CHAPTER

ELEVEN
BASEBAND DIGITAL TRANSMISSION

This chapter launches our study of digital communication systems. We focus ini-
tially on baseband transmission in order to emphasize the generic concepts and
problems of digital communication, with or without carrier modulation, and to
bring out the differences between digital and analog transmission. Following an
overview of digital signals and systems, we’ll analyze the limitations imposed by
additive noise and transmission bandwidth. We'll also look at practical design
considerations such as regenerative repeaters, equalization, and synchronization.

11.1 DIGITAL SIGNALS AND SYSTEMS

Fundamentally, a digital message is nothing more than an ordered sequence of
symbols produced by a discrete information source. The source draws from an
alphabet of M > 2 different symbols, and produces output symbols at some
average rate r. For instance, a typical computer terminal has an alphabet of
M =~ 90 symbols, equal to the number of character keys multiplied by two to
account for the shift key. When you operate the terminal as fast as you can, you
become a discrete information source producing a digital message at a rate of
perhaps r = 5 symbols per second. The computer itself works with just M =2
internal symbols, represented by LOW and HIGH electrical states. We usually
associate these two symbols with the binary digits O and 1, known as bits for
short. Data transfer rates within a computer may exceed r = 108
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The task of a digital communication system is to transfer a digital message
rom the source to the destination. But finite transmission bandwidth sets an
1pper limit to the symbol rate, and noise causes errors to appear in the output
nessage. Thus, signaling rate and error probability play roles in digital communi-
:ation similar to those of bandwidth and signal-to-noise ratio in analog commu-
iication. As preparation for the analysis of signaling rate and error probability,
~e must first develop the description and properties of digital signals.

Digital PAM Signals

Digital message representation at baseband commonly takes the form of an
amplitude-modulated pulse train. We express such signals by writing
x(t) = Y, ayp(t — kD) (1)
k

wvhere the modulating amplitude a, represents the kth symbol in the message
sequence, so the amplitudes belong to a set of M discrete values. The index k
ranges from — oo to + oo unless otherwise stated. Equation (1) defines a digital
PAM signal, as distinguished from those rare cases when pulse-duration or pulse-
position modulation is used for digital transmission.

The unmodulated pulse p(t) may be rectangular or some other shape, subject
to the conditions

1 t=0
= 2

P {0 t=+D, +2D, ... )
This condition ensures that we can recover the message by sampling x(t) pertod-
icallyatt = KD, K =0, £1, +2,..., since

x(KD) =Y a,p(KD — kD) = ag

k

The rectangular pulse p(t) = I(¢/7) satisfies Eq. (2) if < D, as does any time-
limited pulse with p(t) = 0for |t| = D/2.

Note that D does not necessarily equal the pulse duration but rather the
pulse-to-pulse interval or the time allotted to one symbol. Thus, the signaling
rate is

ra1/D (3a)

measured in symbols per second or baud. In the special but important case of
binary signaling (M = 2), we write D = T, for the bit duration and the bit rate is}

ry=1/T, (3b)

measured in bits per second, abbreviated bps or b/s. The notation T, and r, will
be used to identify results that apply only for binary signaling.

+ The more common notation R for bit rate risks confusion with autocorrelation functions and
with information rate defined in Chap. 15.
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Figure 11.1-1 depicts various PAM formats for the binary message 10110100,
taking rectangular pulses for clarity. The simple on-off waveform in part a rep-
resents each 0 by an “off ” pulse (a, = 0) and each 1 by an “on” pulse with
amplitude g, = A and duration T,/2 followed by a return to the zero level. We
therefore call this a return-to-zero (RZ) format. A nonreturn-to-zero (NRZ)
format has “on” pulses for full bit duration T,, as indicated by the dashed lines.
Internal computer waveforms are usually of this type. The NRZ format puts
more energy into each pulse, but requires synchronization at the receiver because
there’s no separation between adjacent pulses.

The unipolar nature of an on-off signal results in a DC component that carries
no information and wastes power. The polar signal in part b has opposite polarity
pulses, either RZ or NRZ, so its DC component will be zero if the message con-
tains 1s and Os in equal proportion. This property also applies to the bipolar
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Figure 11.1-1 Binary PAM formats with rectangular pulses. (@) Unipolar RZ and NRZ; (b) polar RZ
and NRZ; (c) bipolar NRZ; (d) split-phase Manchester; (¢) polar quaternary NRZ.
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Table 11.1-1
Natural Gray
a, code code
34/2 it 10
A2 10 1
— A2 o1 01
—34/2 00 00

signal in part ¢, where successive 1s are represented by pulses with alternating
polarity. The bipolar format, also known as pseudo-trinary Of alternate mark
inversion (AMI), eliminates ambiguities that might be caused by transmission sign
inversions— a problem characteristic of switched telephone links.

The split-phase Manchester format in part d represents 1s with a positive
half-interval pulse followed by a negative half-interval pulse, and vice versa for
the representation of Os. This format is also called twinned binary. It guarantees
zero DC component regardless of the message sequence. However, it requires an
absolute sense of polarity at the receiver.

Finally, Fig. 11.1-le shows a quaternary signal derived by grouping the
message bits in blocks of two and using four amplitude levels to prepresent the
four possible combinations 00, 01, 10, and 11. Thus, D = 2T,and r = ry/2. Differ-
ent assignment rules or codes may relate the a, to the grouped message bits. Two
such codes are listed in Table 11.1-1. The Gray code has advantages relative to
noise-induced errors because only one bit changes going from level to level.

Quaternary coding generalizes to M-ary coding in which blocks of n message
bits are represented by an M-level waveform with

M=2 (4a)
Since each pulse now corresponds to n = log, M bits, the M-ary signaling rate
has been decreased to
Ty
r =
log, M

(4b)

But increased signal power would be required to maintain the same spacing
between amplitude levels.

Transmission Limitations

Now consider the linear baseband transmission system diagrammed in Fig.
11.1-2a. We'll assume for convenience that the transmitting amplifier compen-
sates for the transmission loss, and we'll lump any interference together with the
additive noise. After lowpass filtering to remove out-of-band contaminations, we
have the signal-plus-noise waveform

W)=Y apt —ty— kD) + n(t)
k
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Figure 11.1-2 (a) Baseband transmission system; (b) signal-plus-noise waveform.

wlller.c t i§ the .transr‘nission delay and j(t) stands for the pulse shape with trans-
mission distortion. Figure 11.1-2b illustrates what y{t) might look like when x(t) is
the unipolar NRZ signal in Fig. 11.1-1a.

Recovering the digital message from 1) is the task of the regenerator. An

auxi]iar'y synchronization signal may help the regeneration process by identifying
the optimum sampling times

tK —_ KD + td
If %0) = 1 then :
Wtx) =ax + Y. a (KD — kD) + n(ty) %)
kzK

wh.osc first term is the desired message information. The last term of Eq. (5) is the
noise contamination at t,, while the middle term represents cross talk or spill-
over from other signal pulses-—a phenomenon given the descriptive name inter-
symbolh interference (ISI). The combined effects of noise and ISI may result in
errors in the regenerated message. For instance, at the sample time ¢ indicated in
Fig. 11.1-2b, Wty) is closer to 0 even though ax = A4.

We know that if n(t) comes from a white-noise source, then its mean square
value can be reduced by reducing the bandwidth of the LPF. We also know that
lowpass filtering causes pulses to spread out, which would increase the ISI. Con-
sequently, a fundamental limitation of digital transmission is the relationship
between ISI, bandwidth, and signaling rate.

This problem emerged in the early days of telegraph 1
(1924, 1928) first stated the rclationshipyas foyllows: graphy, and Harry Ryquis

inen an ideal lowpass channel of bandwidth B, it is possible to transmit
1n§ependcnt §ymbols at a rate r < 2B baud without intersymbol interference.
It is not possible to transmit independent symbols at r > 2B.
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The condition r < 2B agrees with our pulse-resolution rule B > 1/27,;, in
Sect. 3.4 if we require p(t) to have duration 1 < D = 1/r.

The second part of Nyquist’s statement is easily proved by assuming that
r = 2(B + €) > 2B. Now suppose that the message sequence happens to consist of
two symbols alternating forever, such as 101010... The resulting waveform x(t)
then is periodic with period 2D = 2/r and contains only the fundamental fre-
quency f, = B + € and its harmonics. Since no frequency greater than B gets
through the channel, the output signal will be zero —aside from a possible but
useless DC component.

Signaling at the maximum rate r = 2B requires a special pulse shape, the sinc
pulse

p(t) = sinc rt = sinc t/D (6a)

having the bandlimited spectrum

p) =2t =+ n(2) (6
Since P(f) =0 for | f| > r/2, this pulse suffers no distortion from an ideal
lowpass frequency response with B > r/2 and we can take r = 2B. Although p(t)
is not timelimited, it does have periodic zero crossings at t = D, +2D, ...,
which satisfies Eq. (2). (See Fig. 10.1-6 for an illustration of this property.)
Nyquist also derived other bandlimited pulses with periodic zero crossings
spaced by D > 1/2B so r < 2B, a topic we set aside to pick up again in Sect. 11.3
after discussing noise and errors in Sect. 11.2.

Meanwhile, note that any real channel needs equalization to approach an
ideal frequency response. Such equalizers often require experimental adjustment
in the field because we don’t know the channel characteristics exactly. An impor-
tant experimental display is the so-called eye pattern, which further clarifies
digital transmission limitations.

