4 high bits were set to low). The function waited until the key
was released (which caused the lower 4 bits of H12pPoRTJ to be 1111), and then the Key
Wakeup Flags were cleared by writing a 1 to the bit in the flag register that corresponded to the
interrupt that was processed. This was done by writing the value of H12kwIFJ back to itself,
such as with the following: H12KWIFJ= H12KWIFJ; // Clear the flag

The value OXFF was not simply written to the H12KwIFJ register, since more than one
interrupt may have set the flags and would then be lost because they were not processed yet by
other ISRs, and it is better practice to clear only the bit of the interrupt the ISR specifically
handles.

In order to utilize the header file for the keypad with the rest of the system, the
initKeyWakeupInterrupt () function was called to initialize the Key Wakeup Interrupt, and the

11

keyPressed variable was set to be ‘Z’ initially (this value cannot be achieved using the keypad
as its values currently stand). The user was prompted for input to be entered entirely with the

keypad by using the following type of code:
// loop until a key is pressed on keypad
while (keyPressed == 'Z') ({}
selection = keyPressed;
keyPressed = 'Z';

Multiple digit numbers were entered by checking each digit entered by the user and
keeping a running total of the values. As a new digit was entered, the previous value was
multiplied by 10 and then the new digit was added to this value. This continued until some other
key was pressed other than a digit from 0 to 9. The code to accomplish this can be found in
Appendix E.

234 LCD

The microprocessor communicated with the LCD panel using functions written in a lab-
provided header file. These functions were called from the main.c source code to display various
messages to the user. First, the LCD screen had to be initialized, the address had to be set to

zero, and the display and cursor were turned on by calling the following, respectively:
OpenXLCD (0x3F) ;
WriteCmdXLCD (0x80);
WriteCmdXLCD (0x0C) ;

Two functions were also written in main.c to simplify calls to print messages to the LCD
screen. These two functions are called clearDisplayAndPrint (char *str) and
clearDisplayAndPrint2 (char *strl, char *str2). The first of these two functions prints
a message on a single line, whereas the second of these functions outputs a two-line message on
the LCD screen. For single characters, the function writeChar (char cursorlLoc, char c)
was written to easily specify a particular character to be written at a given cursor location on the
LCD screen. Also, in order to output a given combination that the system was using to try to
open the lock, the function outputCombination () was written, which also provided the
formatting for the combination. These functions can be found in Appendix E in the main.c
source code.

2.3.5 Main Program

The code which integrates the code for the motor control, the LCD, and the keypad can be
found in the main.c source code found in Appendix E. The user control of the system was based
on menu options and selections. The selection the user made through the keypad determined the
function performed by the motor.

When the system is first started, the user is presented with the opening message
“Welcome to the UnLock Helper” and is informed that the key ‘*’ can be used at any time while
running the system to exit and return to the main menu. Views of the LCD screen displaying
these messages can be viewed in Appendix B Figure 14. The main menu is displayed giving two
options:

[A] Enter combo

[B] Crack it

If the option was selected to enter a combination, the user would be prompted to enter the
three numbers of the combination:

12

Enter combo:

After each two-digit number was entered, the value would be verified to be in the acceptable
range of 0 to 39. If the number entered by the user was outside of this range, an error message

would be output to the LCD screen indicating this:
Number entered
must be 0 to 39!

and the cursor would be returned to the starting digit of that number in the combination.

Backspace functionality was added to allow the user to erase a previous digit entered or
delete a previously entered number of the combination and reenter it by pressing the ‘A’ key.
During this time that the user is prompted for the combination, only the digits ‘0’-‘9’, ‘A’ (for
backspace), and ‘*’ (to exit and return to the main menu) are allowed to be entered. This
constraint is established by iterating through a while loop until the user has entered valid key.
This code can be viewed in Appendix E in the inputDigit (char, char, char) function,
which takes in the cursor location, which number is being input, and which digit of the number
will be entered next. This allows the individual digits of the combination to be tracked.

The function inputNumber (char, char, char) combines the two digits entered to
represent a number and converts them into a decimal value. When the second digit is entered,
the first converted number is multiplied by 10 and added to the second converted number in
order to achieve this.

Once the combination is retrieved from the user, the motor is repositioned to zero and the
combination is tried by calling the function DoCombo (char, char, char). If the function
returns a 0, the lock has not been opened and an appropriate message (“Could not open...”) is
displayed with the unsuccessful combination. If the lock has been opened successfully, the
function will return a 1, indicating that the proper combination was entered, and a message is
output to the user: “opened Lock:” with the combination displayed.

From this, the main menu is then displayed and the user makes the selection to either
enter a combination or crack the lock. In the case where the user enters a ‘B’ at the main menu,
the system will attempt to find the combination by trying 100 combinations (as opposed to all of
the possible combinations) until the lock opens. Refer to Section 2.3.1.

3 Resiuults

The Master Lock Combination Cracker overall successfully accomplishes all of the original
goals set for the system: to open a Master Lock given a combination from the user and to crack
the lock by finding the combination independently. Three different Master Locks were used to
test the system, including an older lock and two newer locks, whose combinations were 1-3-25,
2-28-18, and 30-0-22, respectively. The system was consistently able to open the locks given
the appropriate combination.

Also, the combination-cracking functionality was tested on each of the locks. The entire
combination cracking process was timed at approximately 4 minutes and 40 seconds. This is
time required to feel the notches are try all 100 remaining combinations. The feeling process
takes about 40 seconds and combination testing takes about 4 minutes. This maximum run time
is independent of the particular lock in use. On average the run time is expected to be about 2
minutes and 40 seconds assuming equal distribution of combinations over all locks.

For the locks with the combinations 1-3-25 and 2-28-18, the system was able to easily find
the combinations and open the locks very quickly since the combinations start with low numbers.

13

In fact, one of the locks was opened on the first attempt resulting in a 45 second total run time.
The final lock took considerably more time to crack (around 4 minutes). We noticed that the
success rate for cracking this lock was not as high. We had no failures attempting to find the last
digit in any of the locks. We also had no failures in attempting to crack the first two locks.
However, failure occurred when attempted to crack the final lock. The reason for this failure is
not entirely certain. It could have been due to an accumulation of positional error due to slippage
in the dial socket. It also could have been due to overheating of the solenoid causing a reduction
in the pull force. Finally, the code could contain a bug which causes this particular combination
to be entered incorrectly. More testing would be required to determine exactly what the cause of
this problem was, but we ran out of time.

In one respect, the system proved to be more robust than we had originally planned for. We
had designed the system such that the dial must be initial placed at the zero location as a point of
reference. It turns out that our code will crack the lock regardless of the initial position.
However, each digit in the returned combination is shifted off by the amount of the initial error.
We were able to crack our third lock by starting at a different location such that the combination
was found in less time.

By using the algorithm for finding the possible combinations based on the knowledge of the
last number in the combination, possible combinations are brought down from 64,000 possible
combinations to only 100 combinations. The average number of combinations that need to be
tried by the device to crack any given lock is E[x]=50, where x = 1..100. Given that trying the
possible one hundred combinations takes four minutes, each combination on average takes
approximately (4 min)(60 sec/min)/100 combinations = 2.4 seconds per combination. If the
device had to go through all 64,000 possible combinations, the system would have to run for
2560 minutes, or more than 42 hours! This time would be far worse if combinations were not
tried in the ideal order and the lock was cleared between each combination. The Combination
Cracker reduces the total time it would take to run through all possible combinations by a factor
of 640, and thus implements a much more efficient code-cracking algorithm.

