

MPS ANSI Display Lab Exercise

Programming an ANSI Display

Student's name & ID: ___

Partner's name(s) & ID(s): ___

Your Section number & TA's name __

Notes:

You must work on this assignment with your partner.

Hand in a printer copy of your software listings for the team.
Hand in a neat copy of your circuit schematics for the team.

These will be returned to you so that they may be used for reference.

------------------------------- do not write below this line -----------------------------

Grade for performance verification (50% max.)

Grade for answers to TA's questions (20% max.)

Grade for documentation and appearance (30% max.)

POINTS TA init.

Grader's signature: ___

Date: __

 Page 1

Programming an ANSI Display

GOAL

By doing this lab assignment, you will learn:
1. To use the VT100 Terminal Interface (with HyperTerminal or ProComm Plus) on the M68HC12.
2. To program an ANSI terminal display through a C program using the Introl C cross-compiler.

PREPARATION

• Review the C language stdio utilities.
• Read the Introl M6812 C Cross-Compiler handout.
• References: VT100/ANSI ESCAPE SEQUENCES

PROGRAMMING TASKS FOR THE MC6812

1. Introduction To The User Interface

Input from the terminal keyboard and output to the terminal display can be done using the getchar(a) and
putchar(a) functions. Write a simple C program to run on the MC6812 that outputs "The keyboard
character is *." whenever you type a printable character, where * stands for that character. Since
you will be waiting for an indefinite number of characters to be typed, use <ESC> (or ^[key
combination) to terminate the program. Display this information at the top of the screen when the
program starts.

2. VT100/ANSI Terminal Control Escape Sequences

ProComm Plus and HyperTerminal use VT100/ANSI terminal emulation by default. By sending special
codes to the terminal, it is possible to clear the screen, position the cursor, set terminal colors, and many
other things. These codes are called escape sequences because the first character is the <ESC> character,
or $1B in ASCII. The table on the next page contains some useful escape codes.

Modify the C program of Part 1 to display yellow characters on a blue background. Center the program
termination information on line 2. Display the keyboard response text on line 12. Change the color of the
keyed in character to white (leaving the rest of the characters in yellow). Now for nonprinting characters,
have the program output "The keyboard character is 'not printable'."

Good programmer's tip: Design the program top-down. Then write the routines bottom-up. Write them
one at a time and thoroughly test each one before integrating them. This way you will have isolated any

 Page 2

errors to the routine that you are currently writing. Good programmers follow this method.

VT100/ANSI ESCAPE SEQUENCES
Name Escape Code Hexadecimal Description
Reset
Device

<ESC>c $1B $63 Resets all terminal settings to default.

Enable Line
Wrap

<ESC>[7h $1B $5B $37
$68

Enables wrapping text to the next line if text is longer than
the display area.

Disable
Line Wrap

<ESC>[7l $1B $5B $37
$6C

Disables wrapping text; text will be clipped if longer than
display area.

Cursor Home <ESC>[H $1B $5B $48 Moves the cursor to the home position (upper left hand
corner).

Cursor
Position

<ESC>[{ROW};
{COL}H

$1B $5B
${ROW} $3B
${COL} $48

Sets the position of the cursor at ({ROW}, {COL}).

Cursor Up <ESC>[{NUM}A $1B $5B
${NUM} $41

Moves the cursor up {NUM} rows;
{NUM} defaults to 1 if omitted.

Cursor Down <ESC>[{NUM}B $1B $5B
${NUM} $42

Moves the cursor down {NUM} rows;
{NUM} defaults to 1 if omitted.

Cursor Left <ESC>[{NUM}D $1B $5B
${NUM} $44

Moves the cursor left {NUM} columns;
{NUM} defaults to 1 if omitted.

Cursor
Right

<ESC>[{NUM}C $1B $5B
${NUM} $43

Moves the cursor right {NUM} columns;
{NUM} defaults to 1 if omitted.

Save Cursor <ESC>[s $1B $5B $73 Saves the current cursor position.
Restore
Cursor

<ESC>[u $1B $5B $75 Restores the previously stored cursor position.

Erase End
of Line

<ESC>[K $1B $5B $4B Erases from the current cursor position to the end of the
current row.

Erase Start
of Line

<ESC>[1K $1B $5B $31
$4B

Erases from the start of the current row to the current
cursor position.

Erase Line <ESC>[2K $1B $5B $32
$4B

Erases the entire current row.

Erase Down <ESC>[J $1B $5B $4A Erases from the current row down to the bottom of the
screen.

Erase Up <ESC>[1J $1B $5B $31
$4A

Erases from the current row to the top of the screen.

Erase
Screen

<ESC>[2J $1B $5B $32
$4A

Erases the entire screen and moves the cursor to the home
position.

Scroll All <ESC>[r $1B $5B $72 Enables scrolling for the entire display.
Scroll
Section

<ESC>[{SRT};
{END}r

$1B $5B
${SRT} $3B
${END} $72

Enables scrolling only for rows {SRT} to {END}.

Scroll Down <ESC>D $1B $44 Scrolls the display down one line.
Scroll Up <ESC>M $1B $4D Scrolls the display up one line.
Attribute
Mode set

<ESC>[{ATR1};
...;{ATRn}m

$1B $5B
${ATR1} $3B
... $3B
${ATRn} $6D

Sets multiple display attribute settings; any number can be
set. ATRn may be any of the following values:

Standard
Values for
Attribute
Mode Set

0 Reset Attributes
1 Bright
2 Dim
4 Underscore
5 Blink
7 Reverse
8 Hidden

Foreground Colors
30 Black
31 Red
32 Green
33 Yellow
34 Blue
35 Magenta
36 Cyan
37 White

Background Colors
40 Black
41 Red
42 Green
43 Yellow
44 Blue
45 Magenta
46 Cyan
47 White

 Page 3