Consider the distorted but noise-free polar binary signal in Fig. 11.1-3a.
When displayed on a long-persistence oscilloscope with appropriate synchro-
nization and sweep time, we get the superposition of successive symbol intervals
shown in Fig. 11.1-3b. The shape of this display accounts for the name “eye
pattern.” A distorted M-ary signal would resultin M — 1 “eyes” stacked vertically.
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Figure 11.1-3 (q) Distorted polar binary signal; (b) eye pattern.
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Figure 11.1-4 represents a generalized binary eye pattern with labels identify-
ing significant features. The optimum sampling time corresponds to the
maximum eye opening. ISI at this time partially closes the eye and thereby
reduces the noise margin. If synchronization is derived from the zero crossings, as
it usually is, zero-crossing distortion produces jitter and results in nonoptimum
sampling times. The slope of the eye pattern in the vicinity of the zero crossings
indicates the sensitivity to timing error. Finally, any nonlinear transmission dis-
tortion would reveal itself in an asymmetric or “squinted ” eye.

Exercise 11.1-1 Determine the relation between r and B when p(t) = sinc? at.

Power Spectra of Digital PAM

The pulse spectrum P(f) = #[p(t)] provides some hints about the power spec-
trum of a digital PAM signal x(¢). If p(t) = sinc rt, as a case in point, then P(f) in
Eq. (6b) implies that G (f) =0 for | f| > r/2. However, detailed knowledge of
G(f) provides additional and valuable information relative to digital transmis-
sion,

A simplified random digital wave with p(t) = I1(¢/D) was tackled in Chap. 5.
Under the conditions

a? i=k

a

0 i#k

we found that G (f) = ¢2 D sinc? fD. Now, substituting P(f) = D sinc fD, we
write

Elaca] = {

0.2
G =1 |PUNI? 0]

This expression holds for any digital PAM signal with pulse spectrum P(f) when
the g, are uncorrelated and have zero mean value.

But unipolar signal formats have a, # 0 and, in general, we can’t be sure that
the message source produces uncorrelated symbols. A more realistic approach
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therefore models the source as a discrete stationary random process. Ensemble
averages of the a, are then given by the autocorrelation function

R,(n) = E[a, a,_,] (®)
analogous to writing R (1) = E[v(f)u(t — 7)] for a stationary random signal u(t).
The integers n and k in Eq (8) reflect the time-discrete nature of a digital

sequence.
If a digital PAM signal x(¢) has the pulse spectrum P(f) and amplitude auto-
correlation R,(n), its power spectrum is

Gx(f)— | PSP Z R (nje~2mn/P 9

Despite the formidable appearance of Eq. (9), it easily reduces to Eq. (7) when
R,(0) = o2 and R (n) = 0 for n # 0. In the case of uncorrelated message symbols
buta, =m, #0,

Ryn) = {a +m? n=0 10)
mﬂ

and

Z R(n)e jirnfD __ 0' +m Z e—jZRHfD

n= - n=— o

Then, drawing upon Poisson’s sum formula,

£ emmad § o(r0)

=~ x A=

and therefore

Gf) = air| P(f)I> + (myr)* 3 | P(wr)|)? &(f — nr) (I
Here we have inserted r = 1/D and used the sampling property of impulse multi-
plication.

The important result in Eq. (11) reveals that the power spectrum of x(¢) con-
tains impulses at harmonics of the signaling rate r, unless m, = 0 or P(f) = 0 at
all f= nr. Hence, a synchronization signal can be obtained by applying x(f) to a
narrow BPF (or PLL filter) centered at one of these harmonics. We can also cal-

culate the total average power x? by integrating G.(f) over all f. Thus,
X2 = 6ZrE, + (m,r)? Y | P(r)P? (12)

where E, equals the energy in p(t). For Eq. (12), and hereafter, we presume the
conditions in Eq. (10) barring information to the contrary.
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The derivation of Eq. (9) starts with the definition of power spectrum from
Eq. (9), Sect. 5.2. Specifically, we write

GAf) & lim — E[|X,{f)|2]

T—x
in which X ,{f) is the Fourier transform of a truncated sample function x{t) =
x(t) for |t] < T/2. Next, let T = (2K + 1)D so the limit T — oo corresponds to
K — . Then, for K » 1,

K

xft)= Y a,plt — kD)
k=K
X

XHAN)= Y aP(fle /P
k=K

and

IXT(f f)‘Z( i ake—jwkb)< i aie+jwiD)

k=-K i=-K

After interchanging the order of expectation and summation we have

ELIX AN P = 1PN Ppxlf)
with
K K
plf) = Z Z E[akat]e_jw(k_im
k=-K i= -K

where E[a,a;] = R (k — i).
The double summation for pg(f) can be manipulated into the single sum

() =K + 1) E L )R(,,)e—mo
Py )= 2K+1)7°

n==-2K
Substituting these expressions in the definition of G,(f) finally gives

Gx(f)—:lilalomlp(f)l *plf)

=S IPUIE T Rime s

= —a@

as stated in Eq. (9).

Example 11.1-1 Consider the unipolar binary RZ signal in Fig. 11.1-1a,
where p(t) = I1(2r,t) so

P(f) =+ smc -:):—f—b
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s N f Figure 11.1-5 Power spectrum of unipolar
0 [ 2r, 3r, 4r, binary RZ signal.

If thg‘sourcc bits are equally likely and statistically independent, then g, =
A/2, a} = A*/2, and Eq. (10) applies with

AZ
2_ 2 4
mﬂ aﬂ 4
Using Eq. (11) we find the power spectrum to be
A? f o A4 2 n
G = — sinc? =— + — inc? = -
) Tor, sinc o + e ";w (smc 2) 3(f — nry)

which is sketched in Fig. 11.1-5 for f > 0. Notice the absence of impulses at
the even harmonics because P(nr,) = Owhenn = +2, +4,....
We could also, in principle, use Eq. (12_)_ to calculate x2. However, it

should be evident from the waveform that x> = A%/4 when ls and Os are
equally likely.

Exercise 11.1-2 Modify the results of Example 11.1-1 for p(t) = T(r, t), corre-
sponding to an NRZ waveform. In particular, show that the only impulse in
GAf)isatf=0.

Spectral Shaping by Precoding+y¢

Precoding refers to operations that cause the statistics of the amplitude sequence
a; to differ from the statistics of the message sequence. Usually, the purpose of
precoding is to shape the power spectrum via R,(n), as distinguished from P(f).
’fl‘o bring out the potential for statistical spectral shaping, we rewrite Eq. (9) in the
orm

G =rIPf )IZ[R.,(O) +2 ) Rin)cos (Zﬂnf/f)] (13)
n=1
having drawn upon the property R, (—n) = R,(n).
Now suppose that x(t) is to be transmitted over a channel having poor low-
frcq‘ucncy response —a voice telephone channel perhaps. With appropriate pre-
coding, we can force the bracketed term in Eq. (13) to equal zero at f =0 and
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Figure 11.1-6 Power spectrum of
bipolar signal.

el f

0 " 2rs

thereby eliminate any DC component in G,(f), irrespective of the pulse spectrum
P(f). The bipolar signal format back in Fig. 11.1-1c is, in fact, a precoding tech-
nique that removes DC content.

The bipolar signal has three amplitude values, a, = + 4, 0, and —A. If 1s
and Os are equally likely in the message, then the amplitude probabilities are
P(a, = 0) = 1/2 and P(a; = + A) = P(a, = — A) = 1/4, so the amplitude statistics
differ from the message statistics. Furthermore, the assumption of uncorrelated
message bits leads to the amplitude correlation

A2 n=0
Rn)={—A4%*4 n=1 (14a)
‘ 0 nz2

Therefore,

AZ
G =r| PN — (I —cos 27f]ry)

ro| P(f)|?A? sin? nfjr, (14b)

which is sketched in Fig. 11.1-6 taking p(t) = II(r, t).

Two other precoding techniques that remove DC content are the split-phase
Manchester format (Fig. 11.1-1d) and the family of high density bipolar codes
denoted as HDBn. The HDBn scheme is a bipolar code that also eliminates long
signal “gaps ” by substituting a special pulse sequence whenever the source pro-
duces n successive 0s.

Exercise 11.1-3 Sketch G,(f) for a bipolar signal with p(t) = sinc r,t. Then
use your sketch to show that x? = A4%/2.
11.2 NOISE AND ERRORS

Here we investigate noise, errors, and error probabilities in baseband digital
transmission, starting with the binary case and generalizing to M-ary signaling,
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We assume throughout a distortionless channel, so the received signal is free of
ISI. We also assume additive white noise with zero mean value, independent of
the signal. (Some of these restrictions will be lifted in the next section.)

Binary Error Probabilities

Figure 11.2-1 portrays the operations of a baseband binary receiver. The received
signal plus noise is applied to a lowpass filter whose transfer function has been
designed to remove excess noise without introducing ISI. A sample-and-hold
(S/H) device triggered at the optimum times extracts from y(t) the sample values

W) = a, + n(t)

Comparing successive values of y(1,) with a fixed threshold level V completes the
regeneration process. If y(1,) > V, the comparator goes HIGH to indicate a 1: if
1) < V, the comparator goes LOW to indicate 0. The regenerator thereby acts
as an analog-to-digital converter, converting the noisy analog waveform y(¢) into a
noiseless digital signal x,(¢) with occasional errors.

We begin our analysis taking x(t) to be a unipolar signal in which a, = 4 rep-
resents the message bit 1 and a, = O represents the message bit 0. Intuitively,
then, the threshold should be set at some intermediate level, 0 < ¥V < 4. The
regeneration process is illustrated by the waveforms in Fig. 11.2-2. Errors occur
when g, = 0 but a positive noise excursion results in y(t,) > V, or when g, = 4
but a negative noise excursion results in {1,) < V.