4 Discussion

All of the initial expectations and goals for the Master Locke Combination Cracker were
met by the target date of the end of the semester of Fall 2002. The desired functionality for the
device and system was implemented completely, and the system runs reliably with most locks.
Given more time and resources, a smaller, more portable device would have been developed
which provides the same features as the prototype that was actually built. A smaller, cordless
apparatus would be more easily usable for this application, since in most cases the lock would be
attached to the object it was locking at the time. Also, with an extended timeline, more testing
would be done to verify that the dial socket that attached to the motor to the lock was secure
enough. Slight inaccuracies in the motor rotating the dial were likely due to the fact that there
was slippage in the connection with the socket. If more resources were available, other
lightweight, tighter-fitting options for the socket would have been tested with the other
components of the device. However, given the time and supply constraints on the project, the
resulting system that was developed and implemented as a Combination Cracker was highly
satisfactory and sufficiently performed all of the desired features to open and crack a Master
Locke. The project proved to be challenging and educational, and overall it was an excellent
learning experience for the integration of all elements of microprocessor systems.

14

5 References

Master Lock “Master Lock: Lost Combination FAQ's.” 2002. 8 Dec. 2002
<http://www.masterlock.com/general/fags lostcom.shtml>.

Rosenberg, Lee. “ECSE-4790 Microprocessor Systems: Motorola 68HC12 User’s Manual”. Rev.
1.1, 10 Aug. 2000.

6 Bibliography

Hillson, Nathan. “Master Lock Combination Cracking.” 19 June 2000. 8 Dec. 2002
<http://www.people.fas.harvard.edu/~hillson/master_lock.html>.

MicroMo Electronics, <http.//www.micromo.com>

All Electronics Corporation, <http://www.allelectronics.com>

Jameco Electronics, <http://www.jameco.com>

Allied Electronics, <http://www.alliedelec.com>

Deltrol Corportation <http://www.deltrol.com>

15

Appendix A: Electrical Schematics

GaHCZ Poris

U8 pin 13
U9 pin 16
J9 pin 55
J8 pin 15

. J9pin4
J9pin3
JIpinbG
. J9pins

1 J9pin 13

§J8 pin 34
J8 pin 60

J8 pin 16

U8 pin 30
J8 pin29
J8 pin 32
;.J8 pin 31
J8 pin34
U8 pin33
J8 pin 36
U8 pin 35

.
Oriv

er Board Connector

P62 > —X>SOLEN
PF3 A XKITEST |
PTODC POMOT PWM |
PGO > SOMOTDR
Address Decoding
PA7 |Z>——{ >0— KReHB
e >c XcH A
Pas PO—A+— |
CTHOOND
Pa4 >o—|— +5v L]
PF4 D> T DO
L; o vaar? oy A
CLK D1
P 43 SEL % D2 1; D&
d OE D3
PB1) 9% ﬁ EHERGT
PG1®————| flcHe & 0511—-@\\\
lcHa = pgll0_D6

J,__& Vss o D7 Lﬂh
PD7 <Z|——D'!'-\ 1
PD6 @—ﬂ\
PDS @——Di\
PD4 <Z|——DE‘-\
PD3 G232
PD2 @—ﬂ\
PD1 <Z|——Di\
PDO @——DU—\

Figure 2: Protoboard Circuitry - Metor Control

16

T Y

MOT DIR

Protonnard Connestor s W e e
» +
MOT PYWM B>— {>¢ D Motor +
| 1112EN veel
. | 211A aa +5V <X]Channel B

ﬁ‘olﬂaﬁ_b
!
—D

31y~ 4Y
GND GND Vee
ke Eov e
g2y o vl <X]Channel A
FAPYN 3A 10

=

8ilvec2 34EN

PO GND
CHB X P<Motor -

CHA K-

iél
-

sy _[T +12v Scienoic Cornector
+! -

A 2|12 19 | T |

, _(}_ly L_<X>SOL+ %
e ; N (SHSOL- E

i |

. SOLEN[> {>c 6) o ey]
°=

’ 1 1= Tel e

TEST<K O+
GND ®j :‘@SW i }

Figure 3: Driver Board Circuitry

17

ot

BB R BB]G] o |Nfo fo]

20
31

33

35

BREBRIBIEBBEE]

+5Y
12kOhm
>
Mcu 12kOhm Mmcu
Connector VVV Connector
8 8
VSSEX1 wDDEX1 £ U pie PJ7 4
P28 PA7 B 21 psa (X -
PAG PAS b 1 Y3 PI3 P
PA2 PA3 B_ 7] rao P B
PAD PA1 10, 8 vssexn vpDEXD [12
PF8 NC 12 11 poa Pes |12
PF4 PF6 14 131 po2 P63 &
PF2 PF3 o3 151 Peo PG
PFO PF1 A 174 vssi VODI
VESAD VDDAD PO 194 BKkeD NC
PADG PAD7 B2 21} Pco pPC7
PAD4 PADS P4 23] pca PCS
PAD2 PAD3 |8 25] pe2 PC3
PADO PAD1 be 27} Pco PC1
VRL VRH o 29] Pp6 PD7
PHE PH? B2 31] Ppa PDS
PHY PH5 4 33] PD2 PD3
PH2 PH3 b8 351 PDO PD1
PHO PH1 bs 37] PeS PE7
VSSEX2 VDDEX2 | 39] PEG PES
Pse PS7 12 41] PE2 PE3
52 PS5 ha 43| PEO PE1
PS2 PS3 hg a5 | NC NC
PSO P51 m 47| RESET* XFC
PT8 PT7 Eo 4g] vssPLL VCCPLL
P14 PTS - 51] XTAL EXTAL
PT2 PT3 E% _f,; PBO PB?
PTO PT1 kS 55| PBa PBS
vss VoD E gz PB2 PBE3
vss voo By 59 PBO PB1
+5v
o fud o B =1 PR P 1S OLIQVCOIN"I =
2223532
o
s g é S
w 3
o
16x2 LCD & Controller

