CHAPTER

TEN
SAMPLING AND PULSE MODULATION

Experimental data and mathematical functions are frequently displayed as contin-
uous curves, even though a finite number of discrete points was used to construct
the graphs. If these points or samples have sufficiently close spacing, a smooth
curve drawn through them allows you to interpolate intermediate values to any
reasonable degree of accuracy. It can therefore be said that the continuous curve
is adequately described by the sample points alone.

In similar fashion, an electric signal satisfying certain requirements can be
reproduced from an appropriate set of instantaneous samples. Sampling therefore
makes it possible to transmit a message in the form of pulse modulation, rather
than as a continuous signal. Usually the pulses are quite short compared to the
time between them, so a pulse-modulated wave has the property of being “ off
most of the time.

This property of pulse modulation offers two potential advantages over CW
modulation. First, the transmitted power can be concentrated into short bursts
instead of being generated continuously. The system designer then has greater
latitude for equipment selection, and may choose devices such as lasers and high-
power microwave tubes that operate only on a pulsed basis. Second, the time
interval between pulses can be filled with sample values from other signals, a
process called time-division multiplexing (TDM).

But pulse modulation has the disadvantage of requiring very large transmis-
sion bandwidth compared to the message bandwidth. Consequently, the methods
of analog pulse modulation discussed in this chapter are used primarily as
message processing for TDM and/or prior to CW modulation. Digital or coded
pulse modulation has additional advantages that compensate for the increased
bandwidth, as we’ll see in Chap. 12.
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10.1 SAMPLING THEORY AND PRACTICE

The theory of sampling presented here sets forth the conditions for signal sam-
pling and reconstruction from sample values. We'll also examine practical imple-
mentation of the theory and some related applications,

Chopper Sampling

A simple but highly informative approach to sampling theory comes from the
switching operation of Fig. 10.1-1a. The switch periodically shifts between two
contacts at a rate of f, = 1/T, Hz, dwelling on the input-signal contact for t
seconds and on the grounded contact for the remainder of each period. The
output x,(t) then consists of short segments of the input x(t), as shown in Fig.
10.1-1b. Figure 10.1-1c is an electronic version of Fig. 10.1-1a; the output voltage
equals the input voltage except when the clock signal forward-biases the diodes
and thereby clamps the output to zero. This operation variously called single-
ended or unipolar chopping, is not instantaneous sampling in the strict sense.
Nonetheless, x,(t) will be designated the sampled wave and f; the sampling fre-
quency.

We now ask: Are the sampled segments sufficient to describe the original
input signal and, if so, how can x(¢) be retrieved from x(t)? The answer to this
question lies in the frequency domain, in the spectrum of the sampled wave.

As a first step toward finding the spectrum, we introduce a switching function
s{(t) such that

x,{t) = x(t)s(t) (1
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Figure 10.1-1 Switching sampler. (a) Functional diagram; (b) waveforms; (c) circuit realization wit}
diode bridge.
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Figure 10.1-2 Sampling as multiplication. () Functional diagram; (b} switching function.

Thus the sampling operation becomes multiplication by s(¢), as indicated sche-
matically in Fig. 10.1-2a, where s(t) is nothing more than the periodic pulse train
of Fig. 10.1-2b. Since s(t) is periodic, it can be written as a Fourier series. Using
the results of Example 2.1-1 we have

sty =) firsinc nf,r &2V = ¢, + ¥ 2¢, cos nw,t 2

n=—w n=1

where
¢, =f,t sinc nf,t w, = 2nf,
Combining Eq. (2) with Eq. (1) yields the term-by-term expansion
xt) = co x(t) + 2c,x(t) cos w,t + 2¢, x(t) cos 2wt + -+ (3)
Thus, if the input message spectrum is X(f) = F[x(t)], the output spectrum is

XA =co X))+ a[X(U =19+ XU+ 4]
+ X = 2) + X(f+ 2)]

which follows directly from the modulation theorem.

While Eq. (4) appears rather messy, the spectrum of the sampled wave is
readily sketched if the input signal is assumed to be bandlimited. Figure 10.1-3
shows a convenient X(f) and the corresponding X ,(f) for two cases, f, > 2W and
Sfs < 2W. This figure reveals something quite surprising: the sampling operation
has left the message spectrum intact, merely repeating it periodically in the fre-
quency domain with a spacing of f,. We also note that the first term of Eq. (4) is
precisely the message spectrum, attenuated by the duty cycle ¢q = f,1 = t/T,.

If sampling preserves the message spectrum, it should be possible to recover
or reconstruct x(t) from the sampled wave x,(t). The reconstruction technique is
not at all obvious from the time-domain relations in Egs. (1) and (3). But referring
again to Fig. 10.1-3, we see that X(f) can be separated from X (f) by lowpass fil-
tering, provided that the spectral sidebands don’t overlap. And if X(/) alone is fil-
tered from X,(f), we have recovered x(t). Two conditions obviously are necessary
to prevent overlapping spectral bands: the message must be bandlimited, and the
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Figure 10.1-3 Spectra for switching sampling. (2) Message; (b) sampled message, f, > 2W; (c) sampled
message, f, < 2W.

sampling frequency must be sufficiently great that f, — W > W. Thus, we require
X(f)=0 |fi>W
and

1 ,

T, < — S

foz2W  or S <Iw &)

The minimum sampling frequency f, . = 2W is called the Nyquist rate. When Eq.

(5) is satisfied and x(¢t) is filtered by an ideal LPF, the output signal will be pro-

portional to x(t); message reconstruction from the sampled signal therefore has

been achieved. The exact value of the filter bandwidth B is unimportant as long
as

W<B<f-W 6)
so the filter passes X(f) and rejects all higher components in Fig. 10.1-3b. Sam-

pling at f, > 2W creates a guard band into which the transition region of a practi-
cal LPF can be fitted.
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This analysis has shown that if a bandlimited signal is sampled at a frequency
greater than the Nyquist rate, it can be completely reconstructed from the
sampled wave. Reconstruction is accomplished by lowpass filtering. These con-
clusions may be difficult to believe at first exposure; they certainly test our faith
in spectral analysis. Nonetheless, they are quite correct.

Finally, it should be pointed out that our results are independent of the
sample-pulse duration, save as it appears in the duty cycle. If 7 is made very
small, x(t) approaches a string of instantaneous sample points, which corresponds
to ideal sampling. We'll pursue ideal sampling theory after a brief look at the
bipolar chopper, which has t = T,/2.

Example 10.1-1 Bipolar choppers Figure 10.1-4a depicts the circuit and
waveforms for a bipolar chopper. The equivalent switching function is a
square wave alternating between s(f) = +1 and — 1. From the series expan-
sion of s(t) we get

4 4 4
xX,(t) = = x(t) cos w,t — —— x(t) cos 3wt + — x(t) cos Sw,t — - (7)
4 3n Sn

whose spectrum is sketched in Fig. 10.1-4b for f > 0. Note that X (f) con-
tains no DC component and only the odd harmonics of f;. Clearly, we can’t
recover x(t) by lowpass filtering. Instead, the practical applications of bipolar
choppers involve bandpass filtering.

