468 CODED PULSE MODULATION

modified version of Fig. 12.4-6a, with N subframes, 6 control bits per subframe, and 6 x N x n
message and stuff bits per subframe. Obtain an expression for s in terms of n, and explain why this
scheme would be unsatisfactory.

12.4-6 Suppose both the input and output clock rates of the AT & T M12 multiplexer drift by a
maximum factor of 1 + ¢ relative to their nominal rates. Use worst-case analysis to determine the
upper limit on 9.

12.4-7 A certain multiplexer combines data from several 110-bps asynchronous terminals for syn-
chronous transmission at 4800 bps. The multiplexer inserts a synchronizing character after every 19
data characters, and it requires 2% of the output for control and stuff characters. How many termin-
als can be accommodated along with three 1200-bps data signals?”

12.4-8 A 2400-bps synchronous signal is to be generated by multiplexing asynchronous data from
one 1200-bps terminal, two 300-bps terminals, and several 110-bps terminais. The multiplexer inserts
a synchronizing character after every 49 data characters, and it requires 3% of the output for control
and stuff characters. Find the maximum allowed number of 110-bps terminals. Then draw a multi-
plexer diagram like Fig. 12.4-8 using a processor with eight input ports.

12.4-9 A 3600-bps synchronous signal is to be generated by multiplexing asynchronous data from
one 1200-bps terminal, two 600-bps terminals, one 300-bps terminal, and several 150-bps terminals.
The multiplexer inserts a synchronizing character after every 49 data characters, and it requires 2%
of the output for control and stuff characters. Find the maximum allowed number of 150-bps termin-
als. Then draw a multiplexer diagram like Fig. 12.4-8 using a processor with six input ports.

CHAPTER

THIRTEEN
ERROR-CONTROL CODING

Transmission errors in digital communication depend on the signal-to-noise
ratio. If a particular system has a fixed value of §/N and the error rate is unac-
ceptably high, then some other means of improving reliability must be sought.
Error-control coding often provides the best solution.

Error-control coding involves systematic addition of extra digits to the trans-
mitted message. These extra check digits convey no information by themselves,
but they make it possible to detect or correct errors in the regenerated message
digits. In principle, information theory holds out the promise of nearly errorless
transmission, as will be discussed in Chap. 15. In practice, we seek some compro-
mise between conflicting considerations of reliability, efficiency, and equipment
complexity. A multitude of error-control codes have therefore been devised to
suit various applications.

This chapter starts with an overview of error-control coding, emphasizing the
distinction between error detection and error correction and systems that employ
these strategies. Subsequent sections describe the two major types of code imple-
mentations, block codes and convolutional codes. We'll stick entirely to binary
coding, and we’'ll omit formal mathematical analysis. Detailed treatments of
error-control coding are provided by the references cited in the supplementary
reading list.

13.1 ERROR DETECTION AND CORRECTION

Coding for error detection, without correction, is simpler than error-correction
coding. When a two-way channel exists between source and destination, the
receiver can request retransmission of information containing detected errors.

470 ERROR-CONTROL CODING

This error-control strategy, called automatic repeat request (ARQ), particularly
suits data communication systems such as computer networks. However, when
retransmission is impossible or impractical, error control must take the form of
forward error correction (FEC) using an error-correcting code. Both strategies will
be examined here, after an introduction to simple but illustrative coding tech-
niques.

Repetition and Parity-Check Codes

When you try to talk to someone across a noisy room, you may need to repeat
yourself to be understood. A brute-force approach to binary communication over
a noisy channel likewise employs repetition, so each message bit is represented by
a codeword consisting of n identical bits. Any transmission error in a received
codeword alters the repetition pattern by changing a 1 to a 0 or vice versa.

If transmission errors occur randomly and independently with probability
P, = «, then the binomial frequency function from Eq. (1), Sect. 4.4, gives the
probability of i errors in an n-bit codeword as

P(i, n) = <':) (1 — 2y
x (n) of o<« 1
!

(n)_ n!l nn—=1)--(n—i+]1)

il itn=i i!

(la)

where

(1b)

We'll proceed on the assumption that a « 1 —which does not necessarily imply
reliable transmission since « = 0.1 satisfies our condition but would be an unac-
ceptable error probability for digital communication. Repetition codes improve
reliability when « is sufficiently small that P(i + 1, n) « P(i, n) and, consequently,
several errors per word are much less likely than a few errors per word.

Consider, for instance, a triple-repetition code with codewords 000 and 111.
All other received words, such as 001 or 101, clearly indicate the presence of
errors. Depending on the decoding scheme, this code can detect or correct erro-
neous words. For error detection without correction, we say that any word other
than 000 or 111 is a detected error. Single and double errors in a word are
thereby detected, but triple errors result in an undetected word error with prob-
ability

P,=P33=a

For error correction, we use majority-rule decoding based on the assumption that
at least two of the three bits are correct. Thus, 001 and 101 are decoded as 000
and 111, respectively. This rule corrects words with single errors, but double or
triple errors result in a decoding error with probability

P..= P2 3) + P(3, 3) = 32> — 22

13.1 ERROR DETECTION AND CORRECTION 471

Since P, = a would be the error probability without coding, we see that either
decoding scheme for the triple-repetition code greatly improves reliability if, say,
a < 0.01. However, this improvement is gained at the cost of reducing the message
bit rate by a factor of 1/3.