Figure 4: LCD and Keypad Circuitry

18

Appendix B: Images

Figure 5: Multiple Views of Prototype

19

7404 1KO NPN
Hex inverters Resistor Transistor

:;Protoboard
Connector

- e
] B

w “‘ o™ -* -‘

" Power
. Connector

L ——rr e .
Motor Driver Connector Connector Relay

Figure 6: Driver Board Layout

Protoboard to 10-Pin 10-Pin
Ribbon Cable Adaptor Ribbon Cable

Figure 7: Ribbon Cable and Protoboard Adaptor

20

Bottom: Opened

Bottom: Closed

Side: Closed

L!j e Contacts Switch Lever

Figure 8: Multiple Views of Solenoid Plunger

- Dial
Motor Gearhead Socket

B

 Tightening

Mounting Bracket — /48 _
Wires

Figure 9: Motor Assembly

21

force in ounces (nominal}

Success
Test Switch

Lock Arm

Figure 10: Solenoid Assembly

DC INTERMITTENT DUTY - 48 WATTS

280 T T ! ! ! T
FORCE ® 25° C, 100% VOLTAGE
. HOLDING FORCE =211 0Z, |
[~ _FORCE @ 25° C, 80% VOLTAGE
HOLDING FORCE = 191 OZ.
200 FORCE @ 105° C, 100% VOLTAGE-
/ HOLOING FORCE = 188 OZ.
A——FORCE @ 105* C, 80% VOLTAGE
160 HOLDING FORCE = 173 02. 5
120
S~ b
80
— \\
. S===
0 2 i 6 8 1.0

stroke in inches

Figure 11: Solenoid Force Curves

22

Unless Otherwise Specified:
Inches £ .015
.562 T T T
!39.67: B {Millimaters} + 38
#,002
L —p.500
iy PLUNGER
828
L_ Ene.fn _"! .
o -28 TAP — +.010 004
alz?z“'rug? HOLES < Lol - 156 AT ga‘ar.«a.m
i 2 09) {2) HOLES
/ 13.561 r .L.._
r 1/ ! B
‘ +.030 1 | - | ook | E | 1
T e ' 1,750 2,020
I Tl | x.78 1.406
l 2% .38] JJ {4, 435) E ‘ u:_y;‘l.
] a0 1 I
- R .- el
L ' ' | T—~—a8-32 UNC-2B
(25,401 : £ © -+ (4] MTG. HOLE
o . 005 r
%, 13 g oo _l. |
i t12.7
12.00 NOMINAL
-,n;.nl L__ [ﬁg}
| L___"_v_ +.008
.781 L .o1a 938 .
(19.84) t23.221 (2t bot

STANDARD POWER RATINGS:

Figure 12: Solenoid Specifications

23

TAP
S

Figure 13: Forces Asserted

24

2 gt Bead o S

R gps e

Welcome Screen #1 Welcome Screen #2

Liggsaspcrcts

Welcome Screen #3 Main Menu

BAREE s oE et

Attempting to Open Lock

Lidifcsosrrrris

Cracking Lock

Figure 14: LCD Screenshots

o)

and Keypad

Figure 15: Protoboard, LCD,

Figure 16: Protoboard

26

Figure 17: Overall System

27

Appendix C: Flowcharts and Block Diagrams

Save the state
-ofthe Key
Wakeup Flags
{_H1ZKWIFJ)

Getthe value of
the 4 low order
bits of Port J

Write highto
. rown=1.

Are low ordel
. bits of PartJ
11112

Yes
No

Wirite highto
rowns= 2,

_ Set
motorkili=1.

Wait for

keyio be
\ feleased

Clear flag:
TH1ZKWIF
= H1Z2IK0WIES

Dretermine
- key

Wite high to
rown=3.

pressed in
oW .

Write high to
N rown= 4.

Figure 18: Keypad Flowchart

28

‘iUNU 158] pue

'winy 3sif) ueyl JeyBiy

WNY pUoIRs Ise|jEWws
‘winu 351l 3 ssed

. PuE (Joquiejog (B

® wnu sejpue
- 'mbusnbas Ul wnu
pUOSSS B "WnU
wapussedpue
Qoquionxay (|BD

" (T phwnNsE =
7+ b3 WNNPUCIES)
sanyjiqissod Jaquinu
pUO2BS [IE pULj

(prwinN1sE]
=p%, WNNISi)
sanyiqissod
Jaquinu
151y g puid

cSE_.__nEoo
U Jaguinu

1s8] bujpui)
51 WSS ey

sbessaw Apjdsin

afessaw
sjeudoidde
fiefdsig

§* uoneuiquios
uj ssed puE

Qoquiogog
5]

EpliEa
UolEuIguos
4o [ulssquiny 5

| =Ulas
‘UOIEUIqUICS
40} Jesn Jditory

S3A

&8,
_pessaid sy 5|

3

(3pos Horlo
10 BpoY J83s o
uopoBRs Jale 0]
Jasn Jdwioud Ay

sopdsyorq Apdsig

Aey e [Bq00
5 sBessyy
SLI00=AN,
Arjdsig

Figure 19: Main Program Flowchart

29

i

Generate ' | Rotate to a series of
velocity profile | three positions and then

1 to reach flesired] attempt to open the lock. |
! position S

controller for | | Generate PWM

position and [=# and rotation | | Check for| | ctivate |
velocity | | directionbit | | Success Solenoid .

8 bits 2 bits 1 bit 1 bit
Input Output Input Output
Solenoid
Quadrature ‘ Driver
Docodoe Motor
/Counter Driver e v
G &= Solenoid

Encoder 4—&.1_'-—-——-9 Gearhead

Figure 20: System Block Diagram

30

Appendix D: Parts List

solenoid with the padlock

No. | Part Name Source Unit Price

1 68HC812A4 w/ EVB Borrow from the MPS Lab NA

2 PC w/ Introl Compiler Borrow from the MPS Lab NA

3 Protoboard Borrow from the MPS Lab NA

4 12VDC motor w/ attached Donated by MicroMo Electronics, Inc. | NA
gearhead & encoder

5 12VDC 48W push-type All Electronics $4.50
solenoid

6 2 — SN754410NE Allied Electronics $3.70
motor/solenoid drivers IC

7 HCTL-2016 quadrature decoder | Allied Electronics $16.45
counter IC

8 LCD and keypad unit Borrow from the MPS Lab NA

9 Master Locks Purchased from Wal-Mart $3.99
Various mechanical parts for Jameco Electronics, Home Depot, etc. | >$10.00

10 | interfacing the motor and

Table 3: Parts List

31

Source Code for main.c

Appendix E: Source Code Listings

Source Code for main.c

// main.c
// Integrating code for the motor control, lcd, and keypad

#include <hc8l12a4.h>
#include <introl.h>
#include <dbugl2.h>
#include <lcdl2.h>
#include <keypad.h>

#define CURSOR_CHAR OxFF
#define BLANK CHAR 0x20
#define BACKSPACE CHAR ‘A’
#define EXITFUNC CHAR '*'

// Function prototypes

void
void
void
char
void
void
char
char

initialize(void):
printWelcome (void);
promptUser (void);
displayOptions (void);
getCombination(void);
crackCombination(void);
findPossibleCombos (void);
tryCombination(char numl,

char num2, char num3, char firstTry);

int inputNumber (char cursorlLoc, char n, char hasFirstDigit);

char
void
void
void
void
void

void

inputDigit (char cursorLoc
writeChar (char cursorLoc,
outputCombination();
clearDisplayAndPrint (char
clearDisplayAndPrint2(cha
delay(void);

exitProgram(void);

// Global variables

char
char

number[3];
charCombo [3][2];

//bool validCombo;

, char nOfCombo, char nOfNumber) ;
char c);

*str);
r *strl, char *str2);

// Menu options/prompting messages

char
char

char
char
char

welcomeMessage[2][16] = {
promptForType[4][16] = {"
idBackspace[2] [16] = {"Pr
idAbort[2] [16] = {"To qui
promptForCombo[2] [16] = {

