Exploring Motorola’s DSP56307EVM:

Creating a Voice Mailbox

Adam Dziedzic
&
Duane Laviniere

Microprocessor Systems
12/10/99

Abstract

Introduction

Materials and Methods
Results

Discussion

Appendix

Bibliography

Table of Contents

Page 5
Page 6
Page 7
Page 12
Page 13
Page 14
Page 16

List of Tables

Table 1 Page 11

List of Figures

Figure 1 Page 14

Abstract:

The DSP56303 Voice Message system is a low-cost voice mailbox
solution for small offices or homes. The product makes use of the Motorola
DSP56303, as well as the Motorola HC12. The goal of this project was to create
a voice message system with two voice mailboxes. The user would control the
messaging system through the DSP. The user could press a button to record a
message to either mailbox, and then press another button to playback the audio.

We wrote the audio recording software, as well as the filters used to
remove signal noise. All of this was written in assembly for the DSP56303.
When running, the software stored incoming audio to the 64kB of internal
memory. This amounted to roughly eight seconds worth of sound data.

The HC12 was used to interface external memory. We discovered late
that the DSP56303 lacks a real interface for external memory, so we decided to
interface it to an HC12 board and perform memory expansion on that. Our plan
was to use the internal memory of the HC12 as the secondary voice mailbox.

The interface for the voice message system used the two main toggles on
the DSP56303. When one button was depressed, the DSP recorded all audio
streaming into the Line Input port on the board. When the second button was
depressed, the DSP played the recorded audio back through the output ports.

Overall, the DSP56303 proved a healthy, and welcome challenge. This

project has further increased our knowledge of microprocessors.

Introduction:

This document details the creation of a voice mailbox using the Motorola
DSP56307EVM, along with the implementation of a low-pass filter and interfacing
additional memory to the evaluation module. Also included in the report is
information on compiling assembly programs with the Motorola assembler and
linker.

The voice mailbox system created is capable of recording audio at a
sampling rate of 8kHz for about eight seconds with the 64k of SRAM on the
evaluation module. Alternatively, a higher sampling rate can be selected for a
higher quality sound sample, but at the expense of the length of the recorded
sample. The DSP can be interfaced to up to 16M of external memory, although
the evaluation module does not support additional memory beyond the 64k. For
this reason, we had to find an alternate method of interfacing memory to the DSP
without the use of the bus and control signals for adding external memory to the
DSP.

The solution we found was to interface the DSP to the HC12 evaluation
module. The boards were interfaced through the host port on the DSP. We used
the internal memory on the HC12 for the second voice mailbox for our voice
messaging system.

For an additional exercise and experimentation with the DSP, a low-pass
filter was implemented. Originally, we expected that it would be necessary to
create a low-pass filter so that we could sample the audio at a lower rate, but this
was not necessary since there is one implemented on the CS4218 which
eliminates any aliasing that might occur.

Since this is the first project done using the DSPs, this report is written in a
manner that is intended to be informative and capable of passing on the
information we found, and what information is needed for working with the
DSP56307EVM boards.

Materials and Methods:

Software Creation
1) The voice mailbox program

For the programs created, the example code came in very handy. There
were three example programs that were referenced for solving various problems.
The program that was used as a starting point was the echo program. This was
easily modified to provide a direct audio input to output without any signal
processing. From there, the code was modified to store a sound sample in the
internal memory of the DSP, play the recorded sample back, and then repeat the
process. From there, the program was modified to utilize the external memory
on the evaluation module. And finally, the interrupts from the buttons were
utilized along with the timer interrupt for the flashing red LED.

For getting started writing programs for the DSP in assembly, there are a
couple things that are very useful implemented in the DSP. The first notable part
of the DSP is how the memory is organized. There are three memory spaces
that the DSP uses: labeled X, Y, and P. The P, or program, memory is where the
program code is usually stored. The two data spaces labeled X and Y are very
convenient for manipulating two audio channels.

The next interesting part of the DSP is the address generation unit. The
AGU is divided into two identical halves, each with its own ALU. There are four
sets of three registers for each half that provide a means of accessing memory
quickly and easily. The three registers are the address register, the offset
register, and the modifier register. The address register (Rn, where n = 1..7) is
the pointer to the memory location. The Offset register (Nn) has two uses: to
offset the location in memory to make it possible to address higher memory
locations than the 16 bit address register can alone, or to increment the address
by more than one. And the third register, the modifier register (Mn) does a
modulus on the address to create a circular buffer of length Mn. The circular
buffer was used in the low-pass filter program, and the offset was used in the

voice mailbox program. Detailed information about the AGU and sample code
for each use can be found in the DSP56000 Family Manual, section 4.

Parallel data moves make it possible to speed up signal processing code
greatly. While the processor is executing an instruction, it can have two parallel
data moves executing at the same time getting the data ready for future
instructions. For the instructions that allow parallel data moves, the assembly
code is written with the instruction followed by the source and destination
operands, then up to two data moves in the X, Y, and/or P memory segments.