To formulate the error probabilities, let the random variable Y represent y(1,)
at an arbitrary sampling time and let n represent n(t,). The probability density
function of Y obviously involves the noise PDF, but it also depends upon the
presence or absence of the signal pulse. We therefore need to work with condi-
tional probabilities. In particular, if H, denotes the hypothesis or assumption that
a, = 0and Y = n, we can write the conditional PDF

py(y| Hy) = paly) (1a)

where py(n) 1s the PDF of the noise alone. Similarly, if H, denotes the hypothesis
thata, = 4and Y = 4 + n, then

Pyl Hy) = pyly — A) (1b)

obtained from the linear transformation of py(n) with n = y — A.

G =2 Regenerator

AL
hoé—b \
i) LPF v .
H) S/H

T

Syne — —

Figure 11.2-1 Baseband binary receiver.
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Figure 11.2-2 Regeneration of a unipolar signal. (a) Signal plus noise; (b) S/H output;

(c) comparator output.

Figure 11.2-3 shows typical curves of py/y|H,) and p{v|H,) along with a
proposed threshold V. The comparator implements the following decision rule:

Choose hypothesis Hy (4, =0) if ¥ < V
Choose hypothesis H, (@, = A)if Y > V

(We ignore the borderline case ¥ = V whose probability of occurrence will be
vanishingly small.) The corresponding regeneration error probabilities are then
given by

P, 2 P(Y>V|Hy = f py(y|Ho) dy (2a)
| 4

¥V

PexéP(Y<V|H1)=j py(y| H,) dy (2b)

— a0

Figure 11.2-3 Conditional PDFs
with decision threshold and error
probabilities.
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equivalent to the shaded areas indicated in Fig. 11.2-3. The area interpretation
helps bring out the significance of the threshold level when all other factors
remain fixed. Clearly, lowering the threshold reduces P, and simultaneously
increases P,,. Raising the threshold has the opposite effect.

But an error in digital transmission is an error, regardless of type. Hence, the
threshold level should be adjusted to minimize the average error probability

Pe=POPeo+P1P¢1 (3a)
where
P0=P(Ho) P1=P(H1) (3b)

which stand for the source digit probabilities. The optimum threshold level Vopt
must therefore satisfy dP,/dV = 0, and Leibniz’s rule for differentiating the inte-
grals in Eq. (2) leads to the general relation

PoprVop| Ho) = Ppy(Vopi | H)y) 4)

But we normally expect 1s and Os to be equally likely in a long string of message
bits, so

Po=P, =" Pe=l/2(Peo+Pel) (5a)

and
PriVop | Ho) = pyV,p | H)) (5b)

We'll work hereafter with the equally likely condition, unless stated otherwise.
Closer examination of Eq. (5b) reveals that ¥, corresponds to the point
where the conditional PDF curves intersect. Direct confirmation of this conclusion
is provided by the graphical construction in Fig. 11.2-4 labeled with four relevant
areas, «, through a,. The optimum threshold yields P,, = a; + a,, P,, = a5, and
P, . = '(a; + ay + a3). A nonoptimum threshold such as V < Voo Yields P, =
a; and P, =y + a3 + ag; thus, P, =Y, +a; + a3 + ) = P, + Yyaa >

€min *

Next we make the usual assumption that the noise is gaussian with zero
mean and variance a2, so

~nf{2a?

1
pN(n) = \/2—;{;3 e

Figure 11.2-4
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Substituting this gaussian function into Egs. (1) and (2) gives

Po=[pnar-of%) (6a)

v A=V
P, =J‘ piy — A)dy = Q('—’a ) (6b)

where Q is the area under the gaussian tail as previously defined in Fig. 4.4-2.
Since py(n) has even symmetry, the conditional PDFs p{y|H,) and p/{y|H,)
intersect at the midpoint and V,,, = A/2 when P, = P, = 1/2. Furthermore, with
V =V,, in Eq. (6), P, = P, = Q(A4/20) so the optimum threshold yields equal
digit error probabilities as well as minimizing the net error probability. Thus,
Pe=1/2(Peo+Pex)=Peo=Paland

P.=0Q (2%) Y

which is the minimum net error probability for binary signaling in gaussian noise
when the source digits are equally likely.

Based on Eq. (7), the plot of the Q function in Table T.6 can be interpreted
now as a plot of P, versus A/2¢. This plot reveals that P, drops off dramatically
when A4/20 increases. For instance, P, ~ 2 x 107 % at 4/2¢ = 2.0 whereas P, ~
107% at 4/26 = 6.0.

Although we derived Eq. (7) for the case of a unipolar signal, it also holds in
the polar case if a, = + A/2 so the level spacing remains unchanged. The only dif-
ference at the receiver is that V,,, = 0, midway between the two levels. However,
the transmitter needs less signal power to achieve a specified level spacing in the
polar signal.

Let’s bring out that advantage of polar signaling by expressing A in terms of
the average received signal power Sg. If we assume equal digit probabilities and
more-or-less rectangular pulses with full-interval duration T, then S; = A?/2 for
unipolar signaling while Sg = 4%/4 for polar signaling. (These relations should be
obvious from the NRZ waveforms in Fig. 11.1-1.) Hence,

ipol
A= { /2Sx  Unipolar )
/4S g Polar

and the factor of \/5 can make a considerable difference in the value of P,.

Since the noise has zero mean, the variance o equals the noise power Ny at
the output of the filter. Therefore, we can write 4/2¢ in terms of the signal-to-
noise power ratio (S/N)g = Sg/Nyg, namely

( A )2 A? {‘/Z(S/N)R Unipolar o)

20¢) ~ 4Ng  (S/N)x Polar
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But Eq. (9) conceals the effect of the signaling rate r,. In order to pass pulses of
duration T, = 1/r,, the noise-limiting filter must have By 2 r,/2, so

Ng=nBy2nr,/2 (10)

Rapid signaling thus requires more signal power to maintain a given error prob-
ability P, .

Example 11.2-1 Suppose a computer produces unipolar pulses at the rate
r, = 10° bps = 1 Mbps for transmission over a noisy system with
n =4 x 1072° W/Hz. The error rate is specified to be no greater than one bit
per hour, or P, < 1/3600r, =~ 3 x 107*% Table T.6 indicates that we need
A/20 > 6.2, and Egs. (9) and (10) give the corresponding signal-power re-
quirement

A pa
Sk =2(5;) Ng2 1.5 x 10712 = 1.5 pW

Clearly, any reasonable signal power ensures almost errorless transmission
insofar as additive noise is concerned. Hardware glitches and other effects
would be the limiting factors on system performance.

Exercise 11.2-1 Consider a unipolar system with equally likely digits and
(S/N)g = 50. Calculate P,,, P,, and P, when the threshold is set at the non-
optimum value ¥ = 0.44. Compare P, with the minimum value from Eq. (7).

Regenerative Repeaters

Long-haul transmission requires repeaters, be it for analog or digital communica-
tion. But unlike analog-message repeaters, digital repeaters can be regenerative. 1f
the error probability per repeater is reasonably low and the number of hops m is
large, the regeneration advantage turns out to be rather spectacular. This will be
demonstrated for the case of polar binary transmission.

When analog repeaters are used and Eq. (11), Sect. 5.4, applies, the final
signal-to-noise ratio is (S/N)z = (1/mXS/N), and

oo ()] w

where (S/N), is the signal-to-noise ratio after one hop. Therefore, the transmitted
power per repeater must be increased linearly with m just to stay even, a factor
not to be sneezed at since, for example, it takes 100 or more repeaters to cross the
continent. The 1/m term in Eq. (11) stems from the fact that the contaminating
noise progressively builds up from repeater to repeater.

In contrast, a regenerative repeater station consists of a complete receiver
and transmitter back to back in one package. The receiving portion converts
incoming signals to message digits, making a few errors in the process; the digits
are then delivered to the transmitting portion, which in turn generates a new
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signal for transmission to the next station. The regenerated signal is thereby com-
pletely stripped of random noise but does contain some errors.
To analyze the performance, let a be the error probability at each repeater,

namely,
S
-=e[|/(3)

assuming identical units. As a given digit passes from station to station, it may
suffer cumulative conversion errors. If the number of erroneous conversions is
even, they cancel out, and a correct digit is delivered to the destination. (Note
that this is true only for binary digits.) The probability of i errors in m successive
conversions 1s given by the binomial frequency function, Eq. (1), Sect. 4.4,

P = (':’) (1 —

Since we have a destination error only when i is odd,

P, =Y P

iodd

—_ m ' _ m-— 1 m 3 — A
—(1>ac(l a) +(3)a(l am 3+

= ma

where the approximation applies for « « 1 and m not too large. Hence,

PezmQ[ (%) ] (12)
1

so P, increases linearly with m, which generally requires a much smaller power
increase to counteract than Eq. (11).

Figure 11.2-5 illustrates the power saving provided by regeneration as a func-
tion of m, the error probability being fixed at P, = 10~ *. Thus, for example, a 10-
station nonregenerative baseband system requires about 8.5 dB more transmitted
power (per repeater) than a regenerative system.

Power saving, dB

i
T +

1’0 20 50 ]60 Figure 11.2-5 Power saving gained by m regen-
o erative repeaters when P, = 1075,

[
[Ty .
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Matched Filtering

Every baseband digital receiver — whether at the destination or part of a regener-
ative repeater — should include a lowpass filter designed to remove excess noise
without introducing IS1. But what’s the optimum filter design for this purpose?
For the case of timelimited pulses in white noise, the answer is a matched filter.
We'll pursue that case here and develop the resulting minimum error probability
for binary signaling in white noise.