If we apply x(f) to a BPF centered at some odd harmonic nf,, the output
will be proportional to x{(t) cos nw,t—a double-sideband suppressed-carrier
waveform. Thus, a bipolar chopper serves as a balanced modulator. It also
serves as a synchronous detector when the input is a DSB or SSB signal and

x(f) £ x40) j/D_ '/xm

T,
=] Ts
-
(a)
l&(f)j
L /\ /\ o~
f 31, 51,
(b)

Figure 10.1-4 Bipolar chopper. (a) Circuit and waveforms; (b) spectrum,
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the output is lowpass filtered. These properties are combined in the chopper-
stabilized amplifier, which makes possible DC and low-frequency amplifica-
tion using a high-gain AC amplifier. Additionally, Prob. 10.1-4 indicates
how a bipolar chopper can be modified to produce the baseband mutliplexed
signal for FM stereo.

Ideal Sampling and Reconstruction

By definition, ideal sampling is instantaneous sampling. The switching device of
Fig. 10.1-1a yields instantaneous values only if T— 0; but then f,7— 0, and so
does x(t). Conceptually, we overcome this difficulty by multiplying x(t) by 1/t so
that, as t— 0 and 1/t — oo, the sampled wave becomes a train of impulses whose
areas equal the instantaneous sample values of the input signal. Formally, we
write the rectangular pulse train as

W= Y H(t _TH;)

k= — o

from which we define the ideal sampling function

sft) & lim LY i 5t — kT) ®)

0 k= —mo
The ideal sampled wave is then

X4t) & x(t)s)t) 9a)

—x0) ¥ ot —kT)

k=~

e s]

= Y x(kT) - kT) (9b)
k=~
since x(t) &t — kT,) = x(kT)) 8t — kT).
To obtain the corresponding spectrum X,(f) = F[x4t)] we note that
(1/7)x{t)— x4t) as T— 0 and, likewise, (1/71)X (f)— X f). But each coefficient in
Eq. (4) has the property ¢,/t = f, sinc nf, 7 = f, when t = 0. Therefore,

XN =LXN)+IXS =L+ XS+ +

=f X X(U/—nf) (10)
which is illustrated in Fig. 10.1-5 for the message spectrum of Fig. 10.1-3a taking
f. > 2W. We see that X,(f) is periodic in frequency with period f,, a crucial
observation in the study of sampled-data systems.
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Figure 10.1-5 Spectrum of ideally sampled message.

Somewhat parenthetically, we can also develop an expression for Sff) =
F[s41)] as follows. From Eq. (9a) and the convolution theorem, X4 f) = X(f) »
S, f) whereas Eq. (10) is equivalent to

xin=xs| $ poar-m]

Therefore, we conclude that

SaN=f % of—nf) (1)
so the spectrum of a periodic string of unit-weight impulses in the time domain is
a periodic string of impulses in the frequency domain with spacing f, = 1/T;; in
both domains we have a function that looks like a picket fence.

Returning to the main subject and Fig. 10.1-5, it’s immediately apparent that
if we invoke the same conditions as before — x(¢) bandlimited in W and f, > 2W
—then a filter of suitable bandwidth will reconstruct x(¢) from the ideal sampled
wave. Specifically, for an ideal LPF of gain K, time delay t,, and bandwidth B,
the transfer function is

= L ~ jortg
H(f) = KN (23)'3

so filtering x,(t) produces the output spectrum
Y(f) = H)XAS) = Kf, X(f)e 1>
assuming B satisfies Eq. (6). The output time function is then
W) =F '[Y(N)] = Kfex(t — 1)) (12)

which is the original signal amplified by Kf, and delayed by ¢,.
Further confidence in the sampling process can be gained by examining
reconstruction in the time domain. The impulse response of the LPF is

h(t) = 2BK sinc 2B(t — t,)
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And since the input x,(¢) is a train of weighted impulses, the output is a train of
weighted impulse responses, namely,

Ae) = h(t) « x0) = 3 x(kT)h(t — kT))

k

=2BK Y x(kT)sinc 2B(t —t; — kT) (13)

k=~

Now suppose for simplicity that B = f/2, K = 1/f,,and ¢, = 0, s0
W) = Y, X(kT;) sinc (f,¢ — k)
k

We can then carry out the reconstruction process graphically, as shown in Fig.
10.1-6. Clearly the correct values are reconstructed at the sampling instants ¢ =
kT,, for all sinc functions are zero at these times save one, and that one yields
x(kT)). Between sampling instants x() is interpolated by summing the precursors
and postcursors from all the sinc functions. For this reason the LPF is often
called an interpolation filter, and its impulse is called the interpolation function.

The above results are well summarized by stating the important theorem of
uniform (periodic) sampling. While there are many variations of this theorem, the
following form is best suited to our purposes.

If a signal contains no frequency components for | f| > W, it is completely
described by instantaneous sample values uniformly spaced in time with
period T, < 1/2W. If a signal has been sampled at the Nyquist rate or greater
(f, = 2W) and the sample values are represented as weighted impulses, the
signal can be exactly reconstructed from its samples by an ideal LPF of
bandwidth B, where W < B < f, — W.

Another way to express the theorem comes from Egs. (12) and (13) with K = T,
and t, = 0. Then ¥t) = x(t) and

x(t) = 2BT, ¥ x(kT) sinc 2B(t — kT, (14)
k=-w
provided T, < 1/2W and B satisfies Eq. (6). Therefore, just as a periodic signal is
completely described by its Fourier series coefficients, a bandlimited signal is
completely described by its instantaneous sample values whether or not the signal
actually is sampled.
Several additional theorems pertaining to signal sampling have been devel-
oped. They are discussed in Black (1953, chap. 4) and Peebles (1976, chap. 7).
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Exercise 10.1-1 Consider a sampling pulse train of the general form

0= T ple—kT) (15)
k=~

whose pulse shape p(r) equals zero for |¢| > T,/2 but is otherwise arbitrary.
Use an exponential Fourier series and Eq. (21), Sect. 2.2, to show that

SAN =1, T Plaf) 87~ nf) (15b)

where P(f) = #[p(t)]. Then let p(t) = J(r) to obtain Eq. (11).

Practical Sampling and Aliasing

Practical sampling systems differ from ideal sampling in three obvious aspects:

1. The sampled wave consists of pulses having finite amplitude and duration,
rather than impulses.

2. Practical reconstruction filters are not ideal filters.

3. The messages to be sampled are timelimited signals whose spectra are not and
cannot be strictly bandlimited.

The first two differences may present minor problems, while the third leads to the
more troublesome effect known as aliasing.

Regarding pulse-shape effects, our investigation of the unipolar chopper and
the results of Exercise 10.1-1 correctly imply that almost any pulse shape p{t) will
do when sampling takes the form of a multiplication operation x(£)s {t). Another
operation produces flat-top sampling, described in the next section. This type of
sampling may require equalization, but it does not alter our conclusion that pulse
shapes are relatively inconsequential.

Regarding practical reconstruction filters, we consider the typical filter
response superimposed on a sampled-wave spectrum in Fig. 10.1-7. If the filter is
reasonably flat over the message band, its output will consist of x(t) plus spurious
frequency components at | f| > f, — W, outside the message band. In audio
systems these components would sound like high-frequency hissing or *noise.”

P

Figure 10.1-7 Practical reconstruction fiter.
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Figure 10.1-8 Aliasing effect. (a) Spectrum of timelimited message; (b) sampled message spectrum
with overlaps.