The voice mailbox program is rather simple, once everything was figured
out. To enable the external memory on the EVM, there are only two variables
that need to be set. The address attribute register M_AARO needs to be set up
for how the memory is to be interfaced. The other variable that needs to be
initialized for the external memory is M_BCR. AARQO tells the DSP the address
where the memory is located and what memory spaces to use it with, while
M_BCR controls the timing for the memory. After the memory is set up, the
interrupts for the A and B buttons are enabled along with the timer interrupt for
the flashing LED. This is done by setting M_IPCR as one of the example
programs showed. The next step is to set up the stack, the operating mode, and
the buffer for storing the audio. The audio buffer is initialized by writing the start
of the external memory to the offset register, N4, using M4=-1 to signal that the
AGU should use linear addressing, and setting R4 to 0 so that (R4+N4) points to
the beginning of the buffer. The rest of the program simply waits for an interrupt
to tell it to record or play back a sound sample. The interrupts are set up by
writing jump instructions to the specified lines of the jump table that correspond
to the interrupts A and D. For this program, the jump instructions go to the
routines to record or play back a sound sample. The other files that are included
did not require any modification from how they are distributed with the echo

sample program.

2) The Low-Pass Filter Program
There are two low pass filters implemented that are almost identical. The
first filter created was for a 5500Hz cut off frequency. The filter was designed

with an online web page (http:/www-users.cs.york.ac.uk/~fisher/cgi-bin/mkfscript). ~ For

this filter, the parameters entered were a Second order Lowpass filter type of
Butterworth with a sampling rate of 44100 samples per second, and a cut off
frequency of 5500. With that information, the online script creates the recurrence
relation and a sample of the C code that could be used to implement the filter,
along with plots of the phase and frequency and some other plots. The main
interest, if the frequency response looks like the one desired, is the code for
implementing the filter. The next step was to translate the C code into assembly,
which took quite a long time. It is very difficult to effectively use the parallel data
moves to shrink the code. It is however theoretically possible to shrink the
filtering code to one line per term in the filter equation using the multiply and
accumulate instruction. Once the code was implemented, it took a while to make
sure that it was actually filtering out some frequencies, because the high
frequencies made very subtle differences to how the audio sounded.

The second filter implemented was the same as the first, only with a
2500Hz cut-off frequency. The main difference between this program and the
previous, other than the coefficients, is the fact the one of the coefficients is
greater than one. Since the floating point representation of numbers in the DSP
takes only decimal numbers, an additional line of code was needed to add the
y[n-1] term to the lines that compute the output to get rid of the one in the
coefficient. The difference in the sound of the audio was still very subtle, but it

was more noticeable than the 5500Hz cut-off frequency.

Compiling the Programs

The first thing that needs to be done before compiling is either make sure
the current directory is the one that contains the assembler or make sure that
directory is in the path. To assemble the code after it was written, the
asm56300.exe assembler was used, followed by the linker, dsplnk.exe. The
assembler requires the —B option so that it creates a linkable .cin file. The line
for compiling in general is as follows, where parts in [] are optional.

Asm56300 —B[output_object_file] source[.asm]
The code for compiling the voice mailbox program follows:

asm56300 -Brecplay.cin recplay.asm > err.txt
This explicitly created the default object file and sent all the information from
compiling to the file err.txt so that the errors that were reported could be
examined later. Once the code compiles successfully, there will be a file with the
specified or default filename and an extension of “.cIn” in the current directory.
This file needs to be linked, which can be done by calling “dspInk” followed by the
name of the object file. Once this process is complete, there should be a file
ending in “cld” that can be uploaded to the DSP board using the program
EVM30xW.

10

Hardware

The only hardware required for the above-mentioned programs is setting

the jumpers for the sampling rate on the EVM. The jumpers are clearly labeled

sampling rate, and set the rate according to the following table, from section 3 of
the DSP56307EVM Technical Summary document.

Table 1: cs4218 Sampling Frequency Selection

J9 Pins 1-2 J9 Pins 3-4 J9 Pins 5-6 Sampling Rate
(MF®) (MF7) (MF8) (kHz)

Jumper Jumper Jumper 48.0

Jumper Jumper Open 32.0

Jumper Open Jumper 24.0

Jumper Open Open 19.2

Open Jumper Jumper 16.0

Open Jumper Open 12.0

Open Open Jumper 9.6

Open Open Open 8

The hardware for the memory expansion interface with the HC12
consisted of a 20pin connection between the Host Port (H108) on the DSP to the
J8 and J9 ports on the HC12. For this, we used a modified 60pin cable to slide

onto the HIO8 DIP.