Let the received signal be a single timelimited pulse of duration t centered at
time t = kD, so

x(t) = a, p(t — kD)

where p(0) =1, p(t) = 0 for |t| > 1/2, and 7 < D. Maximizing the output ratio
(a,/0)* at time t, = kD + t, will minimize the error probability. As we learned in
Sect. 5.4, this maximization calls for a matched filter whose impulse response is
proportional to p(t;, — t). In particular, we take

h(t) = TL pltg—1t) (13a)

€q

with

Teq = J p(t) dt ty=1/2 (13b)
The delay ¢, = 1/2 is the minimum value that yields a causal impulse response,
and the proportionality constant 1/7., has been chosen so that the peak output
amplitude equals a, . The parameter 7., can be interpreted from the property that
a; 1., equals the energy of the pulse x(t).

In absence of noise, the resulting output pulse is 1) = h(t) » x(t), with peak
value yt,) = a, as desired. This peak occurs 1/2 seconds after the peak of x(z).
Thus, matched filtering introduces an unavoidable delay. However, it does not
introduce ISI at the sampling times for adjacent pulses since {(t) = 0 outside of
t, + 7. Figure 11.2-6 illustrates these points taking a rectangular shape for p(t), in
which case 7., = 7 and y(t) has a triangular shape.

When x(t) is accompanied by white noise, the output noise power from the
matched filter will be

NR=02=gf H(N)? df
_nt” 24 T
_2J:®}h(t)| d‘"zr,q (14)

This result agrees with the lower bound in Eq. (10) since, for binary signaling,
Tq < T, = 1/r,. We'll use this result to evaluate the maximum value of (4/20)?
and the corresponding minimum binary error probability when the noise is white
and gaussian and the receiver has an optimum filter matched to the timelimited
pulse shape.
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x(1)

@

0 ty o+ T
(a)
a()
!
7
¢
0 T
(b)
.V(’)é a
_ !
0 4~ 7 Iy h+T Figure 11.2-6 Matched filtering with rectangu-
lar pulses. (a) Received pulse; (b) impulse
(€} response; (c) output pulse.

Consider a binary transmission system with rate r,, average received power
Sk, and noise density n. We can characterize this system in terms of two new pa-
rameters E, and y, defined by

E, & Sg/ry (15a)
Vs & Sg/nry = Ey/n (15b)

Thf: quantity E, corresponds to the average energy per bit, while ¥ represents the
ratio of bit energy to noise densityt. If the signal consists of timelimited pulses
p(t) with amplitude sequence g, , then

— © E—
Eb = akz J pz(t) dt = akzteq
k4

where z-zz = A%/2 for a unipolar signal or a—f = A?%/4 for a polar signal. Thus, since

the output noise power from a matched filter is o2 = n/2t.q, we have

(4/20)? = Eyn =1y, Unipolar
2E,/n =2y, Polar

t Many authors write this ratio as E,/N, where N, = n.
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(a)

(h}

Figure 11.2-7 Integrate-and-dump filter. (a) op-amp circuit; (b) polar M-ary waveforms.

and Eq. (7) becomes

P {Q(\/;’;) Unipolar (16)
€ o /2%) Polar

This is the minimum possible error probability, attainable only with matched fil-
tering.

Finally, we should give some attention to the implementation of a matched
filter described by Eq. (13). The impulse response for an arbitrary p(t) can be
approximated with passive circuit elements, but considerable design effort must
be expended to get h(t) ~ 0 for ¢ > 1. Otherwise, the filter may produce significant
ISL. For a rectangular pulse shape, you can use an active circuit such as the one
diagrammed in Fig. 11.2-7a, called an integrate-and-dump filter. The op-amp inte-
grator integrates each incoming pulse so that y{t,) = a, at the end of the pulse,
after which the dump switch resets the integrator to zero— thereby ensuring no
ISI at subsequent sampling times. The integrate-and-dump filter is probably the
best practical implementation of matched filtering. Figure 11.2-7b illustrates its
operation with a polar M-ary waveform.

Exercise 11.2-2 Let x(¢) be the unipolar RZ signal in Fig. 11.1-1a. (a) Sketch
the corresponding output waveform from a matched filter and from an
integrate-and-dump filter. () Confirm that matched filtering yields (4/2¢)* =
7, even though 6% = 57, s0 Ng > nry/2.

M-ary Error Probabilities

Binary signaling provides the greatest immunity to noise for a given S/N because
it has only two amplitude levels—and you can’t send information with fewer
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than two levels. Multilevel M-ary signaling requires more signal power but less
transmission bandwidth because the signaling rate will be smaller than the bit
rate of an equivalent binary signal. Consequently, M-ary signaling suits applica-
tions such as digital transmission over voice channels where the available band-
width is limited and the signal-to-noise ratio is relatively large.

Here we calculate M-ary error probabilities in zero-mean gaussian noise.
We'll take the most common case of polar signaling with an even number of
equispaced levels at

a, = 1 A/2, £34/2, ..., +(M - 1)A/2 (17
We'll also assume equally likely M-ary symbols, so that

1
P,=ﬁ(Peo+P¢l +---+P,,_) (18)

which is the M-ary version of Eq. (5a).

Figure 11.2-8 shows the conditional PDFs for a quaternary (M = 4) polar
signal plus gaussian noise. The decision rule for regeneration now involves three
threshold levels, indicated in the figure at y = — A4, 0, and + A. These are the
optimum thresholds for minimizing P,, but they do not result in equal error
probabilities for all symbols. For the two extreme levels at a, = +34/2 we get

Pto = P¢3 = Q(A/za)
whereas
Pn = Pez = ZQ(A/ZO‘)

because both positive and negative noise excursions produce errors for the inner
levels at a, = + A/2. The resulting average error probability is

1 A 3 A
Pe=gx 6‘2(5) =zQ(£)

or 50% greater than binary signaling with the same level spacing.

pryiH,) py(¥H,) pr(¥iHy) py(viH;)

| | |
1 I
- 3AR —-A —~ A2 G A2 A 3A2

Figure 11.2-8 Conditional PDFs for a quaternary polar signal with gaussian noise.
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The foregoing analysis readily generalizes to an arbitrary even value of M
with M — 1 decision thresholds at
M-2
2

Then P,, = P,, , = Q(4/20) while the M — 2 inner levels have doubled error
MY ¢ » g
probability, yielding the average error probability

tlaxo i>+(M—z)sz<-’1)]
Pg:ﬁ X 20 20

M=2 [(A\ (. 1\,(A "
S22 o) -2(1- g )el(%) )

Equation (20) clearly reduces to Eq. (7) when M =2, whereas P, =~ 2Q(A/20)

when M » 2. _ . ‘ .
Next, we relate 4/2¢ to the signal power and noise density assuming a time-

limited pulse shape p(t) so the average energy per M-ary digit is Ey =aft,
where

y=0, tA4, +24,. .., * A (19)

Teq = J p(t) di

e )

as before. If the M amplitude levels are equally likely and given by Eq. (17), then

—_ 1 M2 ) A 2 M2_1
a3=zxﬁ_zl(zl_1)2(5) Mol e

Hence, since Sg = rEy.,

AV 3 Ey
26) M*P—11,0°

3 1§‘R'S 6 §£
M —1ri N M*—1ur

= (22)

where the upper bound corresponds to Ng = n/2t.q obtained with matchgfi ﬁl‘ter-
ing. Equations (20) and (22) constitute our final result for error probability in a
polar M-ary system with gaussian white noise. o
More often than not, M-ary signaling is used to transmit binary messages
and the value of M is selected by the system engineer to best fit the available
channel. We should therefore investigate the design considerations in the sglcc-
tion of M, especially the impact on error probability. But Egs. (20) zfmd (22) fail to
tell the full story for two reasons: first, the M-ary signaling rate differs from tl}c
bit rate r,; second, the M-ary error probability differs from the bit error probabil-
ity. »
’ We can easily account for the signaling-rate difference when the message bits
are encoded in blocks of length log, M. Then r, and r are related by

r,=rlog, M (23) -
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from Eq. (4), Sect. 11.1. To relate the M-ary symbol error probability P, to the
resulting error probability per bit, we’ll assume a Gray code and a reasonably
large signal-to-noise ratio. Under these conditions a noise excursion seldom goes
beyond one amplitude level in the M-ary waveform, which corresponds to just
one erroneous bit in the block of log, M bits. Therefore,

P,, ~ P jlog, M (24)

where P, stands for the equivalent bit error probability, also called the bit error
rate (BER).

Combining Egs. (23) and (24) with our previous M-ary expressions, we finally
have
M-1 A
Pox2———0Q|— 25
b Mlog, M Q(Za) (23a)

AN 6 Sz 6log, M

5o =33 Yy 1)

20 Ms—1lngr M°-—1
Notice that the upper bound with matched filtering has been written in terms of

vy = Sg/nr, = Sg/(nr log, M). This facilitates the study of M-ary signaling as a
function of energy per message bit.

in which

(25b)

Example 11.2-2 Comparison of binary and M-ary signaling Suppose the
channel in question has a fixed signaling rate r = 3000 baud = 3 kbaud and
a fixed signal-to-noise ratio (S/N)g = 400 =~ 26 dB. (These values would be
typical of a voice telephone channel, for instance.) We'll assume matched fil-
tering of NRZ rectangular pulses, so rt., = 1 and

A\ 3 6log, M
(za) = R
which follow from Egqs. (22) and (25b).