// Status messages

char
char
char
char
char
char

tryingCombo([1] [16] = {"Tr
findingLastNum([2] [16] = {
successfulOpen[1][16] = {
unsuccessfulOpen[1l] [16] =
successfulCrack[1l] [16] =
unsuccessfulCrack([2][16]

// Error messages
outOfRange[2][16] = {"Number entered", "must be 0 to 391"},

char
char
char

void
{
//

invalidNumber[2][16] = {"
invalidSelection[2][16] =

__main{()

Initialize hardware

initialize();

"Welcome to the ","UnLock Helper!"};
Enter letter of"™, "your selection:",
[A] Enter combo", "[B] Crack it"};
ess 'A' to", "backspace."}:

t at any", "time, press TR mi;
"Enter combo:", " - - "}:

ying combo..."};
"Finding third", "number in combo"};
"Opened Lock:"};
{"Could not open:"};
{"Cracked Combo:"};
= {"Could not crack", "lock combo."};

Invalid number®™, "entered."};
{"Sorry, that is", "not an option."};

32

Source Code for main.c

// Print welcome message
printWelcome();

// Infinite loop

while(1)

{
exitState = 0;
keyPressed = 'Z';
promptUser();

}

}

// Initializes registers and global variables
void initialize(void)
{

// Motor initializations

_H12DDRG = OxFF;

MotorInit();

// Initialize the LCD screen
OpenXLCD(0x3F) ;

// Set address to 0
WriteCmdXLCD(0x80);

// Turn on display and cursor
WriteCmdXLCD(0x0C);

// Initialize the key wakeup interrupt
initKeyWakeupInterrupt();

// Initialize the keyPressed variable (global variable in keypad.h)
keyPressed = 'Z';

// Initialize the exitState (global var in keypad.h) to O (not exiting)
exitState = 0;
}

// Output welcome message
void printWelcome (void)

{
// Display welcome message
clearDisplayAndPrint2(welcomeMessage[0], welcomeMessage(l]);

// Delay
delay():

// Display abort key
clearDisplayAndPrint2(idAbort[0], idAbort([1l]);

// Delay
delay();
}

// Function that prompts user for input
void promptUser (void)
{
int digit = 0O;
int selection = 0;
char openedLock = 0;
// Get selection from user
selection = displayOptions{();

// Check exit state (to return to the menu options again)
if (exitState == 1)
{

return;

}

// Check if selection made was for entering a combination

33

Source Code for main.c

if (selection == 'A')
{
getCombination();
if (exitState == 1)
{
return;
}
RESET_POS();
openedlLock = tryCombination(number[0], number(l], number([2], 1);
if (openedLock == 0)
{
clearDisplayAndPrint (unsuccessfulOpen[0]);
outputCombination();
delay();
}
}

// Check if selection made was for cracking the combination
else if (selection == 'B')
{

crackCombination();

}
// User entered invalid selection.
else

{
// Display error message
clearDisplayAndPrint2(invalidSelection[0], invalidSelection([1]):
delay():

}

// Check exit state (to return to the menu options again)
if (exitState == 1)
{

return;
}
}

// Function that displays the options for the user to select from
char displayOptions(void)
{

char selection = '0';

// Prompting message
clearDisplayAndPrint2 (promptForType[0], promptForTypell]);

// Pause while message is displayed
delay();

// Display choices
clearDisplayAndPrint2 (promptForType([2], promptForType[3]):

// Loop until a key is pressed on keypad

keyPressed = 'Z';

while (keyPressed == '2') {}
selection = keyPressed;
keyPressed = 'Z°';

return selection;

}

// Get the combination from the user
void getCombination(void)
{
char i, j;
int inputStatus = 0;
char cursorLoc = 0xCO;
char templLoc;
char hasFirstDigit = 0; // whether backspace was used to get to previous number in combo

// Prompt for combination

clearDisplayAndPrint2(idBackspace[0], idBackspace[l]);
delay()-

34

Source Code for main.c

clearDisplayAndPrint2 (promptForCombo[0], promptForCombo[l]);
i= 0;
while (i < 3)
{
if (inputStatus > -1)
{

charCombo[i] [0] = '
charCombo[i] [1]
number(i] = 0;

|
-
- -
~ e

}
inputStatus = inputNumber (cursorLoc, i, hasFirstDigit);

// Check exit state (to return to the menu options again)
if (exitState == 1)
{

return;

}

hasFirstDigit = 0;

if (inputStatus == -1)
{
if (1 > 0)
{
--i;
hasFirstDigit = 1;
cursorLoc -= 0x03;
}
}
else if (inputStatus == 1)

{

// verify that number is within the range
while (((number[i] < 0) || (number[i] > 39)) && (inputStatus > -1))
{

// Print out-of-range error message

clearDisplayAndPrint2 (outOfRange([0], outOfRange[l]);

delayl();
clearDisplayAndPrint2 (promptForCombo[0], promptForCombo([l]);

// Output the valid numbers read from user
tempLoc = 0xCO;
for (j = 0; j < i; J++)
{
SetDDRamAddr (tempLoc) ;
WriteDataXLCD(charCombo[j][0]):
WriteDataXLCD(charCombo[]j][1]1):
tempLoc += 0x03;

}

// Input the number from the user
charCombo[i] [0] = " ';
charCombo[i] [1] = " ';

number[i] = 0;

inputStatus = inputNumber (cursorLoc, i, hasFirstDigit);

// Check exit state (to return to the menu options again)
if (exitState == 1)
{
return;
}
}

if (inputStatus == 1)
{

++i;

cursorLoc += 0x03;

35

Source Code for main.c

1
// Crack the combination of the lock
void crackCombination{void)
{
char foundCombo = findPossibleCombos():

// Check exit state (to return to the menu options again)
if (exitState == 1)
{

return;

}

if (foundCombo == 0)
{
// failure
clearDisplayAndPrintZ(unsuccessfulCrack[O], unsuccessfulCrack([1l]);

}

if (foundCombo == 1)

{
// success
clearDisplayAndPrint (successfulCrack(0]);
outputCombination();

}

delay():
}

// Find the possible combinations
char findPossibleCombos (void)
{
char possiblelstNums[10];
char possible2ndNums([10];
char lastNum, lastNumMod4, lastNumMod4_2;
char doDoCombo = 1;
char successful = 0;
char i, j, k, num2Index;

// initialize variables:

// find third number

clearDisplayAndPrint2 (findingLastNum[0], findingLastNum[1]);
lastNum = GetLastNum();

if (lastNum == 40)
{
MoveToZero();
return O;

}

lastNumMod4

= lastNum%4;
lastNumModd4_2 =

(lastNumMod4 >= 2) ? lastNumMod4-2 : lastNumMod4+2;

// Reset the program
RESET POS();

// find the possible lst and 2nd numbers in the combination
for (i = 0; 1 < 10; ++i)
{
possiblelstNums[i] i*4 + lastNumMod4;
possible2ndNums[i] = i*4 + lastNumMod4_2;

}

// try the combinations
for (i = 0; i < 10; ++i)
{

[

doDoCombo
num2Index

1;
(lastNumModd4 2 > lastNumMod4) 2 i : ((i == 9) 2 0 : i+l);

for (j = 0; j < 10; ++3)
{

36

Source Code for main.c

number [0] possiblelstNums[i];
number([1] possible2ndNums [num2Index];
number[2] = lastNum;

for (k = 0; k < 3; ++k)