However, they are considerably attenuated and their strength is proportional to
x(t), so they disappear when x(t) = 0. When x(t) # 0, the message tends to mask
their presence and render them more tolerable. The combination of careful filter
design and an adequate guard band created by taking f, > 2W makes practical
reconstruction filtering nearly equivalent to ideal reconstruction.

Regarding the timelimited nature of real signals, a message spectrum like Fig.
10.1-8a may be viewed as a bandlimited spectrum if the frequency content above
W is small and presumably unimportant for conveying the information. When
such a message is sampled, there will be unavoidable overlapping of spectral
components shown in Fig. 10.1-8b. In reconstruction, frequencies originally
outside the nominal message band will appear at the filter output in the form of
much lower frequencies. Thus, for example, f; > W becomes f, — f, < W, as indi-
cated in the figure.

This phenomenon of downward frequency translation occurs whenever a fre-
quency component is undersampled, so that f, < 2f,, and is given the descriptive
name of aliasing. The aliasing effect is far more serious than spurious frequencies
passed by nonideal reconstruction filters, for the latter fall outside the message
band, whereas aliased components fall within the message band. Aliasing is com-
bated by filtering the message as much as possible before sampling and, if neces-
sary, sampling at much greater than the nominal Nyquist rate.

As illustration, the average voice spectrum (Fig. 3.2-1) extends well beyond 10
kHz, though most of the energy is concentrated in the range 100 to 600 Hz and a
bandwidth of 3 kHz is sufficient for intelligibility. If a voice wave is prefiltered by
a 3.3-kHz LPF and then sampled at f, = 8 kHz, the aliased components are typi-
cally 30 dB below the desired signal and go unnoticed by the listener. Inciden-
tally, these are the standard values for voice-telephone sampling.

Example 10.1-2 Sampling Oscilloscopes A practical application of aliasing
occurs in the sampling oscilloscope, which exploits undersampling to display
high-speed periodic waveforms that would otherwise be beyond the capability
of the electronics. To illustrate the principle, consider the periodic waveform
x(t) with period T, + 1/f, in Fig. 10.1-9a. If we use a sampling interval T,
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struct y(t) = x(at) from x(t) provided that

1
2m + 1

LX) ¥(1) = x(ar)

o <

which prevents spectral overlap.

Exercise 10.1-2 Demonstrate the aliasing effect for yourself by making a
careful sketch of cos 2710t and cos 2770t for 0 < ¢ < !/,,. Put both sketch-
es on the same set of axes and find the sample values at t = 0, Y450, a0 .-+
%80, which corresponds to f, = 80. Also, convince yourself that no other
waveform bandlimited in 10 < W < 40 can be interpolated from the sample
values of cos 2710z

b | l
@ =73 o 7, T

T 1 19 [

-2, -/, AUE £ 2,

10.2 ANALOG PULSE MODULATION

If a message waveform is adequately described by periodic sample values, it can
be transmitted using analog pulse modulation wherein the sample values modu-
late some parameter of a pulse train. Pulse parameters suitable for modulation
include amplitude, duration, and position. The corresponding processes are desig-
nated pulse-amplitude modulation (PAM), pulse-duration modulationt (PDM), and
pulse-position modulation (PPM),

Figure 10.2-1 illustrates these types of pulse modulation with a representative
message waveform. The modulated pulse parameter —amplitude, duration, or

Figure 10.1-9 (a) Periodic waveform with undersampling; (b) spectrum of x{t);
{¢) spectrum of yt) = x{at), x < 1.

slightly greater than T, and interpolate the sample points, we get the expand-
ed waveform y(t) = x{at) shown as a dashed curve. The corresponding sam-
pling frequency is

t Also called pulse-width modulation (PWM),

fi=01—af, O<ax<l

so f, < f, and even the fundamental frequency of x(t) will be undersampled.
Now let’s find out if and how this system actually works by going to the fre-
quency domain. -

We assume that x(t) has been prefiltered to remove any frequency com-
ponents higher than the mth harmonic. Figure 10.1-9b shows a typical two-
sided line spectrum of x(t), taking m = 2 for simplicity. Since sampling
translates all frequency components up and down by nf,, the fundamental
will appear in the spectrum of the sampled signal at

= 21— L= 2o,

as well as at +f, and at f, + nf, =(1 + n)f, + nf,. Similar translations

applied to the DC component and second harmonic yield the spectrum in
Fig. 10.1-9¢, which contains a compressed image of the original spectrum cen-
tered at each multiple of f,. Therefore, a lowpass filter with B = f,/2 will con-

Figure 10.2-1 Types of analog pulse modulation.

~
B



356 SAMPLING AND PULSE MODULATION

relative position— varies in direct proportion to the sample values of x(t). For
clarity, the pulses are shown as rectangular and the pulse durations have been
grossly exaggerated. Actual modulated waves would also be delayed slightly com-
pared to the message, because the pulses can't be generated before the sampling
instants.

it should be evident from these waveforms that a modulated pulse train has
significant DC content and that the bandwidth required to preserve the pulse
shape far exceeds the message bandwidth. Consequently, you seldom encounter a
single-channel communication system with PAM, PDM, or PPM. But analog
pulse modulation deserves attention for its major roles in time-division multi-
plexing, data telemetry, and instrumentation systems.

Flat-Top Sampling and PAM

Although a PAM wave could be obtained from a chopper circuit, a more popular
method employs the sample-and-hold (S/H) technique. This operation produces
flat-top pulses, as in Fig. 10.1-2, rather than curved-top chopper pulses. We there-
fore begin here with the properties of flat-top sampling.

A rudimentary S/H circuit consists of two FET switches and a capacitor,
connected as shown in Fig. 10.2-2a. A gate pulse at G1 briefly closes the sampling
switch and the capacitor holds the sampled voltage until discharged by a pulse
applied to G2. (Commercial integrated-circuit S/H units have further refinements,
including isolating op-amps at input and output.) Periodic gating of the sample-
and-hold circuit generates the sampled wave

x,(t) =3 xtkT)ptt — kT)) ‘ )

k

illustrated by Fig. 10.2-2b. Note that each output pulse of duration t represents a
single instantaneous sample value.

To analyze flat-top sampling, we’ll draw upon the relation pt — kT,) = plt) »
3t — kT) and write

xpit) = plt) * [; x(kT,) &t — kTs):| = plt) * x4(t)

o x(kT )
x(t
~—
//
kT,

(a) (b)

Sampling  Discharge
switch switch

x(1) Xt

Figure 10.2-2 Flat-top sampling. (a) Sample-and-hold circuit; (b) waveforms.
S
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Fourier transformation of this convelution operation yields
X,(f)=P(f)[f,ZX(f— nf,)] = P()X /) (02

Figure 10.2-3 provides a graphical interpretation of Eq. (2), taking X(f) =
T1(f/2W). We see that flat-top sampling is equivalent to passing an ideal sampled
wave through a network having the transfer function P(f) = #[p(1)].