11

Results:

In the end, we accomplished the goals we set out for ourselves. We
learned to properly use the DSP56303. This was our main goal. We were not
familiar with the device prior to the start of this project, and now we feel that we
have a substancial understanding of the evaluation module.

We learned how to utilize the many features of the DSP56303. We were
not content to simply get the voice message system up and running. We also
wanted to learn the new features the board provides. We gained some more
knowledge of the DSP by writing a high-frequency filter for the module as well as
a 10-band equalizer, which we did not use for the final demonstration. This
wealth of knowledge applies not only to the DSP, but also to microprocessor
systems in general.

The audio recording software that we created also worked very well.
When we discovered that the cross compiler documentation was inadequate, we
decided to write the entire code in assembly. We were also worried about
performance, so getting down to the metal was very important. The end result is
not perfect, but it is well written code that performs the proper audio recording
routines when we need them.

Unfortunately, our results are not quantifiable. However, we have
appended some of our source code to the end of this report. The result is a
voice mailbox system that records audio samples, and then plays it back for the

listener.

12

Discussion:

Our final project differs from our initial goal in that the external memory
interface had to be done through the HC12. Our initial expectations were for a
compact package with only the DSP56303 and one megabyte of DRAM.
However, since the DSP evaluation module that we received lacked an
appropriate external address bus, we were forced to use the HC12.

If we were given more time, we would have been able to interface one
megabyte of DRAM with the HC12, instead of using the internal memory of the
HC12. However, the pin-outs for the DRAM chip were cryptic, and so any last
minute changes could have been fatal to our design.

13

Appendix:

InsFuction {eotax2e
3% Cache :
: 1024 » 24) 8
3 o
— g = kia) -é‘ =], [Exemal 18
10 b Pidess
Seferaton H-
unt FeE But -
________ AR Suh |ADDRESS
&#chann &
ORAS b : Exernal
LB 4B Bus 13
B oot | DSP56300 htiace
stap 7
Core | - Cache
="w ¥ Coninal COMTHOL
DOE
IR >
L8 Exlemal o4
nernal o
% DalaBus
Data | = # sun |CT
Bus | PDE F . DA
Sutich A § GOE
e e
EATAL E l S A | PoweT
Choch L Dak AU Mhgnn
GH’IHM“ r - oSy | r- T m 1 - oy |
AT | Fobaml Ld bod L eoden 1| aexatesente |G] | 2
I il T | bt Accum ulators -
AL || Gontroller 1] Controler T Genérald 1| s bnpame Shifer | [nCE™
ol t— oo
Y
FETET L pACOEAFDE
PINITAIET 1D TP 14T

Figure 1: DSP56303 Block Diagram

14

This program, originally available on the Motorola DSP bulletin board,
is provided under a DISCLAIMER OF WARRANTY available from Motorola DSP
Operation, 6501 William Cannon Drive, West, Austin, Texas 78735-8598.

~e Nu Na S~

page 132,66,3,3,0

org x:50
input dsm 2
output dsm 2
missc ds 3
storer5 ds 1
org yv:$0
average ds 2
temp ds 2
storer6 ds 1
storer7 ds 1
coef ds 3
org p:$0
jmp $40
org p:$0c
jsr ioprocess
org p:$S0e
jsr ioprocess
start equ S40
half equ .5
alpha equ .99
beta equ l-alpha
oneos2 equ .70711
maxcos equ 2.56
coefal equ . 8803385
coefa2 equ -.1985987
coefal equ .3175231
sqgrt macro
npyr x0,x0,b y:(r5)+,vy0
mpy x0,y0,b b,x1 y:(r5)+,y0
macr x1,y0,b y:(r5)+,y0
add y0,b
endm
divide macro
and #sfe, ccr
rep #$18
div x0,a
add x0,a
move al0,b
endm
org p:start
or #$03, mr

movep #$1a00,x:Sffed
movep #$3000,x:SEfff
movep #$4100,x:Sffec
movep #3$bal0,x:S$ffed

movep
movep
move
move
move
move
move
move
move
move
move
move
move
move
move
move
move
move

move

move
move
move
andi

loop0 jmp

ioprocess
movep
movep
move
move
cmp
jseq
rti

detect
move
move

move
move

mpy

mpy

mac

mac

sub

move

#S1ff,x:5ffel

#$3,x:5ffe2
#coef, r5
#input, rl
#coefal,b
#coefaz?, a
b,y: (r5)+
#coefal,b
a,y: (rs5)+
b,y:(r5)
#1,m0
#missc+2, r2
#2,n2

#input, r0
#output, r3
n2,nl
#0,n6
m0, m3

#average, rd

#temp, r5
neo,y: (rd)+
ne,y: (rd)-
#sfc, mr

loop0

x:$ffef,x: (r0)+
x:(r3)+,x:Sffef

no, a
r0,b
a,b
detect

:(rl)+,y0

X
x:(rl)+nl,x1

x1,y: (r5)-
#beta,yl

v0,vl,a
x1l,v1l,b

x0,y0,a

x1,vy0,b

a,x:(r2)-

yO0,y: (r5)+

#alpha, v0

yv:(rd)+,x0

v:(rd)-,x1

a,y:(rd)+

b,y:(rd)-

v:(r5)+,a

;set rl to point to

; input
;set r2 to point to

;bottom of misc.