Binary signaling yields a vanishingly small error probability when
(S/N)g = 400, but at the rather slow rate r, = r = 3 kbps. M-ary signaling
increases the bit rate, per Eq. (23), but the error probability also increases
because the spacing between amplitude levels gets smaller when you increase
M with the signal power held fixed. Table 11.2-1 brings out the trade-off
between bit rate and error probability for this channel.

Table 11.2-1 M-ary signaling with r = 3 kilobaud

and (S/N); = 400
M ry(kbps) Af2o P,
2 3 200 3x 1078
4 6 8.9 1 x 10719
8 9 44 4x10°°
16 12 22 7x 1072
32 15 1.1 6 x 102
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Table 11.2-2 M-ary signaling with
ro = 9kbpsand P,, =4 x 107¢

M r (kbaud) T
2 9.00 10
4 4.50 24
8 3.00 67
16 225 200
32 1.80 620

Another type of trade-off is illustrated by Table 11.2-2, where the bit rate
and error probability are both held fixed. Increasing M then yields a lower
signaling rate r—implying a smaller transmission bandwidth requirement.
However, the energy per bit must now be increased to keep the error prob-
ability unchanged. Observe that going from M =2 to M = 32 reduces r by
1/5 but increases y, by more than a factor of 60. This type of trade-off will be
reconsidered from the broader viewpoint of information theory in Chap. 15.

Exercise 11.2-3 Consider the three-level bipolar binary format in Fig. 11.1-1¢
with  amplitude probabilities Pla, =0)=1/2 and Pla;, = +4)=
P(a, = — A) = 1/4. Make a sketch similar to Fig. 11.2-8 and find P, in terms
of A and ¢ when the decision thresholds are at y = + 4/2. Then calculate Sy
and express P, in a form like Eq. (16).

11.3 BANDLIMITED DIGITAL PAM SYSTEMS

This section develops design procedures for baseband digital systems when the
transmission channel imposes a bandwidth limitation. By this we mean that the
available transmission bandwidth is not large compared to the desired signaling
rate and, consequently, rectangular signaling pulses would be severely distorted.
Instead, we must use bandlimited pulses specially shaped to avoid ISI.

Accordingly, we begin with Nyquist's strategy for bandlimited pulse shaping.
Then we consider the optimum terminal filters needed to minimize error prob-
ability. The assumption that the noise has a gaussian distribution with zero mean
value will be continued, but we’ll allow an arbitrary noise power spectrum. We'll
also make allowance for linear transmission distortion, which leads to the subject
of equalization for digital systems. The section closes with an introductory dis-
cussion of correlative coding techniques that increase the signaling rate on a
bandlimited channel.

Nyquist Pulse Shaping

Our presentation of Nyquist pulse shaping will be couched in general terms of
M-ary signaling with M > 2 and symbol interval D = 1/r. In order to focus on
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potential ISI problems at the receiver, we'll let p(t) be the pulse shape at the
output of the receiving filter. Again assuming that the transmitter gain compen-
sates for transmission loss, the output waveform in absence of noise is

Wi = Z a pt — ty — kD)

k
As before, we want p(t) to have the property
1 t=0
”(‘)"{0 t=+D, +2D, ... ()
which eliminates ISI. Now we impose the additional requirement that the pulse
spectrum be bandlimited, such that
P(f}=0 |fIzB (15)

B:—+ﬂ 0<ﬂ<—
3 = =5

This spectral requirement permits signaling at the rate
r=2B-f) B<r<2B (2)

in which B may be interpreted as the minimum required transmission bandwidth,
so that By > B.

Nyquist’s vestigial-symmetry theorem states that Eq. (1) is satisfied if p(¢) has
the form

p(t) = pglt) sinc rt (3a)
with
Flp)] =Py ) =0 |f|>8

® (3b)
pel0) = | Pyf)df=1
Clearly, p(r) has the time-domain properties of Eq. (1a). It also has the frequency-
domain properties of Eq. {1b) since

P(f) = Pg(f) = [(1/MI(f/r)]

and the convolution of two bandlimited spectra produces a new bandlimited
spectrum whose bandwidth equals the sum of the bandwidths, namely,
B = B + r/2. Usually we take p,(t) to be an even function so Py f) is real and
even; then P(f) has vestigial symmetry around f = +r/2, like the symmetry of a
vestigial sideband filter.

Infinitely many functions satisfy Nyquist’s conditions, including the case
when py(t) = 1 so f = 0 and p(t) = sinc rt, as in Eq. (6), Sect. 11.1. We know that
this pulse shape allows bandlimited signaling at the maximum rate r = 2B.
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However, synchronization turns out to be a very touchy matter becau§e ic pulse
shape falls off no faster than 1/|t| as | 1|— co. Consequently, a small timing error
€ results in the sample value

Wtg) = ag sinc re + ) a, sinc (KD — kD + re)
kK

and the ISI in the second term can be quite large. . . .
Synchronization problems are eased by reducing the signaling rate and using
pulses with a cosine rolloff spectrum. Specifically, if

LI 4a
P,(f)—4ﬁcoszﬂﬂ(2ﬂ> (4a)
then
I r_
- fl<3-8
. r
P ={teot Z(151-548)  Gop<iri<zes @)
0 f1>5+8
and the corresponding pulse shape is
pt) = o8 (i ﬂﬂ)z sinc rt (5)

Plots of P(f) and p(t) are shown in Fig. 11.3-1 for two values of § along wi?h
B = 0. When § > 0, the spectrum has a smooth rolloff and the leading and trail-
ing oscillations of p(t) decay more rapidly than those of sinc rt. .
Further consideration of Eqs. (4) and (5) reveals two other helpful properties
of p(t) in the special case when B =r/2, known as 100% rolloff. The spectrum

r
g=3
- Py
; r
P ~B=3
yamne
S
N
S
N
N
\\
t— f
Q r r
2
(a) (h)

Figure 11.3-1 Nyquist pulse shaping. (a) Spectra; (b) waveforms.

11.3 BANDLIMITED DIGITAL PAM SYSTEMS 407

i |
|
i 4 ¢ |

13 ¥

l 5

f_

" Figure 1132 Bascband waveform for
10110100 using Nyquist pulses with

!
l
_1+

B=ri2
then reduces to the raised cosine shape
1 1
P(f)=—cos2i=— 1 + cos E 1 fl<r (6a)
r 2r 2r r
and
sinc 2rt
pt) = =@y (6b)

The half-amplitude width of this pulse exactly equals the symbol interval D, that
is, p(+0.5D) = 1/2, and there are additional zero crossings at t = +1.5D,
125D, ... . A polar signal constructed with this pulse shape will therefore have
ZeTo crossmgs precisely halfway between the pulse centers whenever the ampli-
tude changes polarity. Figure 11.3-2 illustrates this feature with the binary
message 10110100. These zero crossings make it a simple task to extract a syn-
chronization signal for timing purposes at the receiver. However, the penalty is a
50% reduction of signaling speed since r = B rather than 2B. Nyquist proved
that the pulse shape defined by Eq. (6) is the only one possessing all of the afore-
mentioned properties.

Exercise 11.3-1 Sketch P(f) and find p(t) for the Nyquist pulse generated by
taking P(f) = (2/r)A(2fjr). Compare your results with Eq. (6).

Optimum Terminal Filters

Having abandoned rectangular pulses, we must likewise abandon the convention-
al matched filter and reconsider the design of the optimum receiving filter that
minimizes error probability. This turns out to be a relatively straightforward
problem under the following reasonable conditions:

1. The signal format is polar, and the amplitudes a, are uncorrelated and equally
likely.

2. The transmission channel is linear but not necessarily distortionless.

3. The filtered output pulse p() is to be Nyquist shaped.

4. The noise is additive and has a zero-mean gaussian distribution but may have
a nonwhite power spectrum.

To allow for possible channel distortion and/or nonwhite noise, our optimization
must involve filters at both the transmitter and receiver. As a bonus, the source
waveform x(t) may have a more-or-less arbitrary pulse shape p.(t).
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Gatf)
NI Sy ) 3T
—ad  Hp ) Hih Hoh b

Figure 11.3-3 lays out the system diagram, including a transmitting filter
function H(f), a channel function HA{f), and a receiving filter function Hg(f).
The input signal has the form

Figure 11.3-3

x(t) =Y a,pdt — kD) (7a)
k
and its power spectrum is
GAf)=alriPNI? (7b)
where P (f) = #{p )] and
- M?*-1
ol =a}= 5 A? (70)

These relations follow from Eq. (12), Sect. 11.1, and Eq. (21), Sect. 11.2, with our
stated conditions on a, . Thus, the transmitted signal power will be

ST=J_ [HANPGAS) df

2 _ 1 a
M1, j |HANPANI df ®

12

a result we’ll need shortly.

At the output of the receiving filter we want the input pulse p,(t) to produce a
Nyquist-shaped pulse p(t — t,), where ¢, represents any transmission time delay.
The transfer functions in Fig. 11.3-3 must therefore obey the relationship

PANHANHASNHR(f) = P(f)e 7 ®

so both terminal filters help shape p(t). But only the receiving filter controls the
output noise power

NR=62=J. ‘iHR(f)IZGn(f) daf (10)

where G,{f) is the noise power spectrum at the input to the receiver.

Equations (7}+(10) constitute the information relevant to our design problem.
Specifically, since the error probability decreases as 4/2¢ increases, we seek the
terminal filters that maximize (4/26)* subject to two constraints: (1) the transmit-
ted power must be held fixed at some specified value Sy, and (2) the filter transfer
functions must satisfy Eq. (9).