The high-frequency rolloff characteristic of a typical P(f) acts like a lowpass
filter and attenuates the upper portion of the message spectrum. This loss of high-
frequency content is called aperture effect. The larger the pulse duration or aper-
ture 7, the larger the effect. Aperture effect can be corrected in reconstruction by
including an equalizer with

H.(f) = Ke 1"/P(f) 3

However, little if any equalization is needed when t/7; « 1.
Now consider a unipolar flat-top PAM signal defined by

x,(0) = ¥ Ag[1 + px(kT)]p(t — kT;) 4
k
The constant A, equals the unmodulated pulse amplitude, and the modulation
index u controls the amount of amplitude variation. The condition
b+ ux(t)>0 &)

ensures a unipolar (single-polarity) waveform with no missing pulses. The
resulting constant pulse rate f, is particularly important for synchronization in
time-division multiplexing.

| Xs0|
{ 1
t 1 f
(@) -1, o .
RAG]
[P
- ~<
] [
() -, 0 f

Figure 10.2-3 (a) Spectrum for ideal sampling when X(f) = I f12W); (b) aperture effect in flat-top
sampling.
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Comparison of Egs. (1) and (4) shows that a PAM signal can be obtained
from a sample-and-hold circuit with input 44[1 + ux(¢)]. Correspondingly, the
PAM spectrum will look like Fig. 10.2-3b with X(f) replaced by

F{A 1 + ux()]} = Ao[d(f) + nX(f)),

which results in spectral impulses at all harmonics of f; and at f = 0. Reconstruc-
tion of x(1) from x,(t) therefore requires a DC block as well as lowpass filtering
and equalization.

Clearly, PAM has many similarities to AM CW modulation — modulation
index, spectral impulses, and DC blocks. (In fact, an AM wave could be derived
from PAM by bandpass filtering.) But the PAM spectrum extends from DC up
through several harmonics of f,, and the estimate of required transmission band-
width B; must be based on time-domain considerations. For this purpose, we
assume a small pulse duration t compared to the time between pulses, so

1
T, < —
t« <50

Adequate pulse resolution then requires
|
Brz—>»>W )
27

Hence, practical applications of PAM are limited to those situations in which the
advantages of a pulsed waveform outweigh the disadvantages of large bandwidth.

Exercise 10.2-1 Consider PAM transmission of a voice signal with
W = 3 kHz. Calculate B, if f, = 8§ kHzand 1 = 0.1 T,.

Pulse-Duration and Pulse-Position Modulation

We lump PDM and PPM together under one heading for two reasons. First, in
both cases a time parameter of the pulse is being modulated, and the pulses have
constant amplitude. Second, a close relationship exists between the modulation
methods for PDM and PPM.

To demonstrate these points, Fig. 10.2-4 shows the block diagram and wave-
forms of a system that combines the sampling and modulation operations for
either PDM or PPM. The system employs a comparator and a sawtooth-wave
generator with period T,. The output of the comparator is zero except when the
message waveform x(t) exceeds the sawtooth wave, in which case the output is a
positive constant A. Hence, as seen in the figure, the comparator produces a
PDM signal with trailing-edge modulation of the pulse duration. (Reversing the
sawtooth results in leading-edge modulation, as in Fig. 7.3-3, while replacing
the sawtooth with a triangular wave results in modulation on both edges.)
Position modulation is obtained by applying the PDM signal to a monostable
pulse generator that triggers on trailing edges at its input and produces short
output pulses of fixed duration.
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Figure 10.2-4 Generation of PDM or PPM. (g) Block diagram; (b) waveforms.

Careful examination of Fig. 10.2-4b reveals that the modulated duration or
position depends on the message value at the time location ¢, of the pulse edge,
rather than the apparent sample time kT,. Thus, the sample values are nonuni-
formly spaced. Inserting a sample-and-hold circuit at the input of the system gives
uniform sampling if desired, but there’s little difference between uniform and non-
uniform sampling in the practical case of small amounts of time modulation such
thatr, — kT, « T,.

If we assume nearly uniform sampling, the duration of the kth pulse in the
PDM signal is

7 = to[1 + ux(kT)] 7

in which the unmodulated duration 1, represents x(k7;) = 0 and the modulation
index u controls the amount of duration modulation. Qur prior condition on y in
Eq. (5) applies here to prevent missing pulses and “negative” durations when
x(kT)) < 0. The PPM pulses have fixed duration and amplitude so, unlike PAM
and PDM, there’s no potential problem of missing pulses. The kth pulse in a
PPM signal begins at time

bo=kT, + t, + to x(kT) (8)

in which the unmodulated position kT, + t, represents x(kT,) = 0 and the con-
stant t, controls the displacement of the modulated pulse.
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The variable time parameters in Eqs. (7) and (8) make the expressions for
x,{t) rather awkward. However, an informative approximation for the PDM
waveform is derived by taking rectangular pulses with amplitude A centered at
t = kT, and assuming that 7, varies slowly from pulse to pulse. Series expansion
then yields

x (1) = Af;to[1 + ux()] + Y %—:- sin ng(t) cos nwt 9)
n=1

where ¢(t) = nf, 14[1 + ux(r)]. Without attempting to sketch the corresponding

spectrum, we see from Eq. (9) that the PDM signal contains the message x(t) plus

a DC component and phase-modulated waves at the harmonics of f,. The phase

modulation has negligible overlap in the message band when 1, « T, so x(t) can

be recovered by lowpass filtering with a DC block.

Another message reconstruction technique converts pulse-time modulation
into pulse-amplitude modulation, and works for PDM and PPM. To illustrate
this technique the middle waveform in Fig. 10.2-5 is produced by a ramp gener-
ator that starts at time kT, stops at ¢t,, restarts at (k + 1)T,, and so forth. Both
the start and stop commands can be extracted from the edges of a PDM pulse,
whereas PPM reconstruction must have an auxiliary synchronization signal for
the start command.

Regardless of the particular details, demodulation of PDM or PPM requires
received pulses with short risetime in order to preserve accurate message informa-
tion. For a specified risetime ¢, « T, the transmission bandwidth must satisfy

1
By =

25 (10)

which will be substantially greater than the PAM transmission bandwidth. In
exchange for the extra bandwidth, we gain the benefit of constant-amplitude
pulses that suffer no ill effects from nonlinear distortion in transmission since non-
linear distortion does not alter pulse duration or position.

PDM

PPM

Figure 10.2-5 Conversion of PDM or PPM into PAM.
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Additionally, like PM and FM CW modulation, PDM and PPM have the
potential for wideband noise reduction—a potential more fully realized by PPM
than by PDM. To appreciate why this is so, recall that the information resides in
the time location of the pulse edges, not in the pulses themselves. Thus, somewhat
like the carrier-frequency power of AM, the pulse power of pulse-time modula-
tion is “ wasted " power, and it would be more efficient to suppress the pulses and
just transmit the edges! Of course we cannot transmit edges without transmitting
pulses to define them. But we can send very short pulses indicating the position of
the edges, a process equivalent to PPM. The reduced power required for PPM is
a fundamental advantage over PDM, an advantage that becomes more apparent
when we examine the signal-to-noise ratios.

Exercise 10.2-2 Derive Eq. (9) by the following procedure. First, assume con-
stant pulse duration t and write x(t) = As(t) with s(t) given by Eq. (2), Sect.
10.1. Then apply the quasi-static approximation v = o[ 1 + ux(1)].

PPM Spectral Analysisy

Because PPM with nonuniform sampling is the most efficient type of analog
pulse modulation for message transmission, we should take the time to analyze
its spectrum. The analysis method itself is worthy of examination.