;set r4 to point at
;average locations

;set r5 to the temporary

;I and Q locations

;move input into x0
;move x0 into temp.
;move g input into x1
;move g into temp

;move beta into yl1 to
;perform average
;calculation

;multiply I input by beta
;move alpha(l-beta)
;into v0

smultiply g input by beta
;move past I average
;X0 to continue average
;acuumulate the new

;I average and move
;the old Q average
;into x1

;accumulate the new Q
;average and move new
;I average into memory
;subtract Q from I to
;get carrier value and
;move Q average to mem.
;move carrier into
;memory an move T

;into a to find bias

sub xl,a #0,b ;subtract bias from I
;move Q into x0

cmp b,a y: (r5)-,x0
jne startl
move (r2)+
move al,x: (rl)-
move al,x:(rl)-nl
rts
startl asr a a,y: (r5)+ ;Shift I* right and
;store I*
tfr x0,a a,x0 ;transfer a and x0 so
;bias can be subtracted
;from g
sub x1l,a #0,1r6 ; subtract bias from Q
;move #0 1into r6 to
;count the number of
;shift lefts needed
; Lo make the number be
;between .5<b,1
asr a a,y: (r5)- ;Divide QO* in half
;Sstore Q* in memory
mpy x0,x0,b a,y0 ;square 1*/2
mac v0,v0,b #half,v0 ;add to square Q*/2
;Put .5 into y0 to
;compare for sgrt
loopl cmp v0,b ;compare b to .5 to see
;1f 1t is greater than
;.b for the sqgrt
;algorithm
jge dosgrt ;Jump if greater than
asl b xX:(ré6)+,x1 ;1f b is less than .5
;then shift b left and
;increment r6
Jmp loopl ;jump to compare again
dosgrt
move #coef, r5
move b, x0
sgrt
move r6,x0
move #0,a
cmp x0,a #temp, r5
jeq aroundl
move #oneos2,y0 ;now multiply the out
;put by 1/sqgrt2 for
;every shift left
do x0, enddol
move b, x1 ;move b into x0 to mult.
mpy x1,y0,b ;multiplly by 1/sqgrt2
enddol
aroundl move b,x:(r2)- y:(r5),a ;store h and recall I*
;to get ready to divide
;H by I* to ger 1/cos0
abs a #1,r7
; for the number of shift
; lefts neede for
;dividing H by I
loop2 cmp a,b yv:(r5),y0 ;S0 compare I to H
jlt dodivide ;Do the divide if H<I
asr b X:(r7)+,x1 ;If H>I,shift H right
;and increment the
;counter
Jmp loop2
dodivide
tfr b,a a, x0

divide

move r7,x0

move b,x:(r2)+n2 ;store 1/cos0

move x:(r2),a :move carrier into a and
;store 1/cos0 in x1

rep %0

asr a ;shift the carrier right
;as many times as the
;H was shifted for the
;divide + one for the
;shift right of I and Q
;before the sum of
; squares
:save the new carrier

move b, x1 y:(r5)+,v1
;back to memory and
;move I* back into x0

mpy x1l,yl,b a,x:(r2) y:(r5)-,y0 ;multiply I* by 1/cos0
;and move Q* into yo0

mpy x1,y0,a a, vyl ;multiply Q* by 1/cos0
;and move a into x0

sub vl,b ;subtract the carrrier
;from I and store (L-R)

add b,a a,x0 ;left

sub x0,b

asl a

asl a

asl b

asl b a,x:(rl)- ;right

move b,x:(rl)-nl

rts

\/inz }45:{‘

Jox

J

;***

nolist

include 'ioequ.asm'

include 'intequ.asm'

include 'ada_equ.asm'

include 'vectors.asm'
list

,-**

Y SIZE EQU $010000
Y START EQU $040000
LINEAR EQU SFFFFFF
ARROV EQU $040831
BCRV EQU $012421

;---Buffer for talking to the CS4218

; 64K Y: WORDS
; start address of external memory

;Linear addressing mode

;Value programmed into AARO
;Compare 8 most significant bits
;Look for a match with address
;Y:0000 0100 xxXXxX XXXX XXXX XXXX
;No packing, no muxing, X, Y, and
;P enabled, AARO pin active low
;Asynchronous SRAM access .