{
charCombo [k] [0] ((number[k] - (number(k] % 10))/10) + '0';
charCombo [k] [1] = (number([k] % 10) + '0';

}

successful = tryCombination(possiblelstNums[i], possible2ndNums [num2Index],
lastNum, doDoCombo);

// Check exit state (to return to the menu options again)
if (exitState == 1)
{

return 0;

}

doDoCombo = 0;
if (successful == 1)
{
return 1;
}

num2Index = (num2Index == 9) ? 0 : num2Index + 1;

}

return O;

}

// Attempts to open the Master Lock with a given combination (numl, num2, num3)
char tryCombination({char numl, char num2, char num3, char firstTry)
{

char openedLock = 0;

DBl2->printf ("%d\rCombo: %d-%d-%d\n\r", numl, num2, num3) ;

// Call function to have motor try a combination

clearDisplayAndPrint (tryingCombo[0]);

outputCombination():

// try combo differently if first try of first number
if (firstTry == 1)

openedLock = DoCombo (numl, num2, num3) ;
else

openedLock = NextCombo (num2, num3) ;

// Check exit state (to return to the menu options again)
if (exitState == || openedLock == 2)
{

MoveToZero();

return openedLock;

}

if (openedLock == 1)

{
clearDisplayAndPrint (successfulOpen[0]);
outputCombination();
delay():

}

return openedLock;

}

// Inputs a number from the user
// (hasFirstDigit is used to indicate if the backspace was used to return to the second
// digit of a previous number in the combination)
int inputNumber{char cursorLoc, char n, char hasFirstDigit)
{
char digit;
char gotFirst = hasFirstDigit;
char gotSecond = 0;

37

Source Code for main.c

number[n] = (hasFirstDigit == 0) 2 0 : charCombo[n][0] - '0';

while (gotSecond == 0)

{
// Input first digit of number
if (gotFirst == 0)
{

digit = inputDigit(cursorLoc, n, 0);

// Check exit state (to return to the menu options again)
if (exitState == 1)
{

return O;

}

if (digit == BACKSPACE_CHAR)

{
writeChar (cursorLoc, BLANK CHAR);
return -1;

}

number([n] = digit;

gotFirst = 1;

}

// Input second digit of number
if (gotFirst == 1)
{
++cursorLoc;
digit = inputDigit(cursorlLoc, n, 1);
// Check exit state (to return to the menu options again)
if (exitState == 1)
{
return O;

}

if (digit == BACKSPACE_CHAR)
{
writeChar (cursorLoc, BLANK CHAR);

-—-cursorlLoc;
gotFirst = 0;
continue;

}
number [n] (number[n] * 10) + digit;
gotSecond = 1;

I

}

return 1;

}

// Inputs one digit
char inputDigit(char cursorLoc, char nOfCombo, char nOfDigit)
{

char digit;

char validDigit = 0O;

while (validDigit == 0)

{
// Place the cursor in its proper place
writeChar (cursorLoc, CURSOR_CHAR):;

// Loop until a key is pressed on keypad
keyPressed = 'Z';

while (keyPressed == 'Z') {}

digit = keyPressed;

keyPressed = 'Z';

// Check exit state (to return to the menu options again)

if (exitState == 1)
{

38

Source Code for main.c

return 0O;

}

if ((digit >= '0') && (digit <= '9"))

{
charCombo [nOfCombo] [nOfDigit] = digit;
validDigit = 1;

}

// Backspace
if (digit == BACKSPACE_CHAR)
{

return (BACKSPACE_CHAR};

}

// If valid digit was entered, output on LCD screen
if (validDigit == 1)
{
SetDDRamAddr (cursorLoc) ;
WriteDataXLCD{digit);
}
}

return (digit - '0'");
}

// Writes a given character at a given location on the LCD screen
void writeChar(char cursorLoc, char c)

{
SetDDRamAddr (cursorLoc) ;

WriteDataXLCD(c);
}

// Outputs the combination in format (##, ##, ##) to LCD screen
void outputCombination{()

{

int 1i;
int place = 1;
char comboFormatted[16] = ™(##, ##, ##) ";

for (i = 0; 1 < 3; i++)

{
comboFormatted[place] = charCombo[i] [0];
placet++;
comboFormatted[place] = charCombo([i][1]:
place += 3;

}

// Write combination used on second line of LCD screen
WriteCmdXLCD(0xCO);
WriteBuffer (&comboFormatted);

}

// Clear the display and print a string
void clearDisplayAndPrint(char *str)
{

// Clear display

WriteCmdXLCD(0x01);

// Set address to 0
WriteCmdXLCD(0x80});

// Write string to screen
WriteBuffer(str):;
}

// Clear the display and print strings on 2 lines
void clearDisplayAndPrint2(char *strl, char *str2)

{
// Clear display

39

Source Code for main.c

WriteCmdXLCD(0x01);

// Set address to O
WriteCmdXLCD(0x80);

// Write first string to screen
WriteBuffer(strl);

// Move cursor to next line
WriteCmdXLCD(0xCO);

// Write second string to screen
WriteBuffer(str2);
}

// Generates a delay
void delay(void)
{

int j, k;
for (§ = 0; j < 10; j++)
for (k = 0; k < 60000; k++);

// Exit program
void exitProgram(void)
{
// Clear display
WriteCmdXLCD(0x01);

DBl12->main();

40

Source Code for motor.h

Source Code for motor.h

// motor.h
// Header file for motor control stuff
// 12/1/02

#ifndef _ MOTOR H
#define __ MOTOR_H

#include <hc8l2a4.h>
#include <introl.h>

#define MOTOR_CW 1
fdefine MOTOR CCW -1
fdefine MOTOR OFF 0

#define MOTOR_PWM _H12TCO
#define ONE_ROTATION 5181 // number of pulses in one rotation

/******* macros *******/

#define MOTOR DIR CW() { _H12PORTG = (_H12PORTG | 0x01);}
f#define MOTOR DIR CCW() { _H12PORTG = (_H12PORTG & ~0x01);}
#define SOLENOID UP() { H12PORTG = (H12PORTG | 0x04); }

#define SOLENOID DOWN() { _H12PORTG = (_H12PORTG & ~0x04); }

#define GET_MOTOR_DIR() ((_H12PORTG & 0x01)21:-1)

#define RESET PULSE CNT() { _H12PORTG = (_H12PORTG & ~0x02); \
_H12PORTG = (_H12PORTG | 0x02); }

#define RESET POS() { motorPos = ~ONE_ROTATION;lowNibble=0;}

#define ABS(val) ((val > 0)2val:-val)

/******* global Variables *******/

signed int motorSpeed, motorPos;

signed int desiredSpeed;

signed int target;

signed char motorActive, motorFeel, motorKill;
unsigned char lowNibble;

// addresses for reading HCTL-2016 chip
const char *pulsesHigh = 0x2001;
const char *pulsesLow = 0x2003;