Let the kth pulse be centered at time ¢, . If we ignore the constant time delay
t, in Eq. (8), nonuniform sampling extracts the sample value at t,, rather than
kT, so

te = kT, + 1o x(ty) (i)

By definition, the PPM wave is a summation of constant-amplitude position-
modulated pulses, and can be written as

x,(t) = Z Aplt — 1) = Ap(t) = [Z ot — tk)_J
X X

where A is the pulse amplitude and p(t) the pulse shape. A simplification at this
point is made possible by noting that p(r) will (or should) have a very small dura-
tion compared to T,. Hence, for our purposes, the pulse shape can be taken as
impulsive, and

xX,(0) = A }kj 5t — 1) (12

If desired, Eq. (12) can later be convolved with p(t) to account for the non-
impulsive shape.

In their present form, Eqs. (11) and (12) are unsuited to further manipulation
the trouble is the position term t,, which cannot be solved for explicitly. Fortu-
nately, Rowe (1965, chap. 5) has devised a technique whereby ¢, can be eliminatec
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entirely. Consider any function g(t) having a single first-order zero at ¢ = 4, such
that g(4) = 0, g(t) # 0 for ¢ # 4, and §(t) # 0 at t = A. The distribution theory of
impulses then shows that

ot — 4) =140 L g(t)] (13)

whose right-hand side is independent of 4. Equation (13) can therefore be used to
remove f, from &(t — t,) if we can find a function g(t) that satisfies g(t,) = 0 and
the other conditions but does not contain 1.

Suppose we take g(t) =t — kT, — t, x(t), which is zero at = kT, + tq x(t).
Now, for a given value of k, there is only one PPM pulse, and it occurs at t =
KT, + tox(t). Thus g(t,) =t, — kT, — tox(t,) =0, as desired. Inserting A =1,
g(t) = 1 — ty x(t), etc., into Eq. (13) gives

ot — 1) = |1 =t x(t)| 8[t — kT, — 1ty x(1)]
and the PPM wave of Eq. (12) becomes

x,(t) = A[1 — 1 x(2)] zk: St —tox(t) — kT]

The absolute value is dropped since |1, x(t)| < 1 for most signals of interest if
to « T;. We then convert the sum of impulses to a sum of exponentials via

Y M —kT)=f T e (14)
k= -2 n= -
which is Poisson’s sum formula. Thus, we finally obtain

x(t) = Af[1 — 1o k()] 3 elnestimroxen

n= - a0

&€

= Af[1 -ty x(2)] {1 + Y 2 cos [nw,t — na,t, x(t)]} (15)
1

The derivation of Eq. (14) is considered in Prob. 10.2-11.

Interpreting Eq. (15), we see that PPM with nonuniform sampling is a com-
bination of linear and exponential carrier modulation, for each harmonic of f, is
phase-modulated by the message x(¢) and amplitude-modulated by the derivative
x(t). The spectrum therefore consists of AM and PM sidebands centered at all
multiples of f, plus a DC impulse and the spectrum of x(r). Needless to say,
sketching such a spectrum is a tedious exercise even for tone modulation. The
leading term of Eq. (15) suggests that the message can be retrieved by lowpass fil-
tering and integrating. However, the integration method does not take full advan-
tage of the noise-reduction properties of PPM, so the usual procedure is
conversion to PAM or PDM followed by lowpass filtering.
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10.3 TIME-DIVISION MULTIPLEXING

A sampled waveform is “ off ” most of the time, leaving the time between samples
available for other purposes. In particular, sample values from several different
signals can be interlaced into a single waveform. This is the principle of time-
division multiplexing (TDM) discussed here.

TDM Systems

The simplified system in Fig. 10.3-1 demonstrates the essential features of time-
division multiplexing. Several input signals are prefiltered by the bank of input
LPFs and sampled sequentially. The rotating sampling switch or commutator at
the transmitter extracts one sample from each input per revolution. Hence, its
output is a PAM waveform that contains the individual samples periodically
interlaced in time. A similar rotary switch at the receiver, called a decommutator
or distributor, separates the samples and distributes them to another bank of
LPFs for reconstruction of the individual messages.

If all inputs have the same message bandwidth W, the commutator should
rotate at the rate f, > 2W so that successive samples from any one input are
spaced by T, = l/f, < 1/2W. The time interval T, containing one sample from
each input is called a frame. If there are M input channels, the pulse-to-pulse
spacing within a frame is T/M = 1/Mf,. Thus, the total number of pulses per
second will be

r=Mf, 2 2MW (1)

which represents the pulse rate or signaling rate of the TDM signal.

Inputs LPFs LPFs Output
Xy(t) ———tp ——» ()
x;(0) ——» —" Transmission {\———: ———p (1)
PN p— :_g\_' channel ——%,_, > ()
N T \L__, > X (0)

(a)

xi(t)
/:l:"\n:
e

7
oo

3 X
Multiplexed P x n
PAM wave P
b ! l‘_.
) IQ——- Frame -——b* —bi MT

Figure 10.3-1 TDM system. (a) Block diagram; (b) waveforms.
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Qur primitive system shows mechanical switching to generate multiplexed
PAM. But almost all practical TDM systems employ electronic switching. Fur-
thermore, other types of pulse modulation can be used instead of PAM. There-
fore, a more generalized commutator might have the structure diagrammed in
Fig. 10.3-2, where pulse-modulation gates process the individual inputs to form
the TDM output. The gate control signals come from a flip-flop chain (a broken-
ring counter) driven by a digital clock at frequency Mf,. The decommutator
would have a similar structure.

Regardless of the type of pulse modulation, TDM systems require careful
synchronization between commutator and decommutator. Synchronization is a
critical consideration in TDM, because each pulse must be distributed to the
correct output line at the appropriate time. A popular brute-force synchro-
nization technique devotes one time slot per frame to a distinctive marker pulse
or nonpulse, as illustrated in Fig 10.3-3. These markers establish the frame fre-
quency f, at the receiver, but the number of signal channels is reduced to M — 1.
Other synchronization methods involve auxiliary pilot tones or the statistical
properties of the TDM signal itself. ‘

Inputs Puise modulation gates

x(f)

£:(0) ) \ TDM
! ‘] d ] s output
x5 ] ﬁ j
Xpll) »
Clock 1 o 1 Q|G Qu
MY, Flip-flop chain
(a)
Clock
—¥ i U/MF,
o3 , ) ] |
e 1, |

Figure 10.3-2 (a). Electronic commutator
(b) for TDM; (b) timing diagram.
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PAM

PDM

PPM

Figure 10.3-3 TDM synchroni-
zation markers.

Radio-frequency transmission of TDM necessitates the additional step of
CW modulation to obtain a bandpass waveform. For instance, a TDM signal
composed of duration or position modulated pulses could be applied to an AM
transmitter with 100% modulation, thereby producing a train of constant-
amplitude RF pulses. The compound process would be designated PDM/AM or
PPM/AM, and the required transmission bandwidth would be twice that of the
baseband TDM signal. The relative simplicity of this technique suits low-speed
multichannel applications such as radio control for model airplanes.