;Value programmed into BCR
;1 wait state for all AAR regions

org x:$0

RX_BUFF_BASE equ *
RX_data_1_2 ds 1 ; data time slot-1/2 for RX ISR (left audio)
RX_data_3_4 ds 1 ; data time slot 3/4 for RX ISR (right audio)
TX_BUFF_BASE equ *
TX data_1_2 ds 1 ; data time slot 1/2 for TX ISR (left audio)
TX data_3_4 ds 1 ; data time slot 3/4 for TX ISR (right audio)
RX_PTR ds 1 ; Pointer for rx buffer
TX_PTR ds 1 ; Pointer for tx buffer
CTRL_WD_12 equ MIN LEFT ATTN+MIN RIGHT ATTN+LIN2+RIN2
CTRL_WD_34 equ MIN LEFT GAIN+MIN_RIGHT_GAIN
; —--- jumps for using the buttons ---

org p:$10

jmp rec_loop ; IRQA--Record

org p:$16 ; IRQD--Play back

jmp play_loop
;---here's the program

org p:$100
START
main
movep #5040006,x:M_PCTL ; PLL 7 X 12.288 = 86.016MHz
movep #AAROV, x:M AARO ;BAARO as shown above
movep #BCRV, x:M_BCR ;One ext. wait state for async srams
movep #$000E07,X:M_IPRC ;IRQA/IRQD/SSI level 3 int edge sensitive
ori #3,mr ; mask interrupts
movec #0, sp ; clear hardware stack pointer
move #0, omr ; operating mode 0
move n0, r0 ; Load start address of P into r0
move #$40,x7 ; initialize stack pointer
nove #-1,m7 ; linear addressing
jsr ada_init ; initialize codec
move #Y START,n4 ; offset of buffer - external memory
move #SFFFF, m4 ; use linear addressing
move #0,r4

/ /
/)
7
7, —
. ’

move #LINEAR, mO
rec_loop
movep #$21,x:M_TCSRO ;Timer mode 2 (FLASH LED)
move #0,r4
do #SF, rec2
do #SFFF, rec ; repeat recording #$FFFF times
jset #3,%x:M_SSISRO,* ; wait for rx frame sync
jclr #3,x:M_SSISRO, * ; wait for rx frame sync
clr a
clr b
move x:RX_BUFF_BASE, a ; receive left
; move x:RX_BUFF_BASE+l,b ; receive right
nop
move a,y: (réd+n4) ; save new sample in buffer
move y:(rd)+,b ; increment buffer
nop
. move a,x:TX_BUFF_BASE ; transmit left
; move b,x:TX BUFF_BASE+l ; transmit right
rec
nop
rec2
movep #5$11,x:M_TCSRO ;Select timer mode 1 (LED OFF)
jmp rec
play_loop
movep #$11,x:M _TCSRO ;Select timer mode 1 (LED OFF)
move #0,r4
do #SF,play2
do #S$FFF, play ; repeat recording #$FFFF times
jset #3,%x:M_SSISRO,* ; wait for rx frame sync
jclr #3,%x:M_SSISRO,* ; wait for rx frame sync
clr a
clr b
move X:RX_BUFF_BASE, a ; receive left
; move x:RX_BUFF_BASE+l,b ; receive right
nop
move y:(rd4+nd),a : ; recall oldest sample in buffer
move y:(rd)+,b ; increment buffer
nop
; move b, x:TX_BUFF_BASE ; transmit left
move a,x:TX_BUFF_BASE+1 ; transmit right
play
nop
play2
jmp play

include 'ada_init.asm'; used to include codec initialization routines

end

; Author: Adam Dziedzic

; Filename: LPfilter.asm

; Description: implements a second order Butterworth Lowpass filter
; sampling rate: 44.1 kHz

; cut-off frequency: 5.5 kHz

; Nyquist frequency: 22.05 kHz

,-***

nolist
include 'ioequ.asm'
include 'intequ.asm'
include 'ada_equ.asm'
include 'vectors.asm'
list

;************************'k***

;-—-Buffer for talking to the CS4218

org x:$0
RX_BUFF_BASE equ *
RX data_1 2 ds 1 ; data time slot 1/2 for RX ISR (left audio)
RX data_3_4 ds 1 ; data time slot 3/4 for RX ISR (right audio)
TX_BUFF BASE equ *
TX data_1_2 ds 1 ; data time slot 1/2 for TX ISR (left audio)
TX data_3_4 ds 1 ; data time slot 3/4 for TX ISR (right audio)
RX_PTR ds 1 ; Pointer for rx buffer
TX_ PTR ds 1 ; Pointer for tx buffer
CTRL_WD_12 equ MIN LEFT ATTN+MIN RIGHT ATTN+LIN2+RIN2
CTRL_WD_34 equ MIN LEFT_ GAIN+MIN_ RIGHT_GAIN
org p:$190
;Low-pass filter coeffs
;NZEROS equ 2
;NPOLES equ 2
; GAIN equ 1.028071822
; INV_GAIN
dc 0.9726946878
; COEF1
dc 0.3341260413
; COEF2
dc 0.9450481661
; INV_GAIN equ * '
;INV_GAIN_d equ 0.9726946878
;COEF1 equ *
;COEF1_d equ 0.6905989232
;COEF2 equ *
;COEF2_d equ 1.6329931618
org p:$100
START
main