We incorporate Eq. (9) and temporarily eliminate H{ f) by writing

PN
| PANHAS)H ()

|He )| = (11)
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Then we use Egs. (8) and (10) to express (4/20)* as

2 1
A = ——%L— — (12a)
20 (M? — Dr Iy
where

ST
—_— 126
L TH Y (126)

Maximizing (A4/20)* thus boils down to minimizing the product of integrals /¢,
in which Hg(f) is the only function under our control.

Now observe that Eq. (12b) has the form of the right-hand side of Schwarz’s
inequality as stated in Eq. (17), Sect. 3.5. The minimum value of /4, therefore
occurs when the two integrands are proportional. Consequently, the optimum
receiving filter has

Lug = f T H) PGS df

| P
[H(N)P = —==
)y VG NI HAN!

where g is an arbitrary gain constant. Equation (11) then gives the optimum
transmitting filter characteristic

. PNV G
HA N = (P HL] (135)

These expressions specify the optimum amplitude ratios for the terminal filters.
Note that the receiving filter deemphasizes those frequencies where G (f) is large,
and the transmitting filter supplies the corresponding preemphasis. The phase
shifts are arbitrary, providing that they satisfy Eq. (9).

Substituting Eq. (13) into Eq. (12) yields our final result

AN 38, = I PUIVGL) 72 ,
<Za)m‘(M2—anw |Hd ) de (4

from which the error probability can be calculated using Eq. (20), Sect. 11.2. As a
check of Eq. (14), take the case of white noise with G,(f) = #/2 and a distor-
tionless channel with transmission loss L so | HA{f)|? = 1/L; then

i 2 3 GST/L @ -2
o il [ ]

But since S;/L = Sg and Nyquist-shaped pulses have

(13a)

F \PU) df = 1

we thus obtain

AN 6 Sz _6log, M
20 M _ilngr MA—1®

max

which confirms that the optimum terminal filters yield the same upper bound as
matched filtering — see Eqgs. (22) and (25), Sect. 11.2.
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Figure 11.3-4 Amplitude ratio of optimum
filters in Example 11.3-1.

Example 11.3-1 Consider a system with white noise, transmission loss L, and
a distortionless channel response over | f | < By where By = r. This transmis-
sion bandwidth allows us to use the pulse shape p(t) in Eq. (6), thereby sim-
plifying synchronization. Simplicity also suggests using the rectangular input
pulse p.(t) = T(t/t) with = < 1/r, so P(f) = t sinc fr. Taking the gain con-
stant ¢ in Eq. (13) such that | Hg(0)}| = 1, we have

E _ rcos (nf/2r)
2r |HdDI = VL rt sinc f1

as plotted in Fig. 11.3-4, Notice the slight high-frequency rise in | Hy{f)}
compared to | Hg(f)|. If the input pulses have a small duration t « 1/r, then
this rise becomes negligible and | H{f)| = | Hx(f)|, so one circuit design
serves for both filters.

|Hg(f)| = cos [ fi<sr

Exercise 11.3-2 Carry out the details going from Eq. (12) to Egs. (13) and
(14).

Equalization

Regardless of which particular pulse shape has been chosen, some amount of
residual ISI inevitably remains in the output signal as a result of imperfect filter
design, incomplete knowledge of the channel characteristics, etc. Hence, an
adjustable equalizing filter is often inserted between the receiving filter and the
regenerator. These “mop-up ™ equalizers usually have the structure of a trans-
versal filter previously discussed in Sect. 3.2 relative to linear distortion of analog
signals. However, mop-up equalization of digital signals involves different design
strategies that deserve attention here.

Figure 11.3-5 shows a transversal equalizer with 2N + 1 taps and total delay
2ND. The distorted pulse shape p(t) at the input to the equalizer is assumed to
have its peak at t = 0 and ISI on both sides. The equalized output pulse will be

N

peq(l);— Z Cni’(‘—nD_ND)

a=—N
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Total delay 2ND
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Figure 11.3-5 Transversal cqualizer with 2N + | taps.

and sampling at 7, = kD + ND yields
N N

peq(tl) = Z Cnﬁ(kD - nD) = Z Cui’k—n (15)
n=-N n=—-N
where we've introduced the shorthand notation p,_, = p[(k — n)D]. Equation
(15) thus takes the form of a discrete convolution.
Ideally, we would like the equalizer to eliminate all IS], resulting in

1 k=0
peq(tk) = {0 k #: 0

But this cannot be achieved, in general, because the 2N + | tap gains are the
only variables at our disposal. We might settle instead for choosing the tap gains
such that

(t) = 1 k=0 6
Pl =100 k- 41 42 N (16)

thereby forcing N zero values on each side of the peak of p (). The correspond-
ing tap gains are computed from Eqgs. (15) and (16) combined in the matrix equa-
tion

[ Po o poan | fe-w] 0]
Py P-n-1]]c-s 0
Px o Pon Co =]1 (17
Pn+ Poner e 0
j"zx ' Po tles ] _Od

Equation (17) describes a zero-forcing equalizer. This equalization strategy is
optimum in the sense that it minimizes the peak intersymbol interference, and it-
has the added advantage of simplicity. Other optimization criteria lead to differ-
ent strategies with more complicated tap-gain relationships.
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When the transmission channel is a switched telephone link or a radio link
with slowly changing conditions, the values of p, will not be known in advance.
The tap gains must then be adjusted on-line using a training sequence transmit-
ted before the actual message sequence. An adaptive equalizer incorporates a
microprocessor for automatic rather than manual tap-gain adjustment. More
sophisticated versions adjust themselves continuously using error measures
derived from the message sequence. Further details regarding adaptive equal-
ization are given by Haykin (1983, Sect. 9.6) and Proakis (1983, Chap. 6).

Mop-up equalization, whether fixed or adaptive, does have one hidden catch
in that the equalizer somewhat increases the noise power at the input to the

regenerator. This increase is usually more than compensated for by the reduction
of ISL

Example 11.3-2 Suppose a three-tap zero forcing equalizer is to be designed
for the distorted pulse plotted in Fig. 11.3-6a. Inserting the values of p, into
Eq.(17) with N = |, we have

10 01  00fec., 0

—02 1.0 Otffe, |=1]1
01 -02 10llc, 0
pe
1.0
0.1 p
i ’/?\{)-I

Figure 11.3-6 (a) Distorted pulse; (b}
(b) equalized pulse.
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Therefore,
c_; = —0.096 co = 0.96 ¢, =02

and the corresponding sample values of p,(t) are plotted in Fig. 11.3-6b with
an interpolated curve. As expected, there is one zero on each side of the peak.
However, zero forcing has produced some small ISI at points further out
where the unequalized pulse was zero.

Correlative Codingy

Correlative coding, also known as partial-response signaling, is a strategy for
bandlimited transmission at r = 2B that avoids the problems associated with
p(t) = sinc rt. The strategy involves two key functional operations, correlative fil-
tering and digital precoding. Correlative filtering purposely introduces controlled
intersymbol interference, resulting in a pulse train with an increased number of
amplitude levels and a correlated amplitude sequence. Nyquist's signaling-rate
limitation no longer applies because the correlated symbols are not independent,
and therefore higher signaling rates are possible. Digital precoding of the message
sequence before waveform generation facilitates message recovery from the
correlative-filtered pulse train.

Figure 11.3-7a shows the general model of a transmission system with cor-
relative coding, omitting noise. The digital precoder takes the sequence of
message symbols m, and produces a coded sequence my applied to an impulse
generator. (In practice, the impulses would be replaced by short rectangular
pulses with duration t « D.) The resulting input signal is an impulse train

x(t) =3 a, 8t — kD)
x

nt, Digital m Impulse x(¢) H() = o my
precoder generator H(HH (HHR ) » Regen
(@)
Total delay ND
A
Ideal LPF ¥u)
B =1r ’
(b)

Figure 11.3-7 (a) Transmission sysiem with correlative coding; (b) equivalent correlative filter.
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whose weights a, represent the m,. The terminal filters and channel have the
overall transfer function H(f), producing the output waveform

W)=Y a.h(t — kD) (18)
k

where h(t) = # " '[H(/)].

Although a correlative filter does not appear as a distinct block in Fig.
11.3-7a, the transfer function H(f) must be equivalent to that of Fig. 11.3-7hb—
which consists of a transversal filter and an ideal LPF. The transversal filter has
total delay ND and N + 1 tap gains. Since the impulse response of the LPF is
sinc rt and r = 1/D, the cascade combination yields the overall impulse response

N

h(t) = Y c, sinc (rt — n) (19)

n=0

Hence, Eq. (18) becomes

N
=3y ak[ c,sinc (rt —n — k)]

k n=0

=Y asinc (rt — k) (20a)
k
where
N

G coa+cia_ + toyay= Y cya_, (206)

=0

Message regeneration must then be based on the sample values W) = a;.

Equation (20) brings out the fact that correlative filtering changes the ampli-
tude sequence g into the modified sequence a;. We say that this sequence has a
correlation span of N symbols, since each a; depends on the previous N values of
a,. Furthermore, when the a, sequence has M levels, the a} sequence has M > M
levels. To demonstrate that these properties of correlative filtering lead to practi-
cal bandlimited transmission at r = 2B, we must look at a specific case.