/******* prototypes *******/

void MotorMove (signed char dir, signed int goal):;
void SetMotorPWM(signed int pwmVal);

char DoCombo (char nl, char n2, char n3);

char NextCombo (char n2, char n3);

char OpenLock(};

char GetLastNum();

void FeelNotch(signed int *sep, signed char *num);
void MoveToZero():;

__mod2__ void RTIInt();

// initialize motor control
void MotorInit()
{
// initialize variables
motorSpeed = 0;
motorPos = 0;

desiredSpeed = O;
target = 0;
motorActive
motorFeel =
motorKill =
lowNibble

[eN NN
YSRTIRY

i

_H12TIOS = 0x8l; // set bit 0 for OC
TH12TCO = 1; // OCO at 30000

41

Source Code for motor.h

_H12TCTL1= 0x00; // do nothing with these bits
_H12TCTL2= 0x03; // set OCO to high on compare
_H12TC7 = 0x0000; // OC7 at 0x0000

_H120C7M = 0x01; // oC7 effects OCl
_H120C7D = 0x00; // reset OCO on OC7 compare
_H12TSCR = 0x80; // Enable Timer

_H12CSCTLO = 0xFO; // upper half of Port F for chip select
_H12DDRF = OxFO; // set lower have of Port F for input

// initially deactivate solenoid
_HI2PORTG = (_H12PORTG & ~0x04);

MOTOR_DIR_CW(); // set initial motor direction
RESET _PULSE_CNT(); // clear inital encoder count
DBl2->SetUserVector (RTI,RTIInt);

_H12RTICTL = 0x84; //activate RTI every ~8.192 msec

}

// move the dial to the goal position
void MotorMove(signed char dir, signed int goal)
{
// set the direction
if(dir == MOTOR_CW) {
MOTOR_DIR CW();
lelse if(dir == MOTOR_CCW){
MOTOR_DIR_CCW();
}
// initialize the target value
target = goal;
// enable the motion
motorActive = dir;

}

// set motor PWM based on a signed value
void SetMotorPWM(signed int pwmVal)
{
// set direction
if (pwmval < 0){
MOTOR_DIR_CCW()
pwnmVal = ABS(pwmVal);
lelse{
MOTOR DIR CW()
}

// set magnitude
if (pwmvVal == 0)
MOTOR PWM = 1;
else
MOTOR_PWM = pwmVal;
}

// do a complete combination
// return open lock status or 2 for cancelled
char DoCombo (char nl, char n2, char n3)
{
int c;
signed int posl, pos2, pos3;
// calculate positions
posl = -130*nl;
pos2 = —-ONE_ROTATION-130*n2;
pos3 = -130*n3;
if(n2 < nl){
pos2 -= ONE_ROTATION;
pos3 -= ONE_ROTATION;
}
if(n3 < n2) pos3 -= ONE_ROTATION;

//back up 3 rotations for clearing
motorPos —= 3*ONE_ROTATION;

42

// move to first number
MotorMove (MOTOR CW, posl);
while (motorActive != MOTOR_OFF) {
if(motorKill){
motorActive = MOTOR_OFF;
return 2;
}
}
// move to second number
MotorMove (MOTOR_CCW, pos2);
while(motorActive != MOTOR_OFF) {
if(motorKill) {
motorActive = MOTOR_OFF;
return 2;
}
}
// move to third number
MotorMove (MOTOR_CW, pos3);
while (motorActive != MOTOR_OFF){
if (motorKill) {
motorActive = MOTOR_OFF;
return 2;
}
}

return OpenLock();

}

Source Code for motor.h

// move to the next combo in the sequence

// without clearing

// return open lock status or 2 for cancelled

char NextCombo (char n2, char n3)
{
int c;
signed int pos2, pos3;
// calculate positions
pos2 = -ONE_ROTATION-130*nZ;
pos3 = -130*n3;
if(n3 < n2) pos3 -= ONE_ROTATION;

// move to second number
MotorMove (MOTOR_CCW, pos2);
while(motorActive != MOTOR_OFF){
if(motorkKill){
motorActive = MOTOR_OFF;
return 2;
}
}
// move to first number
MotorMove (MOTOR_CW, pos3);
while(motorActive != MOTOR_OFF) {
if(motorKill) {
motorActive = MOTOR_OFF;
return 2;

}

return OpenLock():

}

// try to open the lock

// return 1 for success, 0 for failure

char OpenLock/()
{
unsigned int i;
char opened = 0;
SOLENOID UP(); // pull on latch
for(i=0; i<65000; i++){
// check for success signal
if (! (_H12PORTF & 0x08)) {
opened=1;

43

Source Code for motor.h

}
}
SOLENOID DOWN();// release latch
return opened;

}

// feel notches to find the last number
// return 40 if cancelled
char GetLastNum()
{
unsigned int i;
char tempNum, lastNum = -1;
signed int currSep, maxSep=0;
motorPos = ONE_ROTATION;

// for each of the 12 notches
for(i=0;1<12;i++){
FeelNotch(&currSep, &tempNum);
// store maximum seperation and corresponding number
if(currSep > maxSep) {
maxSep = currSep;
lastNum = tempNum;
}
DB12->printf("\r$d\rNotch #%d\tNum:%d\tSep:%d \n\r",
i, tempNum, currSep);
// move to the next approx. location
MotorMove (MOTOR_CCW, motorPos-390);
while(motorActive != MOTOR_OFF){
if(motorKill){
motorActive = MOTOR_OFF;
return 40;

}
DB12->printf("\r$d\rLast Num: %d \n\r",lastNum);

//move back to zero
MotorMove (MOTOR_CCW, 0);
while(motorActive != MOTOR_OFF) {
if (motorKill) {
motorActive = MOTOR_OFF;
return 40;

}

return lastNum;

1

// take measurements of the nearest notch
void FeelNotch(signed int *sep, signed char *num)
{

signed int notchEnd[4];

float vall, val2, separation;

SOLENOID UP(); // pull up on the latch
motorFeel = 1; // set motorFeel flag

// move back and forth one to drop into a notch
MOTOR_DIR CCW();

motorActive = MOTOR_CCW;

while(motorActive != MOTOR_OFF);

MOTOR_DIR CW();
motorActive = MOTOR CW;
while(motorActive != MOTOR_OFF);

// move back and forth twice while taking measurements
MOTOR_DIR_CCW();

motorActive = MOTOR_CCW;

while(motorActive != MOTOR_OFF);

44

Source Code for motor.h

notchEnd[0] = motorPos;

MOTOR_DIR CW();

motorActive = MOTOR CW;
while(motorActive != MOTOR_OFF);
notchEnd[1l] = motorPos;

MOTOR_DIR_CCW();

motorActive = MOTOR_CCW;
while(motorActive != MOTOR_OFF);
notchEnd[2] = motorPos;

MOTOR_DIR CW(};

motorActive = MOTOR_CW;
while(motorActive != MOTOR_OFF);
notchEnd[3] = motorPos;

motorFeel = 0;
SOLENOID DOWN(); // release the latch

// calculate the average seperation

*sep = ((notchEnd[l]+notchEnd[3])-(notchEnd[0]+notchEnd[2]));

// calculate the nearest number on the dial

*num = (char)((notchEnd[O]+notchEnd[l]+notchEnd[2]+notchEnd[3]+260)/520);
*num = 40 - *num;