;Do initialization stuff
movep #$040006,x:M PCTL ; PLL 7 X 12.288 = 86.016MHz

ori #3, mr ; mask interrupts
movec #0, sp ; clear hardware stack pointer
move #0, omr ; operating mode 0

move #$40,1r7 ; initialize stack pointer
move #-1,m7 ; linear addressing
jsr ada_init ; initialize codec

;Filter buffers

move #$0400,r3 ; xv[] buffer from filter code - start at
$400

move #3,m3 ; length of 3 samples

move
move

clr
rep
move

filter_ loop

jset
sync

jclr
sync
into yO

x0 = x[n-2],

x[n-2]

* y[n-1], yO

COEF1 * y[n-2]

2*b + a

filter

#$0420,r4

#$3,m4

; Coefficients
move #5190, 5
move #$3,m5

a

#3

a,l:(rd)+

;Get a sound sample
#3,x:M _SSISRO, *

#3,%:M_SSISRO, *

clr b

move x:RX_BUFF_BASE, X0

move p:$190,y0

mpy x0,y0,b
y0 = y[n-1]

move b,x:(r3)+

add x0,b

move p:$192, %0

nop

mac -x0,y0,b

y[n-2]

move p:$191,x0

mac x0,y0,b

move X:(r3),a

addl b,a

nop

move a,y: (ré4)

;transmit sound sample - same

move a,x:TX_BUFF_BASE
move b, x:TX_BUFF_BASE+1
jmp filter_ loop

; yv[] buffer
; make filter buffer 3 deep

; coefficient buffer
; 3 deep already set up (with dc)

; clear a
; clear the filter buffer

; wait for rx frame

; wait for rx frame

; new input
; load 1/GAIN
x:(r3)+,x0 y:(rd)+,y0 ; b = new_input/GAIN,

; store x[n]
;b +=

; x0 = COEF2

y:(rd)+,y0 ; b += -COEF2
; x0 = COEF1l
; b +=

; a = x[n-1]
;b=

; store output
to both channels

; right channel
; left channel

include 'ada_init.asm' ; used to include codec initialization routines

end

; Author: Adam Dziedzic

; Filename: LPfilter.asm

; Description: implements a second order Butterworth Lowpass filter
; sampling rate: 44.1 kHz

; cut-off frequency: 2.5 kHz

; Nyquist frequency: 22.05 kHz

;**'k'k*******************************

nolist
include 'ioequ.asm'
include 'intequ.asm'
include 'ada_equ.asm'
include 'vectors.asm'
list

;**

;-—-Buffer for talking to the CsS4218

org x:$0
RX_BUFF_BASE equ *
RX data_1 2 ds 1 ; data time slot 1/2 for RX ISR (left audio)
RX data_3_4 ds 1 ; data time slot 3/4 for RX ISR (right audio)
TX_BUFF_BASE equ *
TX data_1 2 ds 1 ; data time slot 1/2 for TX ISR (left audio)
TX data_3_4 ds 1 ; data time slot 3/4 for TX ISR (right audio)
RX_PTR ds 1 ; Pointer for rx buffer
TX_PTR ds 1 ; Pointer for tx buffer
CTRL_WD_12 equ MIN LEFT_ATTN+MIN_RIGHT_ ATTN+LIN2+RIN2
CTRL_WD_34 equ MIN LEFT_GAIN+MIN_ RIGHT_GAIN

org p:$1A0

’

;Low-pass filter coeffs

; NZEROS equ 2
;NPOLES equ 2
;GAIN equ 1.028071822
; INV_GAIN
dc 0.51761146 ;0.9726946878
; COEF1
dc 0.6043997995 ;0.3341260413
; COEF2 .
dc 0.5036953413 ;0.9450481661
org p:$100
START
main

;Do initialization stuff
movep #5$040006,x:M PCTL ; PLL 7 X 12.288 = 86.016MHz

ori #3,mr ; mask interrupts
movec #0,sp ; clear hardware stack pointer
move #0, omr ; operating mode 0

move #$40, 7 ; initialize stack pointer
move #-1,m7 ; linear addressing
jsr ada_init ; initialize codec

;Filter buffers

move #$0400,r3 ; xv[] buffer from filter code - start at $400
move #3,m3 ; length of 3 samples

move #$0420,r4 ; yv[] buffer

move #$3, m4d ; make filter buffer 3 deep

clr a ; clear a

rep #3 ; clear the filter buffer

move
filter_ loop

jset
jclr

into yO

= x[n-2], y0 =

x[n-2]

a,l:(rd)+

;Get a sound sample
#3,%x:M_SSISRO,*
#3,x:M_SSISRO,*

clr b
move x:RX_BUFF_BASE, x0
move p:$1A0,y0

mpy x0,y0,b
y[n-1]

nop

move b,x:(r3)+

add x0,b

move p:5$1A2,x0

nop

add y0,b

nop

mac -x0,y0,b

y(n-11, y0 = y[n-2]