More sophisticated TDM systems may use PAM/SSB for bandwidth conser-
vation or PAM/FM for wideband noise reduction. The complete transmitter
diagram in Fig. 10.3-4a now includes a lowpass baseband filter with bandwidth

B, = 1/z" = 1/szs 2)

Baseband filtering prior to CW modulation produces a smooth modulating
waveform x,(t) having the property that it passes through the individual sample
values at the corresponding sample times, as portrayed in Fig. 10.3-4b. Since the

vy Commu- Baseband |y, (1) (1)
X,{t)—4 tator filter CV&; SRS
i ‘ B, =Mf,12 mo

N pg () =t} fs L4 1y

@) A

Xty

_’jT}fL— Figure 10.3-4 (a) TDM trans-
o mitter with baseband filtering:
by (b) baseband waveform.
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interlaced sample spacing equals 1/Mf,, the baseband filter constructs x,{t) in the
same way that an LPF with B = f;/2 would reconstruct a waveform x(r) from its
periodic samples x(kT,) with T, = 1/f,.

If baseband filtering is employed, and if the sampling frequency is close to the
Nyquist rate f, . = 2W for the individual inputs, then the transmission band-
width for PAM/SSB becomes

By = Y,M x 2W = MW

Under these conditions, TDM approaches the theoretical minimum bandwidth of
frequency-division multiplexing with SSB subcarrier modulation.

Although we've assumed so far that all input signals have the same band-
width, this restriction is not essential and, moreover, would be unrealistic for the
important case of analog data telemetry. The purpose of a telemetry system is to
combine and transmit physical measurement data from different sources at some
remote location. The sampling frequency required for a particular measurement
depends on the physical process involved and can range from a fraction of one
hertz up to several kilohertz. A typical telemetry system has a main multiplexer
plus submultiplexers arranged to handle 100 or more data channels with various
sampling rates.

Example 10.3-1 TDM Telemetry For the sake of illustration, suppose we
need 5 data channels with minimum sampling rates of 3000, 700, 500, 300,
and 200 Hz. If we used a 5-channel multiplexer with f, = 3000 Hz for all
channels, the TDM signaling rate would be r = 5 x 3000 = 15 kHz—not
including synchronization markers. A more efficient scheme involves an 8-
channel main multiplexer with f, = 750 Hz and a 2-channel submultiplexer
with f, = 375 Hz connected as shown in Fig. 10.3-5.

The two lowest-rate signals x,{t) and x(t) are combined by the sub-
multiplexer to create a pulse rate of 2 x 375 = 750 Hz for insertion into one
channel of the main multiplexer. Hence, the samples of x,(t) and x4t} will

Sampling rate, Hz

Signal Mimmum Actuai Marker ——»

x(1) 3000 4 x 750 ———————~r—’

x,(t) T00 750 TDM
f =750 output
M=8

() Lt 750 M=

x4(0) 00 Y x 750 ¥ f =375 i

x4l0) 200 Yy x 70 —p M= ]

Clock

B P S pyves

Figure 10.3-5 TDM telemetry system with main multiplexer and submultiplexer.
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appear in alternate frames. On the other hand, the highest-rate signal x (1) is
applied to 4 inputs on the main multiplexer. Consequently, its samples
appear in 4 equispaced slots within each frame, for an equivalent sampling
rate of 4 x 750 = 3000 Hz. The total output signaling rate, including a
marker, is r =8 x 750 Hz = 6 kHz. Baseband filtering would yield a
smoothed signal whose bandwidth B, = 3 kHz fits nicely into a voice tele-
phone channel!

Exercise 10.3-1 Suppose the output in Fig, 10.3-5 is an unfiltered PAM
signal with 50% duty cycle. Sketch the waveform for two successive frames,
labeling each pulse with its source signal. Then calculate the required trans-
mission bandwidth By from Eq. (6), Sect. 10.2.

Cross Talk and Guard Times

When a TDM system includes baseband filtering, the filter design must be done
with extreme care to avoid interchannel cross talk from one sample value to the
next in the frame. Digital signals suffer a similar problem called intersymbol inter-
ference, and we defer the treatment of baseband waveform shaping to Sect. 11.3.

A TDM signal without baseband filtering also has cross talk if the transmis-
sion channel results in pulses whose tails or postcursors overlap into the next
time slot of the frame. Pulse overlap is controlled by establishing guard times
between pulses, analogous to the guard bands between channels in an FDM
system. Practical TDM systems have both guard times and guard bands, the
former to suppress cross talk, the latter to facilitate message reconstruction with
nonideal filters.

For a quantitative estimate of cross talk, let’s assume that the transmission
channel acts like a first-order lowpass filter with 3-dB bandwidth B. The response
to a rectangular pulse then decays exponentially, as sketched in Fig. 10.3-6. The
guard time T, represents the minimum pulse spacing, so the pulse tail decays to a
value no larger than 4, = Ae2*879 by the time the next pulse arrives. Accord-
ingly, we define the cross-talk reduction factor

k, 4 10 log (4,/A)* ~ —54.5 BT,  dB 3)

Keeping the cross talk below — 30 dB calls for T,> 1/2B.
Guard times are especially important in TDM with pulse-duration or pulse-
position modulation because the pulse edges move around within their frame

A
ACI
? ?
l——g—» Figure 10.3-6 Cross talk in TDM.
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Figure 10.3-7 TDM/PPM with guard time.

slots. Consider the PPM case in Fig. 10.3-7: here, one pulse has been position-
modulated forward by an amount ¢, and the next pulse backward by the same
amount. The allowance for guard time T, requires that T, + 2ty + A7/2) < T/M

or
1/ T
IOSE('A—/I—T—T;) (4)

A similar modulation limit applies in the case of PDM.

Exercise 10.3-2 Nine voice signals plus a marker are to be transmitted via
PPM on a channel having B = 400 kHz. Calculate T, such that k, =~ —60
dB. Then find the maximum permitted value of ¢, if f, = 8 kHz and 7 =

YT/ M).

Comparison of TDM and FDM

Time-division and frequency-division multiplexing accomplish the same end by
different means. Indeed, they may be classified as dual techniques. The individual
TDM channels are assigned to distinct time slots but jumbled together in the fre-
quency domain; conversely, the individual FDM channels are assigned to distinct
Jrequency slots but jumbled together in the time domain. What advantages, then,
does TDM offer to the communications engineer?

First and foremost, TDM involves simpler instrumentation. Recall that
FDM requires an analog subcarrier modulator, bandpass filter, and demodulator
for every message channel, all of which are replaced by the TDM commutator
and decommutator switching circuits. And TDM synchronization is but slightly
more demanding than that of suppressed-carrier FDM.

Second, TDM is invulnerable to the usual causes of cross talk in FDM,
namely, imperfect bandpass filtering and nonlinear cross modulation. However,
TDM cross-talk immunity does depend on the transmission bandwidth and the
absence of delay distortion.

Third, the use of submultiplexers allows a TDM system to accommodate dif-
ferent signals whose bandwidths or pulse rates may differ by more than an order
of magnitude. This flexibility has particular value for multiplexing digital signals,
as we’'ll see in Sect. 12.4.

Finally, TDM may or may not be advantageous when the transmission
medium is subject to fading. Rapid wideband fading might strike only occasional
pulses in a given TDM channel, whereas all FDM channels would be affected.
But slow narrowband fading wipes out all the TDM channels, whereas it might
hurt only one FDM channel.

10.4 NOISE IN PULSE MODULATION 369

10.4 NOISE IN PULSE MODULATION

Here we complete our study of analog pulse modulation by examining system
performance in the presence of noise. We'll assume throughout the case of
lowpass pulse transmission with independent additive gaussian white noise at the
receiver. The specific topics at hand are: pulse measurements in noise, reconstruc-
tion from noisy samples, signal-to-noise ratios, and false-pulse threshold effect.