Duobinary signaling is the simplest type of correlative coding, having M = 2,
N =1, and ¢; = ¢; = 1. The equivalent correlative filter is diagrammed in Fig.
11.3-8 along with its impulse response

h(t) = sinc r,t + sinc (ryt — 1) (21a)
and the magnitude of the transfer function

2
H(f) =~ cos il e Ixiin

Fp Fy

Lf1<r2 (215)

The smooth rolloff of H(f) is similar to the spectrum of a Nyquist-shaped pulse
and can be synthesized to a good approximation. But, unlike Nyquist pulse
shaping, duobinary signaling achieves this rolloff without increasing the band-
width requirement above B = r,/2. In exchange for the signaling rate advantage,
a duobinary waveform has intentional ISI and M’ = 3 levels — attributed to the
property of the impulse response that k() = 1 at botht =0and ¢t = T;.
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Delay

T,
v{}
é % ) LPF i
B = r,/2

x(0)

(@)

SHNC Fyt
_sinc {r,f — 1)

()

(©)

Figwre 113-8 Duobinary signaling. (a) Equivalent correlative filter; (b) impulse response; (¢) ampli-
tude ratio.

To bring out the ISI effect, let the amplitude sequence a, be related to the
precoded binary message sequence n, by
+A/2 mp =1

22
—A/2 my =0 (22)

ay=(m — 1/2)A = {

which is equivalent to a polar binary format with level spacing 4. Equation (20)
then gives the corresponding output levels

ity=a,=a,+a_,=m +m_, — 1A (23a)
*-{—A m=m_, =1

= 0 mEFEm_, (23b)
Z—A my=m._, =0

In principle, you could use Eq. (23b) to recover m; from ) if you have pre-
viously recovered m, _,. However, when noise causes an erroneous value of m; _,,
all subsequent message bits will be in error until the next noise-induced error —a
phenomenon called error propagation.
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The digital precoder for duobinary signaling shown in Fig. 11.3-9a prevents
error propagation and makes it possible to recover the input message sequence
m;, from Mt,). The precoder consists of an exclusive-OR gate with feedback
through a D-type flip-flop. Figure 11.3-9b lists the coding truth table along with
the algebraic sum m, + m, _, that appears in Eq. (23a). Substitution now yields

+A m, =0

0 m=1 @4

W) = {

which does not involve m, _,; thanks to the precoder. When j(z) includes additive
gaussian white noise, the appropriate decision rule for message regeneration is:

Choose m, =0 if J vl > A/2
Choose m, = 1 if [yl < 472

This rule is'easily implemented with a rectifier and a single decision threshold set
at A/2. Optimum terminal filter design gives the minimum error probability

3
P.=30 G v 27,,) s)

which is somewhat higher than that of a polar binary system.

When the transmission channel has poor DC response, modified duobinary
signaling may be employed. The correlative filter has N =2, ¢, = 1, ¢, = 0, and
¢, = — 1, so that

2 )
H(f) == sin . e itxlire [fl<r/2 (26)
ry Ty

Figure 11.3-10 shows | H(f}| and the block diagram of the correlative filter. The
precoder takes the form of Fig. 11.3-9 with two flip-flops in series to feed back
my_ ;. If the pulse generation is in accordance with Eq. (22), then

W) =ay —ay_, =(m, —my_,)A

_{ 0 mk=0
+ A4 m, =1

which can be compared with Eqgs. (23) and (24).

27)

Exclusive-OR ¢
gate my my, mi mi +m,_,
my
j:)j : m' 0 0 0 0
——
(O i 1 2
mp
D-type 1 0 1 i
flip-flop
1 1 0 1

(a) (b)

Figure 11.3-9 (a) Digital precoder for duobinary signaling; (b} truth table.
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f

0 ryf2
(a} {o)]

Figure 11.3-10 Correlative filter for modificd duobinary signaling. () Amplitude ratio of correlative
filter; (b) block diagram.

Exercise 11.3-3 Construct a truth table like Fig. 11.3-9b for the case of modi-
fied duobinary signaling and use it to obtain Eq. (27).

11.4 SYNCHRONIZATION TECHNIQUES

Synchronization is the art of making clocks tick together. The clocks in a digital
communication system are at the transmitter and receiver, and allowance must
be made for the transmission time delay between them. Besides symbol synchro-
nization, most systems also require frame synchronization to identify the start of
a message or various subdivisions within the message sequence. Additionally,
carrier synchronization is essential for digital transmission with coherent carrier
modulation — a topic to be discussed in Chap. 14.

Here we'll consider symbol and frame synchronization in baseband binary
systems. Our attention will be focused on extracting synchronization from the
received signal itself, rather than using an auxiliary sync signal. By way of an
overview, Fig. 11.4-1 illustrates the position of the bit synchronizer relative to the
clock and regenerator. Framing information is usually derived from the regener-
ated message and the clock, as indicated by the location of the frame synchro-
nizer. We'll look at typical synchronization techniques, along with the related
topics of shift-register operations for message scrambling and pseudonoise (PN)
sequences for framing purposes.

Our coverage of synchronization will be primarily descriptive and illustrative.
Detailed treatments of digital synchronization with additive noise are given by
Stiffler (1971) and Gardner and Lindsey (1980).

Output message

»

¥{r)
- Regenerator >

——»1 LPF

3

Frame
indicator

Bit 1 3 Clock Frame |
sync sync

A 4

Figure 11.4-1 Synchronization in a binary recciver.
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Bit Synchronization

Bit-sync generation becomes almost trivial when y(¢) has unipolar RZ format so
its power spectrum G,(f) includes d(f + r,), like Fig. 11.1-5. A PLL or narrow
BPF tuned to f'= r, will then extract a sinusoid proportional to cos (2ar,t + @),
and phase adjustment yields a sync signal for the clock. The same technique
works with a polar format if y(t) is first processed by a square-law device, as dia-
grammed in Fig. 11.4-2a. The resulting unipolar waveform y3(t) shown in Fig.
11.4-2b now has the desired sinusoidal component at f = r,. Various other non-
linear polar-to-unipolar operations on y(t) achieve like results in open-loop bit
synchronizers.

But a closed-loop configuration that incorporates the clock in a feedback
loop provides more reliable synchronization. Figure 11.4-3 gives the diagram and
explanatory waveforms for a representative closed-loop bit synchronizer. Here a
zero-crossing detector generates a rectangular pulse with half-bit duration T./2
starting at each zero-crossing in y(t). The pulsed waveform z(t) then multiplies the
square-wave clock signal c(t) coming back from the voltage-controlled clock
(VCC). The control voltage ut) is obtained by integrating and lowpass-filtering
the product z(t)e(r). The loop reaches steady state conditions when the edges of
c(t) and z() are synchronized and offset by T,/4, so the product has zero area and
u(t) remains constant. Practical implementations of this system usually feature
digital components in place of the analog multiplier and integrator.

Both of the foregoing techniques work best when the zero-crossings of y(t)
are spaced by integer multiples of T,. Otherwise, the synchronization will suffer
from timing jitter. An additional problem arises if the message includes a long
string of 1s or Os, so y{(t) has no zero-crossings, and synchronism may be lost.
Message scramblers discussed shortly help alleviate this problem.

cos (2ar,t + &)

vir) ¥ | Bpr / Phase | 19 clock
(a) ; :
fo=ry adj

(N T

V,(I)A/\/\/\/\_/-\-/\/\/
t

wo AN N NN NN
RV AAVALVAAVAAVAAVALVALV,

Figure 11.4-2 Bit synchronization by polar to unipolar conversion. (a) Block diagram ; (b) waveforms.
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c(t)

y() Zero crossing | 217) . vir) e
detector — % [ e M vec >
(a) i

z(1) i

c(t) !

z(0c(r)

u{t)
1] - '

Figure 11.4-3 Closed-loop bit synchronization with a voltage-controlled clock. () Block diagram;
(b} waveforms.

A different approach to synchronization, independent of zero-crossings, relies
on the fact that a properly filtered digital signal has peaks at the optimum sam-
pling times and is reasonably symmetric on either side. Thus, if ¢, is synchronized
and é < T,/2, then

EAte — 8) | = | ftx + 8} < | 1))

However, a late sync signal produces the situation shown in Fig. 11.4-4a where
| Wty — 8)] > | vt + 9)|, while an early sync signal would result in | y(t, — 8)| <
INt, + 6)|. The early-late synchronizer in Fig. 11.4-4b uses these properties to
develop the control voltage for a VCC in a feedback loop. A late sync signal
results in o{t) = | Wt, — )| — | Wt + )| > 0, which speeds up the clock, and con-
versely for an early sync signal.

Scramblers and PN Sequence Generators

Scrambling is a coding operation applied to the message at the transmitter that
“randomizes” the bit stream, eliminating long strings of like bits that might
impair receiver synchronization. Scrambling also eliminates most periodic bit
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(a)

lv(re + 8)i

—p S/H {—f Rect

Delay
T, +8

¥
"“_? % VCC

Delay
T, -6

Figure 11.44 Early-late bit syn-
L—p S/H p—¥ Rect chronization. (a) Waveform; (b)
(h) block diagram.

PyG — 8) 4

patterns that could produce undesirable discrete-frequency components in the
power spectrum. Needless to say, the scrambled sequence must be unscrambled
at the receiver so as to preserve overall bit sequence transparency.