COEF1l * y[n-2]

filter

move p:$1A1,x0

mac x0,y0,b
nove x:(r3),a

addl b,a

nop

move a,y: (rd)

;transmit sound sample - same

move a,x:TX BUFF BASE

move a,x:TX BUFF BASE+1

Jjmp filter_ loop

to both channels
right channel
left channel

wait for rx frame sync
wait for rx frame sync

new input
; load 1/GAIN

b = new_input/GAIN, x0

; store x[n]

; b +=
; x0 = COEF2
1 (rd)+,y0 ; b += -COEF2 *

; x0 = COEF1
; b +=

; store output

include 'ada init.asm' ; used to include codec initialization routines

end

Filter Design Results

Filter Design Results

Generated by: http://www-users.cs.york.ac.uk/~fisher/mkfilter

Summary

You specified the following parameters:

filtertype = Butterworth
passtype = Lowpass
ripple =
order =2
samplerate = 44100
cornerl =5500
corner2 =
adzero =
logmin =
Results
Command line:
raw alphal = 0.1247165533
raw alpha2 = 0.1247165533
warped alphal = 0.1315163158
warped alpha2 = 0.1315163158
gain at dc : mag = 1.028071822e+01
gain at centre: mag = 7.269565568e+00
gain at hf : mag = 0.000000000e+00
S-plane zeros:
S-plane poles:
-0.5843115954 J 0.5843115954
-0.5843115954 j -0.5843115954
Z-plane zeros:
-1.0000000000 j 0.0000000000
Z-plane poles:

0.4725240831
0.4725240831

Recurrence relation:

y[n]

+ + |

+ +

(
(
(

(
(

1 * x[n- 2])
2 * x[n- 17])
1 * x[n- 0])

-0.3341260413

0.9450481661 *

3 0.3329369794
j -0.3329369794

y[n- 2])
y[n- 11)

phase = 0.0000000000 pi
phase = -0.5000000000 pi
2 times

http://www-users.cs.york.ac.uk/~fisher/cgi-bin/mkfscript

Page 1 of 5

/www/usr/fisher/helpers/mkfilter -Bu -Lp -o 2 -a 1.2471655329e-01 0.C

12/4/99

Filter Design Results Page 2 of 5

Ansi "C'" Code

/* Digital filter designed by mkfilter/mkshape/gencode A.J. Fisher
Command line: /www/usr/fisher/helpers/mkfilter -Bu -Lp -o 2 -a 1.2471655329%e-01

#define NZEROS 2

#define NPOLES 2

#define GAIN 1.028071822e+01

static float xv[NZEROS+1], yv[NPOLES+1];

static void filterloop ()
{ for (;;)

{ xv[0] = xv[1]; xv[l] = xv[2];
xv[2] = next input value / GAIN;
yv[0] = yv[1]; yv[1] = yvI[2];
yviz2] = (xv[0] + xv[2]) + 2 * xv[1l]

+ (-0.3341260413 * yv[0]) + (0.9450481661 * yv[1]);
next output value = yv[2];

Download code and/or coefficients:

Magnitude (red) and phase (blue) vs. frequency

e x axis: frequency, as a fraction of the sampling rate (i.e. 0.5 represents the Nyquist frequency,
which is 22050 Hz)

y axis (red): magnitude (linear, normalized)

y axis (blue): phase

1.8 ’ — +pi

B8 3 -

L\x]
-
i
™
T

http://www-users.cs.york.ac.uk/~fisher/cgi-bin/mkfscript 12/4/99

Filter Design Results

8.1

8.8 T T T
9.8 ©8.05 ©0.18 8.15 ©.260 9.25 06.30 .35 08.48 0.45 0.50

For an expanded view, enter frequency limits (as a fraction of the sampling rate) here:

Lower limit: l Upper limit: I

Impulse response

e x axis: time, in samples (i.e. 44100 represents 1 second)
e y axis (red): filter response (linear, normalized)

8.2 k

8.8 !I; -

8.4 -

-8.6

w0
|

~H

a 18 208 368 48 58 60 70 86 20 160

Step response

e x axis: time, in samples (i.e. 44100 represents 1 second)
e y axis (red): filter response (linear, normalized)

http://www-users.cs.york.ac.uk/~fisher/cgi-bin/mkfscript

Page 3 of 5

12/4/99

Filter Design Results Page 4 of 5

8.2

For a view on a different scale, enter upper time limit (integer number of samples) here:
Upper limit: I __