Pulse Measurements in Noise

Consider initially the problem of measuring some parameter of a single pulse p(t)
contaminated by noise, as represented in Fig. 10.4-1a. Let the pulse be more-or-
less rectangular, with amplitude A4, duration 1, and energy E, = A%t Let the
noise be white with power spectral density G( f)=n/2 and zero mean value. A
reasonably selective lowpass filter having unit gain and noise bandwidth By >
1/2t will remove excess noise while passing p(t). The output o(t) = p(t) + n{r)
sketched in Fig. 10.4-1b consists of noise variations superimposed on a trape-
zoidal pulse shape with risetime ¢, ~ 1/2B,.

If you want to measure the pulse amplitude, you should do so at some
instant ¢, near the center of the pulse. A single measurement yields the random
quantity

wt) = A +nlt)=A+¢,
where €, = n(t,) represents the amplitude error. The error variance is then
0} =n? = nBy (M

which should be small compared to 42 for an accurate measurement. Since 4% =
E,/t and By > 1/21, we can write the lower bound

2, _ N
%423 =24 2

(a}

20 | LPF R v(t) = p(1) + n(1)
% By =3,

G(f) = n2
(b)
v()) A+ n(t,)
A
— f N Figure 10.4-1 Pulse measurement in noise.
t, ‘a 1, (a) Model; (b) waveform.
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=

Figure 10.4-2 Time-position error caused by noise.

Any filter bandwidth less than about 1/2t would reduce the output pulse ampli-
tude as well as the noise. Achieving the lower bound requires a matched filter; see
Eq. (17), Sect. 54.

Measurements of pulse position or duration are usually carried out by detect-
ing the instant ¢, when (t) crosses some fixed level such as 4/2. The noise pertur-
bation n{t,) shown in the enlarged view of Fig. 10.4-2 causes a time-position error
¢,. From the similar triangles here, we see that €/n(t,) = t,/A so €, = (t,/A)n(t,)
and

o} = (t,/An? = (/A By
Substituting 1, ~ 1/2By and A* = E /1 yields

2 M __n 3
" T 4By A®  4B\E, ¥

a

which implies that we can make o, arbitrarily small by letting By— oo so that
t,— 0. But the received pulse actually has a nonzero risetime determined by the
transmission bandwidth B, . Hence

i T nt
- 4
% 24B, A 4B,E, @

and the lower bound is obtained with filter bandwidth By =~ By —in contrast to
the lower bound on g, obtained with By =~ 1/2t.

Exercise 10.4-1 Suppose a 10-us pulse is transmitted on a channel having
By = 800 kHz and n = E_/50. Calculate ¢,/4 and o/t when: (a) By = 1/21;
(b) By = By.

Pulse Modulation With Noise

Regardless of the particular circuitry employed, demodulating a pulse-modulated
wave boils down to message reconstruction from sample values. A generalized
demodulator would therefore consist of a pulse converter that transforms the
pulse-modulated wave into a train of weighted impulses from which an ideal LPF
reconstructs the message. Figure 10.4-3 diagrams this demodulation model
including additive noise.

\
N
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ult) = x,(0) + n(r)

x, (1) Noise Pulse vs() | Reconstruction | yo(/)
filter converter filter —
B, B=f/2
3
G(y==n2 |

Synchronization

Figure 10.4-3 Model for demodulation of analog pulse modulation with noise.

A noise-limiting filter at the input passes the received signal plus noise

(1) = x () + n(t)

The converter measures the amplitude, duration, or position of each pulse in t{t)
and generates

yit) =Y (4, x(kT) + €] & — kT,) (5)
k

where u, is the modulation constant relating x(kT)) to x,(t) and ¢, is the measure-
ment error induced by n(r). We'll assume for convenience that the reconstruction
filter has bandwidth B = f/2, gain K = T, = 1/2B, and zero time delay. Hence,
the impulse-train input y,(r) produces the final output

yol) =Y [, x(kT) + €] sinc (f,t — k)
k

= p, x(t) + nplt) (6a)
with

nplt) = Y € sinc (f,t — k) (6b)
k

which represents the noise at the destination. The signal portion of Eq. (6a)
follows from Eq. (14), Sect. 10.1.

Since the errors €, are proportional to sample values of n(t) spaced by T;, and
since the noise-limiting filter has By > 1/27 > 1/T,, the values of €, will be essen-
t?ally uncorrelated and will have zero mean. We can therefore write the destina-
tion noise power as

n} = 2

=gq

ol

Np

The signal power in terms of §, = x

o

~N

is
Sp=ppx* =y},

where our normalization convention | x(t)| < 1 requires S, < 1. Hence,

S Sp 1
)y 20 _Fp
(N)D Np o’ S o
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which expresses the destination signal-to-noise ratio in terms of the error
variance o caused by reconstruction from noisy sarpples. Our next task is to
determine 42 and o2 for specific types of pulse modulation. )
A PAM signal contains the message samples in the modulated pulse ampli-
tude Ao[1 + ux(kT,)], so the modulation constapt is u, = Ao < Ao. The upper
limit p =1 comes from our signal normalization and Eq. (5), Sect. IQ..Z. The
amplitude error variance is 0% = g% = nBy. Thus, under th‘e best conditions of
maximum modulation (z = 1) and minimum noise bandwidth (By = 1/21), we

2
(.S_) _ ity
N/p n

Notice that A2 equals the received signal energy in an unmodulated pulse.
The average energy per modulated pulse is

AT+ KTt = AY(1 + S

have

when u = 1 and x(¢) has no DC component. Multiplying this average energy by
the pulse rate f, gives the received signal power

Sp =1, AN + St

We now obtain our final result in the form

Sy __S: 2k __5k (2W>y PAM (8)
N/p 1+S.nf, 1+S5\f

where we've introduced y = Sg/nW. Equation (8) shows that (S/N)p < 7/2, o)
PAM performance is at least 3 dB below unmodulatgd baseband tr'ansml.ssmn*»
just like AM CW modulation. The maximum value ls'seldo.m ?chlqved in prac-
tice, nor is it sought after. The merit of PAM resides In its simplicity for
multiplexing, not in its noise performance. ' '

However, PPM and PDM do offer some improvement by virtue of \zwdebzand
noise reduction. For if By ~ By, the time-position error variz.incc s =0; =
n/(4By A%). Since the pulse amplitude A is a constant, the recelveq power can be
written as Sg = f, 4°1,, where 1, denotes the average pulse duration in PDM or
the fixed pulse duration in PPM. Equation (7) then becomes

2 2 : S
S\ _BAT ap Sk g
N/p i nfsto
_ g BT<f”: )S,y PDM or PPM ©)
50

This expression reveals that (§/N), increases with increasi.ng transmissiQn band-
width B;. The underlying physical reason should be evident from Fig. 10.4-2

with 1, = 1/2By.

-
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The PPM modulation constant is y, = t,, the maximum pulse displacement.
The parameters ¢, and 1, are constrained by

to < T2 T,=t=22x1/B
0 s/ Q r T

and f, = I/T, > 2W. Taking all values to be optimum with respect to noise
reduction, we obtain the upper bound

S 1 /B\?
—= ={=1]S PPM 1
(N)DS8(W> < 1o
Hence, PPM performance improves as the square of the bandwidth ratio B,/W.