// correct for negative numbers

if(*num < 0) *num += 40;

}

// reposition the lock at 0
// used after a cancellation
void MoveToZero()
{
if(motorPos > —ONE_ROTATION) //choose shortest direction
MotorMove (MOTOR _CCW, -ONE_ROTATION);

else

MotorMove (MOTOR_CW, -ONE_ROTATION);
while(motorActive != MOTOR_OFF);
motorKill = 0; // reset motorKill flag

}

// real time interrupt service routine
__mod2__ void RTIInt()
{
signed int templ, temp2;
signed int ePos, eSpeed;
unsigned int newSpeed;
// read the encoder count
unsigned char valH = *pulsesHigh;
unsigned char vall = *pulsesLow;
RESET PULSE_CNT();

// determine the speed in counts per RTI
motorSpeed = (((unsigned int)valH)<<8) + valL;
// update with previous least significant nibble
templ = motorSpeed + lowNibble;
// store least significant nibble
lowNibble = (unsigned char) (0x000F & templ);
// divide by 16
temp2 = templ>>4;
// correct for sign changes
if (templ < 0)

temp2 |= OxF000;
// integrate to find position
// (sumation of scaled velocity)
motorPos += temp2;

// find the error in speed

eSpeed = 2* (desiredSpeed - ABS(motorSpeed));
// find the error in position

ePos = target - motorPos;

45

Source Code for motor.h

if (motorActive != MOTOR_OFF) {
// if feeling notches
if(motorFeel) {
desiredSpeed = 200;
// check for cutoff force
if (MOTOR_PWM > 20000){
motorActive = MOTOR OFF;
desiredSpeed = 0;
}
}
// if doing combinations
else{
// set the direction of the error
// relative to the motor direction
ePos *= motorActive;
// select appropriate velocity based on error
if(ePos > 0){
if(ePos > 4545){
desiredSpeed = 1600;
lelse if(ePos > 390){
desiredSpeed = 95+ePos/3;
lelse(
desiredSpeed = 30+ePos/2;
}
lelse{ // the goal was reached
motorActive = MOTOR_OFF;
desiredSpeed = 0;
}
}
// update the PWM to correct for speed error
SetMotorPWM(motorActive* (MOTOR _PWM + eSpeed));
}
// if waiting for a command
else{
// if inbetween feeling notch commands
if (motorFeel) {
SetMotorPWM(0); // stop the motor
lelse{
// set the direction to oppose error
if(ePos > 0){
MOTOR DIR CW();
lelse{
MOTOR_DIR CCW();
}
desiredSpeed = 0; // desire no motor motion
// update the PWM to oppose error
SetMotorPWM(GET_MOTOR DIR({()* (MOTOR_PWM + eSpeed));
}
}

// reset the flag
_H12RTIFLG=0x80;
}

#endif

46

Source Code for keypad.h

Source Code for keypad.h

#include <hc812a4.h>
#include <dbugl2.h>
#include "motor.h"

void initKeyWakeupInterrupt(void);
__mod2__ void keyWakeupISR(void);
void determineKey(char r,

// Global Variables
char exitState;
char keyPressed;

void initKeyWakeupInterrupt (void)
{

unsigned int lowBits):;

// setup the interrupt service routine for a key on port J

DBl12->SetUserVector (PortJKey, keyWakeupISR);

_H12KPOLJ=0x00; // falling edge sets flag
_H12KWIFJ=0xFF; // clear any flags that may be set
_H12PUPSJ=0xFF; // pull up

H12PULEJ=0xFF; // pull up enabled all bits

H12KWIEJ=0xO0F;

H12DDRJ=0xFO;

“H12PORTJ=0x00;
}

//
//
//

Set up row select bits

~_mod2 _ void keyWakeupISR(void)
{
unsigned int keyWakeupFlags, lowOrderBits;

// Save the state of the Key Wakeup Flags
keyWakeupFlags = _H12KWIFJ;

enable bits 0-3 (column selects)

for generating interrupts
(4-7) for output

Write lows 0O's to row select bits

// Get the value of the 4 low order bits on Port J

lowOrderBits = keyWakeupFlags & OxOF;

// Parse through the different rows to determine which key was pressed.
// Write a high to each row individually and then look at the value on
// the low nibble of Port J. If the row a 1 is written to is the row
// in which the button was pressed, then the value on the low bits

// of Port J will be (----1111).

// Write high to row 1

_H12PORTJ=0x10;
if ((_H12PORTJ & OxOF) == OxOF)
{
determineKey(1l,lowOrderBits);
}
else
{
// Write high to row 2
_H12PORTJ = 0x20;
if ((_H12PORTJ & OxOF) == OxOF)
{
determineKey(2,lowOrderBits);
}
else
{
// Write high to row 3
_H12PORTJ = 0x40;
if ((_H12PORTJ & O0xOF) == OxOF)
{
determineKey (3, lowOrderBits);
}
else
{
// Write high to row 4
_H12PORTJ = 0x80;

47

Source Code for keypad.h

if ((_H12PORTJ & OxOF) == OxOF)
{

determineKey(4,lowOrderBits);
}

}

_H12PORTJ=0x00; // reset port J to all low outputs

// wait for the key to be released
while ((_H12PORTJ & OxOF) t= OxF) {}

_H12KWIFJ=_H12KWIFJ; // Clear the flag
}

// Determine which column corresponds to the low bit settings
// and determine the corresponding character to the (row, column)
void determineKey(char r, unsigned int lowBits)
{
// variable declarations
int row, column;
row = r;
column = 0O;

// determine which column the key was pressed in
if (lowBits == 0x1)

{ column = 1;

ilse if (lowBits == 0x2)

{ column = 2;

}

else if (lowBits == 0x4)
{ column = 3;
Llse if (lowBits == 0x8)
{ column = 4;

}

// output an error, if the column cannot be determined
if (column == 0)
{
DB12->printf("Error!!! Column not determined correctly.\n\r");
DB12->printf ("%x\rLow bits: %$x\n\n\r",lowBits, lowBits);
}
// if the button was pressed in row 1, determine from the column, which key was
else if (row == 1)

{

if (column == 1)

{ keyPressed = 'D';
ilse if (column == 2)
{ keyPressed = '#';
ilse if (column == 3)
{ keyPressed = '0°';
ilse if (column == 4)

{
keyPressed = '*';
exitState = 1;
motorKill = 1;

48

pressed

Source Code for keypad.h

// if the button was pressed in row 2, determine from the column, which key was pressed
else if (row == 2)
{
if (column == 1)
{
keyPressed = 'C';
}
else if (column == 2)
{
keyPressed = '9';
}
else if (column == 3)
{
keyPressed = '8';
}
else if (column == 4)
{
keyPressed = '7';
}
}

// if the button was pressed in row 3, determine from the column, which key was pressed
else if (row == 3)
{
if (column == 1)
{
keyPressed = 'B';
}
else if (column == 2)
{
keyPressed = '6';
}
else if (column == 3)
{
keyPressed = '5';
}
else if (colu == 4)
{
keyPressed = '4"';
}
}

// if the button was pressed in row 4, determine from the column, which key was pressed
else if (row == 4)
{ if (column == 1)

{ keyPressed = 'A';

ilse if (column == 2)

{ keyPressed = '3';

}

else if (column == 3)
{
keyPressed = '2';
}
else if (column == 4)

{
keyPressed = '1';

}

49

Appendix F: Attachments

The following documents have been attached to this paper:
e Slides used for the project demonstration
e The original graded project proposal memo.