Tony Fisher fisher@minster.york.ac.uk

http://www-users.cs.york.ac.uk/~fisher/cgi-bin/mkfscript 12/4/99

Filter Design Results Page 5 of §

http://www-users.cs.york.ac.uk/~fisher/cgi-bin/mkfscript 12/4/99

Filter Design Results Page 1 of 5

Filter Design Results

Generated by: http://www-users.cs.york.ac.uk/~fisher/mkfilter

Summary

You specified the following parameters:

filtertype = Butterworth
passtype = Lowpass
ripple =

order =2
samplerate = 44100
cornerl ~ =2500

corner2 =

adzero =

logmin =
Results
Command line: /www/usr/fisher/helpers/mkfilter -Bu -Lp -o 2 -a 5.6689342404e-02 0.C
raw alphal = 0.0566893424
raw alpha2 = 0.0566893424
warped alphal = 0.0572963984
warped alphaz = 0.0572963984
gain at dc : mag = 3.972018787e+01 phase = 0.0000000000 pi
gain at centre: mag = 2.808641419e+01 phase = -0.5000000000 pi
gain at hf : mag = 0.000000000e+00

S-plane zeros:

S-plane poles:
-0.2545611911 + 3 0.2545611911
-0.2545611911 + j -0.2545611911

Z-plane zeros:
-1.0000000000 + 3 0.0000000000 2 times

Z-plane poles:
0.7518476706 + jJ 0.1978001002
0.7518476706 + j -0.1978001002

Recurrence relation:

y[n] = (1 * x[n- 2])
+ (2 * x[n- 1])
+ (1 * x[n- 0])
+ (-0.6043997995 * y[n- 2])
+ (1.5036953413 * y[n- 11)

http://www-users.cs.york.ac.uk/~fisher/cgi-bin/mkfscript 12/5/99

Filter Design Results Page 2 of 5

Ansi "C" Code

/* Digital filter designed by mkfilter/mkshape/gencode A.J. Fisher
Command line: /www/usr/fisher/helpers/mkfilter -Bu -Lp -o 2 -a 5.6689342404e-02

#define NZEROS 2

#define NPOLES 2

#define GAIN 3.972018787e+01

static float xv[NZEROS+1], yv[NPOLES+1];

static void filterloop()

{ for (;;)
{ xv[0] = xv[1]; xv[1l] = xv[2];
xv[2] = next input value / GAIN;
yv([0] = yv[1]; yv[1l] = yv[2];
yv([z2] = (xv[0] + xv[2]) + 2 * xv[1l]

+ (-0.6043997995 * yv[0]) + (1.5036953413 * yv[1l]);
next output value = yv[2];

Download code and/or coefficients:

Magnitude (red) and phase (blue) vs. frequency

e xaxis: frequency, as a fraction of the sampling rate (i.e. 0.5 represents the Nyquist frequency,
which is 22050 Hz)

e y axis (red): magnitude (linear, normalized)

¢ y axis (blue): phase

- tpi

&t P
- [
1 i
,‘_'_'._f«-/'_
T i

http://www-users.cs.york.ac.uk/~fisher/cgi-bin/mkfscript 12/5/99

Filter Design Results

8.0 T T T T T T T T T T —Pi
B.B® B.65 ©.16 B6.15 B8.20 ©8.25 B6.38 6.35 0.48 0.45 B.50

For an expanded view, enter frequency limits (as a fraction of the sampling rate) here:

Lower limit: I Upper limit: I

Impulse response

e x axis: time, in samples (i.e. 44100 represents 1 second)
e y axis (red): filter response (linear, normalized)

0.4 ‘

B.2 - !

5.0 - L

-8.4

-,6 -

a 18 28 30 48 58 68 70 86 90 168

Step response

e x axis: time, in samples (i.e. 44100 represents 1 second)
e y axis (red): filter response (linear, normalized) -

http://www-users.cs.york.ac.uk/~fisher/cgi-bin/mkfscript

Page 3 of 5

12/5/99

Filter Design Results Page 4 of 5

Lo
w0
1

8.4

8.8 -

For a view on a different scale, enter upper time limit (integer number of samples) here:
Upper limit: I '

Tony Fisher fisher@minster.york.ac.uk

http://www-users.cs.york.ac.uk/~fisher/cgi-bin/mkfscript 12/5/99

Filter Design Results Page 5 of 5

http://www-users.cs.york.ac.uk/~fisher/cgi-bin/mkfscript 12/5/99

Bibliography

Digital Stereo 10-Band Graphic Equalizer Using the DSP56001 Application Notes:
Motorola Inc, 1988

DSP56000 Digital Signal Processor Family Manual, Motorola Inc, 1995

DSP56307EVM Users Manual, Motorola Inc, PDF version

http://www.dspguru.com/

http://www.mot-sps.com/

http://www-users.cs.york.ac.uk/~fisher/cgi-bin/mkfscript