A similar optimization for PDM with M, = pTy < 14 yields the less-impressive
result

s\ 1B,
—_— —_—— l
(N)u <5 wS-r PDM an

To approach the upper bound, a PDM wave must have a 50% duty cycle so that
10 =& T2,

Practical PPM and PDM systems may fall short of the values predicted in
Eqgs. (10) and (i1) by 10 dB or more. Consequently, the noise reduction does not
measure up to that of wideband FM. But remember that the average power Sk
comes from short-duration high-power pulses rather than being continuously
delivered as in CW modulation. Power-supply considerations may therefore
favor pulsed operation in some circumstances.

Exercise 10.4-2 Explain why a single-channel PDM system must have uty <
1/4W. Then derive Eq. (11) from Eq. (9) with Hp = UTy.

False-Pulse Threshold Effect

Suppose you try to increase the value of (S/N), in a PDM or PPM system by
making By very large. Since n? increases with By, the noise variations in u{t) =
x,(t) + n(t) will eventually dominate and be mistaken for signal pulses. If these
faise pulses occur often, the reconstructed waveform has no relationship to x(r}
and the message will have been completely lost. Hence, pulse-time modulation
involves a false-pulse threshold effect, analogous to the threshold effect in wide-
band FM. This effect does not exist in PAM with synchronization because we
always know when to measure the amplitude.

To determine the threshold level, we'll say that false pulses are sufficiently
infrequent if P(n > 4) < 0.01. For gaussian noise with o} = n? = 5By, the corre-
sponding threshold condition is approximately

A2 20,

so the pulse must be strong enough to “lift” the noise by at least twice its rms
value. (This is the same condition as the tangential sensitivity in pulsed radar
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systems.) Using the fact that 42 = S;/7, f., we have

Sk
> 4nB
ol nbr
or
S B
Ym=<ﬁ%lm=4%ﬁ;§zs (12)

This threshold level is appreciably less than that of FM, so PPM could be advan-
tageous for those situations where FM would be below its threshold point.

10.5 PROBLEMS

10.1-1 Consider the chopper-sampled waveform in Eq. (3) with 1t = T/2, f, = 100 Hz, and
x(t) = 2+ 2 cos 2130t + cos 2n80t. Draw and label the one-sided line spectrum of x(1) for
0 <f< 300 Hz. Then find the output waveform when x(1) is applied to an ideal LPF with
B =75Hz

10.1-2 Do Prob. 10.1-1 with x(t) = 2 + 2 cos 2730t + cos 2n140z.

10.1-3 The usable frequency range of a certain amplifier is f, to f, + B, with B » f,. Devise a system
that employs bipolar choppers and allows the amplifier to handle signals having significant DC
content and bandwidth W « B.

10.1-4 The baseband signal for FM stereo (Fig. 8.2-5b) is
xy(1) = [x.(8) + xg(t)] + [x (1) — xx(t)] cos cu,t + A4 cos w, /2

with f, = 38 kHz. The chopper system in Fig. P10.1-4 is intended to generate this signal. The LPF
has gain K, for | f| < 15 kHz, gain K, for 23 < | f| < 53 kHz, and rejects | /| > 99 kHz. Use a
sketch to show that x(t) = x(t}s(t) + xx()[ 1 — stt}], where s(t) is a unipolar switching function with
t = T,/2. Then find the necessary values of K, and K, .

x. (8
x (1) xp(t)
fo——"» LPF
Xg(f) '
: 19 kHz
e S\yilch x 2
drive Figure P10.1-4

10.1-5 A popular stereo decoder circuit employs transistor switches to generate v,(f) = x,{t) — Kx,(t)

and vg(t) = x,(t) — Kx,(t) where K is a constant, x,(1) = x,{t)s(t), x,(t) = x,()[1 — ()], x,(¢) is the FM
-stereo baseband signal in Prob. 10.1-4, and s(¢) is a unipolar switching function with t = T/2. ()

Determine K such that lowpass filtering of v, () and v,(t) yields the desired left- and right-channel

signals. (b) What's the disadvantage of a simpler switching circuit that has K = 0?

10.1-6 Derive Eq. (11) using Eq. (14), Sect. 2.4.

10.1-7 Suppose x(t) has the spectrum in Fig. P10.1-7 with f, = 25 kHz and W = 10 kHz. Sketch x,(/)

for f, = 60, 45, and 25 kHz. Comment in each case on the possible resonstruction of x(t) from x1).
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10.1-8 Consider the bandpass signal spectrum in Fig. P10.1-7 whose Nyquist rate is L=2,.
However, the bandpass sampling theorem states that x(t) can be reconstructed from x,(t) by bandpass
filtering if f, = 2//m and the integer m satisfies (f,/W) — | <m <f/W. (a) Find m and plot f/W
versus f/W for 0 <f/W < 5. (b) Check the theorem by plotting X ,{(f) when f, = 2.5W and f, =
2.5W. Also show that the higher rate f, = 4W would not be acceptable.

10.1-9 The signal x{r) = sinc? 5¢ is ideally sampled at t = 0, +0.1, +0.2, ..., and reconstructed by an
ideal LPF with B = 5, unit gain, and zero time delay. Carry out the reconstruction process graphi-
cally, as in Fig. 10.1-6, for | ¢} < 0.2

10.1-10 A rectangular pulse with = 2 is ideally sampled and reconstructed using an ideal LPF with
B = f,/2. Sketch the resulting output waveforms when T, = 0.8 and 0.4, assuming one sample time is
at the center of the pulse.

10.1-11 Suppose an ideally sampled wave is reconstructed using a zero-order hold (Example 3.1-3)
with time delay T = T,. (a) Find and sketch 1) to show that the reconstructed waveform is a stair-
case approximation of x{t). (b) Sketch | Y(f){ fer X(f) = I(f/2W) with W « f,. Comment on the sig-
nificance of your result.

10.1-12} The reconstruction system in Fig. P10.1-12 is called a first-order hold. Each block labeled
ZOH is a zero-order hold (Example 3.1-3) with time delay T = T,. (a) Find h{t) and sketch ¥1) to
interpret the reconstruction operation. (b) Show that H(f) = T(1 + j2nf T)Xsinc? f T) exp (—j2nf T).
Then sketch | Y(f}| for X(f) = TI(fj2W) with W < f,/2.

ZOH

4
T,

g (t
[$100] ZOH Delay ¥

Figure P10.1-12

10.1-13} Use Parseval’s theorem and Eq. (14) with T, = 1/2W and B = W to show that the energy of
a bandlimited signal is related to its sample values by

E =(1/2W) z | x(k/2W)|?
k= — o

10.1-14 The frequency-domain sampling theorem says that if x(1) is a timelimited signal, such that
x(t} = O for {r| 2 T, then X(f) is completely determined by its sample values X(nf,) with f; < 1,27,
Prove this theorem by writing the Fourier series for the periodic signal uz) = x(t) = [Z, &t — kT,)],
where T, > 2T, and using the fact that x{t) = o()[T(/27).

10.1-15 A signal with period T, = 0.08 us is to be displayed using a sampling oscilloscope whose
internal high-frequency response cuts off at B = 6 MHz. Determine maximum values for the sam-
pling frequency and the bandwidth of the pre-sampling LPF.