50

Master Lock Combo

oy Introduction

Practical Applications Technology

combination by hand.

Technology Technology

u Solenoid a Power Switching
nittent pull-

Technology Driver Board Layout

u Encoder Decoding and Counting

Cracking The Lock
Protoboard LaVOUt Step 1: FingThe Final Number

Cracking The Lock Cracking The Lock

Step 2: Reducing Combinations Step 3: Trying Combinations Faster

s Find last number, L = 0...39 w It is possible to try another
combination without resetting the lock
first number
nb 1015 |

s Total number of combinations =
In]=<im] = 10<10 = 100

MEMO

TO: PROF. R. P. KRAFT

FROM: PATRICK LAROCQUE, MATT LEOTTA, AND JESSICA TSE
SUBJECT: MPS PROJECT PROPOSAL: AUTOMATIC MASTER LOCK OPENER
DATE: 10/15/2002

We intend to design and construct a device to automatically open Master Locke brand combination padlocks.
The device will use 2 motor and solenoid to manipulate the lock, a keypad and LCD display for user I/O, and
a Motorola 68HC12 microcontroller to interface these components and provide a software-based PID
controller for the motor. This will requite a fair amount of mechanical, electrical, and software design. The
completed system will open any Master Locke either by accepting the three-number combination from the
user or by experimentally determining the combination through trial and error. We will also attempt to
significantly reduce the time required to find the combination by using a known code-cracking methodology.
However, this enhancement will require precise interaction between the solenoid and motor to “feel” the
notches in the rotating cam within the lock. Depending on the quality of the parts we obtain and the
precision of the feedback available this may prove to be impossible. We are proposing this project because it
is challenging and will make use of several topics covered in this course.

Problem Statement

The state of today’s society calls for secure storage of one’s material property. From this, there is inherently a
need for small personal locks; one of the most common of which is the combination Master Locke. In
certain cases, the lock owner may not be able to open the lock easily, due to arthritis or general lack of
manual dexterity. In other cases, the combination to the lock may be forgotten and the owner would like to
open the lock without damage and retrieve the combination so the lock may be reused. The typical lock
owner would only need this service on rare occasions, so this device might be more fitting for a locksmith.
Other users of this device could be owners of storage facilities or health fitness centers. In both businesses,
customers often are allowed to use thete own locks to temporarily store person belongings. When customers
fail to remove their locks after the allotted time span, the owner is forced to cut them off. This device
ptovides an alternative in which the owner may remove the lock and then reuse or resell it at a later date.

Proposed Project, Goals, and Approach

The need presented above can be satisfied by developing and implementing a prototype that will
automatically open a lock when it is given a corresponding combination and that will have the ability to
determine the correct combination by trial and error (possibly enhanced with known code-cracking
methodology). For users lacking manual dexterity, the device will enable them to enter three numbers
representing the combination.

Attached is a flowchart that shows the flow of control for the motor and solenoid subsystems. The device
will rotate the dial of the Master Locke using a small gearhead motor with an attached encoder for feedback.
The feedback loop will consist of a PID controller in software for accurate positioning and velocity control.
The solenoid will push up on the hasp (the metal loop) of the lock to attempt to open it. A simple sensor
(possibly a pushbutton) will allow the microcontroller to determine if the lock was successfully opened. The
user’s interface to the system will consist up the LCD panel and keypad available in the MPS lab.

There are several altematives that could be considered for this project. A more complicated approach to
opening the lock would involve using pneumatics instead of a solenoid. With pneumatics it might be easter
to produce the required force for opening the lock. It might also be easier to maintain this force while the
motor is used to detect notches in the lock’s cam. However, pneumatics require a tank to store the
compressed air, and actually use solenoid valves to control the air flow. This would only add to the bulk of
the device. They are also too slow for quickly checking multiple combinations. Another altemative would be
to use a stepper motor to control the position of thedock’s dial. This would simplify the code for motor
control. However, a stepper motor might haveovering all 40 possible dial combinations, and
eliminating the encoder would also make sensing the I6cK’s cam notches impossible.

Although the world will not benefit much from this device (except in the specific instances discussed above),
we will benefit by learning how to meeting the difficult challenges this project sets forth. Additionally, we will

be able to recover the combinations from some old Master Lockse.

Plan of Adtinities

We have already begun to design and order parts for the construction of this project. Attached is a detailed
task time-line — in the form of 2 Gantt chart — that shows the details of how we have divided up the work for
this project. We will be purchasing several of the components for our design and borrowing others from the
MPS lab. The following is a list of the major components and equipment we will need and how we plan to
obtain them:

No. Part Name Source
1 68HC812A4 w/ EVB Borrow from the MPS Lab
2 | PC w/ Introl Compiler Borrow from the MPS Lab
3 | Protoboard Borrow from the MPS Lab -
4 12VDC motor w/ attached gearhead | Donated by MicroMo Electronics, Inc. . /
& encoder] e
5 | 12VDC solenoid Otder online T]
6 2 — SN'754410NE motor/solenoid Order online P T/
drivers IC , e e /
7 HCTL-2016 quadrature decoder Order online '
counter IC
8 | LCD and keypad unit Borrow from the MPS Lab
9 | Master Locks Purchased from Wal-Mart
Various mechanical parts for Otder online and purchase from hardware stores
10 | interfacing the motor and solenoid
with the padlock
Evaluation

To ensure that the defined problem is solved by the said project, 2 demonstration of'a working prototype will
include the following:

e opening a lock with a given combination

e opening a lock with an unknown combination

.

Project Assignment Key

B = Matt Leotta
B = Patrick LaRocque
. = Jessica Tse

Start date: 10 /07 / 2002

Project: AUTOMATIC MASTER LOCK OPENER

Weeks | 10/07 1(}}14'10!21 10}28%11!041illﬂl 11/18 | 11/25 1 12/02
to to | to to | to 1o to to
| Tasks 10/14 [10/21 10/28 11:"04$illill 11/18 | 11/25 | 12/02 | 12/09

| Part Ordering _ _
| -Motor, Controller & Decoder Chips [
| _Solenoid

|
 Topic Research
. -LCD and Keypad Asscmbl

|
' -Motor Assembly

Software Deveiopmem
| -User Interface

| -Solenoid Control
""" -Motor Control
-Code Integration

| Interim Project Report

N

——

FLOWCHART OF LOCK MANITPULATION TASKS

Generate
velocity profile
to reach desired

position

PID controller
for position and
velocity control

Quadrature
Decoder

/Counter
A

Encoder (@ MOtOf |———) Gearhead

Determine combinations

and try them

Rotate to a series of three
positions and then
attempt to open the lock.

Generate PWM
and rotation Check for
direction bit Success
2 bits 1 bit 1 bit
Output Input Output
Solenoid
A 4 Driver
Motor
Driver

Open €= Solenoid
Sensor