Simple but effective scramblers and unscrambiers are built from tapped shift
registers having the generic form of Fig. 11.4-5, the digital counterpart of a
tapped delay line. Successive bits from the binary input sequence b, enter the
register and shift from one stage to the next at each tick of the clock. The output
b, is formed by combining the bits in the register through a set of tap gains and
mod-2 adders, yielding

by=aby Doy b ;D Dby, (N

n-stage shift register

(‘luck-—-—-——z——.z___ __l

1T

Binary
tap gams

Mod-2 adders Figure 11.4-5 Tapped shift register.
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The tap gains themselves are binary digits, so @, = 1 simply means a direct con-
nection while 2, = 0 means no connection. The symbol & stands for modulo-2
addition, defined by the properties

o by=b,
bleabz—{1 b, % b, (2a)
and

bx®b2@b3=(b1®bz)@b3=b1@(bz@b3) (Zb)

where b,, b,, and bj are arbitrary binary digits. Mod-2 addition is implemented
with exclusive-OR gates, and obeys the rules of ordinary addition except that
11=0

Figure 11.4-6 shows an illustrative scrambler and unscrambler, each employ-
ing a 4-stage shift register with tap gains a; =a, =0 and a3 = a, = 1. (For
clarity, we omit the clock line here and henceforth.) The binary message sequence
m, at the input to the scrambler is mod-2 added to the register output m; to form
the scrambled message mj which is also fed back to the register input. Thus,
my =my_,@®m,_,and

my = my @ my (3a)

The unscrambler has essentially the reverse structure of the scrambler and repro-
duces the original message sequence, since

m, @ my = (m, ® my) ® my
=m®m dm)=md0=m (3b)

Equations (3a) and (3b) hold for any shift-register configuration as long as the
scrambler and unscrambler have identical registers.

My My
Mz my_;
My Ty
o I
"y Ny 1 m:
m N ‘ i W s Y
N " L/

{a) (o)

Figure 11.4-6 (a) Binary scrambler; (b) unscrambler.
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Table 11.4-1

my_, 0 1 0 I 0 i 1 I 1 0o 0 o0 1 0
Registers m_, 0 0 I 0 1 0 1 I 1 1 0o 0 0 1
contents m ., 0 0 0 1 0 1 0 I I 1 1 0 0 0
m_., O 0 0 0 I 0 1 0 I t I 1 0 0
Register
output m, 0o 0 o0 ! I 1 1 1 o o0 o0 1 o 0
Input
sequence m, 1 0 1 1 0 0 0 0 0 0 0 0 0 1
Output
sequence n 1 0 1 0 1 1 1 1 0 0 0 1 0 1

The scrambling action does, of course, depend on the shift-register configu-
ration. Table 11.4-1 portrays the scrambling produced by our illustrative scram-
bler when the initial state of the register is all 0s. Note that the string of nine 0s in
m, has been eliminated in m;. Nonetheless, there may be some specific message
sequence that will result in a long string of like bits in m;. Of more serious
concern is error propagation at the unscrambler, since one erroneous bit in m; will
cause several output bit errors. Error propagation stops when the unscrambler
register is full of correct bits.

Next, in preparation for the subsequent discussion of frame synchronization,
we consider shift-register sequence generation. When a shift register has a nonzero
initial state and the output is fed back to the input, the unit acts as a periodic
sequence generator. Take Fig. 11.4-7, for example, where a 3-stage register with
initial state 111 produces the 7-bit sequence 1110010 which repeats periodically
thereafter. In general, the longest possible sequence period from a register with n
stages is

N=2-1 @)

and the corresponding output is called a maximal-length or pseudonoise (PN)
sequence. Figure 11.4-7 is, in fact, a PN sequence generator with n=3 and
N=7

The name pseudonoise comes from the correlation properties of PN
sequences. To develop this point, let a PN sequence s, be used to form the binary
polar NRZ signal

stt) =3 (25 — Dplt — kTy) 3
k

Inttial state

Output sequence
I I 1 + 10010

Ne
o

Figare 11.4-7 Shift-register sequence generator.
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R,(7)
1
-T. T, (N~ )T, (N + DT,
)] Il i 1 s i 1 H i
Jr T TNy Figure 11.4-8 Autocorrelation of a PN
N ’ sequence.

where p(t) is a rectangular pulse and the amplitude of the kth pulse is

+1 5.=1
25, — 1 = 6
e {—l =0 )

The signal s(t) is deterministic and periodic, with period N7,, and has a periodic
autocorrelation function given by

R =[N+ DA/T) - 1/N  |t|<NT,/2 (7)
which is plotted in Fig. 11.4-8. If N is very large and T, very small, then
R(t)= T, 1) — /N [t < NT,/2

so the PN signal acts essentially like white noise with a small DC component.
This noise-like correlation property leads to practical applications in test instru-
ments and radar ranging, as well as spread spectrum communication described in
Sect. 9.3, and digital framing, to which we now turn.

Frame Synchronization

A digital receiver needs to know when a signal is present. Otherwise, the input
noise alone may produce random output bits that could be mistaken for a
message. Therefore, identifying the start of a message is one aspect of frame syn-
chronization. Another aspect is identifying subdivisions or frames within the
message. To facilitate frame synchronization, binary transmission usually
includes special N-bit sync words as represented in Fig. 11.4-9. The initial prefix
consists of several repetitions of the sync word, which marks the begining of
transmission and allows time for bit-sync acquisition. The prefix is followed by a
different codeword labeling the start of the message itself. Frames are labeled by
sync words inserted periodically in the bit stream.

Prefix ~— Start of message

s
,‘1‘ : Message bits rj —}j’ I
N-bit sync word

Figure 11.4-9
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Figure 11.4-10 Frame synchronizer.

The elementary frame synchronizer in Fig. 11.4-10 is designed to detect a
sync word s;s; -+ sy whenever it appears in the regenerated sequence m,.
Output bits with the polar format

a=2m —1=+1

are loaded into an N-stage polar shift register having polar tap gains given by
Ci =2y — 1 8

This a»ykward-looking expression simply states that the gains equal the sync-
word bits in polar form and reverse order, that is, ¢, = 2sy — 1 while oy = 2s,
— 1. The tap-gain outputs are summed algebraically to form

N
Uy = Zciak—i %)
i=1

This voltage is compared with a threshold voltage ¥, and the frame-sync indica-
tor goes HIGH when v, > V.

If the register word is identical to the sync word, then a,_, = ¢, so ¢, Y
= 1 and vk = N. If the register word differs from the sync word in just one bit,
then vy = N — 2 (why?). Setting the threshold voltage V slightly below N — 2

thus allows detection of error-free sync words and sync words with one bit error.
Sync words with two or more errors go undetected, but that should be an
unlikely event with any reasonable value of P,. False frame indication occurs
when N or N — 1 successive message bits match the sync-word bits. The prob-
ability of this event is given by the binomial model as

G G

assuming equally likely Is and Os in the bit stream.
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Further examination of Egs. (8) and (9) reveals that the frame synchronizer
calculates the cross-correlation between the bit stream passing through the regis-
ter and the sync word, represented by the tap gains. The correlation properties of
a PN sequence therefore makes it an ideal choice for the sync word. In particular,
suppose the prefix consists of several periods of a PN sequence. As the prefix
passes through the frame-sync register, the values of v, will trace out the shape of
R/7) in Fig. 11.4-8 with peaks v, = N occurring each time the initial bit s,
reaches the end of the register. An added advantage is the ease of PN sequence
generation at the transmitter, even with large values of N. For instance, getting
Py < 10°% in Eq. (10) requires N > 25, which can be accomplished with a

5-stage PN generator.

11.5 PROBLEMS

11.1-1 Sketch x(t) and construct the corresponding eye pattern (without transmission distortion) for
binary PAM with the data sequence 1011100010 when the signal has a unipolar format and pulse
shape pit) = cos? (xt/2T,) I(¢/2T,).

11.1-2 Do Prob. 11.1-1 with p(t) = cos (nt/2T,) I(t/2T,).

11.1-3 Do Prob. 11.1-1 with a polar format and p(r) = cos (nt/2T,) [1(t/2T,).

11.1-4 Do Prob. {1.1-1 with a bipolar format and p(t}) = A(t/T,).

11.1-5 Do Prob. 11.1-1 with a bipolar format.

11.1-6 Modify Table 11.1-1 for an octal signal (M = 8).

11.1-7 A certain computer generates binary words, each consisting of 16 bits, at the rate 20,000 words
per second. (a} Find the bandwidth required to transmit the output as a binary PAM signal. (b) Find
M so that the output could be transmitted as an M-ary signal on a channel having B = 60 kHz.
11.1-8 A certain digital tape reader produces 3000 symbols per second, and there are 128 different
symbols. (a) Find the bandwidth required to transmit the output as a binary PAM signal. (b) Find M
so that the output could be transmitted as an M-ary signal on a telephone link having B = 3 kHz.
11.1-9 Suppose a digitai signal with pulse-position modulation (PPM) is constructed by dividing the
symbol interval into M + | equal time slots, allowing for M nonoverlapping pulse positions and a
one-slot guard time. Develop an expression for the minimum bandwidth B needed to transmit M-ary
data at a fixed bit rate r,. Then tabulate B/r, for a few values of M = 2® and determine the most
bandwidth-efficient choice of M.

11.1-16 Binary data is transmitted as a unipolar signal with 4 =1 and p(t) = u(t + T,) — u{t). The
transmission system’s step response is g(1) = Ko(1 — e ¥xdt), where b = 2/T,. (a) Sketch 1) and find
K¢ such that X0} = 1. (b} Sketch W} for the data sequence 10110 and evaluate ){t) and the ISI at the
optimum sampling times.

11.1-11 Do Prob. 11.1-10 for a polar signal with 4/2 = | and a transmission system having b = I/T;.
11.1-12 Consider digital transmission with a gaussian pulse shape p(t) = exp [ —n(bt)*], which is
neither timelimited nor bandlimited and does not have periodic zero crossings. Let p(kD) < 0.01 for
k % 0, to limit the 1S, and let the bandwidth B be such that P(f) < 0.01P(") for | /| > B. Find the
resulting relationship between r and B.

11.1-13 Find and sketch the power spectrum of a binary PAM signal with polar RZ format and
rectangular pulses, assuming independent and equiprobable message bits. Then show that the
time-domain and frequency-domain calculations of *Zare in agreement.