More efficient codes are based on the notion of parity. The parity of a binary
word is said to be even when the word contains an even number of 1s, while odd
parity means an odd number of 1s. The codewords for an error-detecting parity-
check code are constructed with n — 1 message bits and one check bit chosen such
that all codewords have the same parity. With n = 3 and even parity, the valid
codewords are 000, 011, 101, and 110, the last bit in each word being the parity
check. When a received word has odd parity, 001 for instance, we immediately
know that it contains a transmission error — or three errors or, in general, an
odd number of errors. Error correction is not possible because we don’t know
where the errors fall within the word. Furthermore, an even number of errors pre-
serves valid parity and goes unnoticed.

Under the condition a « 1, double errors occur far more often than four or
more errors per word. Hence, the probability of an undetected error in an n-bit
parity-check codeword is

P..x P2, n)~ "(LZ—Q 2)
For comparison purposes, uncoded transmission of words containing n — |
message bits would have

Poe=1—PO,n-—D=x(n- 1)

Thus, if n= 10 and « = 1073, then P,,, ~ 10”% whereas coding yields P,, ~
5 x 1077 with a rate reduction of just 9/10. These numbers help explain the popu-
larity of parity checking for error detection in computer systems.

As an example of parity checking for error correction, Fig. 13.1-1 illustrates
an error-correcting scheme in which the codeword is formed by arranging k
message bits in a square array whose rows and columns are checked by 2./k
parity bits. A transmission error in one message bit causes a row and column

ny Hiy ny Cy

ny, nig me [

ity g Ny [

L L L]

L “ o e Figure 13.1-1 Square array for error correction by parity
_L _L _J checking.

472 ERROR-CONTROL CODING

" " m ¢ n m Hl

Figure 13.1-2 Interleaved check bits for error control with burst errors.

parity failure with the error at the intersection, so single errors can be corrected.
This code also detects double errors.

Throughout the foregoing discussion we’ve assumed that transmission errors
appear randomly and independently in a codeword. This assumption holds for
errors caused by white noise or filtered white noise. But impulse noise produced
by lightning and switching transients causes errors to occur in bursts that span
several successive bits. Burst errors also appear when radio-transmission systems
suffer from rapid fading. Such multiple errors wreak havoc on the performance of
conventional codes and must be combated by special techniques. Parity checking
controls burst errors if the check bits are interleaved so that the checked bits are
widely spaced, as represented in Fig. 13.1-2 where a curved line connects the
message bits and check bit in one parity word.

Code Vectors and Hamming Distance

Rather than continuing a piecemeal survey of particular codes, we now introduce
a more general approach in terms of code vectors. An arbitrary n-bit codeword
can be visualized in an n-dimensional space as a vector whose elements or coor-
dinates equal the bits in the codeword. We thus write the codeword 101 in row-
vector notation as X =(1 0 1). Figure 13.1-3 portrays all possible 3-bit
codewords as dots corresponding to the vector tips in a three-dimensional space.
The solid dots in part (a) represent the triple-repetition code, while those in part
(b) represent a parity-check code.

Notice that the triple-repetition code vectors have greater separation than
the parity-check code vectors. This separation, measured in terms of the

010

Figure 13.1-3 Vectors representing 3-bit codewords. (a) Triple-repetition code; (b) parity-check code.

13.1 ERROR DETECTION AND CORRECTION 473

Hamming distance, has direct bearing on the error-control power of a code. The
Hamming distance d(X, Y) between two vectors X and Y is defined to equal the
number of different elements. For instance, if X =(1 0 1) and Y =(1 1 0) then
d(X, Y) = 2 because the second and third elements are different.

The minimum distance d_,, of a particular code is the smallest Hamming dis-
tance between valid code vectors. Consequently, error detection is always pos-
sible when the number of transmission errors in a codeword is less than 4., so
the erroneous word is not a valid vector. Conversely, when the number of errors
equals or exceeds d.,, the erroneous word may correspond to another valid
vector and the errors cannot be detected.

Further reasoning along this line leads to the following distance requirements
for various degrees of error control capability:

Detect up to ¢ errors per word dpn ¢ + 1 (3a)
Correct up to ¢ errors per word dpin=2t + 1 (3b)
Correct up to ¢ errors and detect £ > ¢ errors per word dy.=zt+¢+1 (3¢

By way of example, we see from Fig. 13.1-3 that the triple-repetition code has
d.in = 3. Hence, this code could be used to detect # < 3 — 1 = 2 errors per word or
tocorrectt < (3 — 1)/2 = lerror per word -— in agreement with our previous obser-
vations. A more powerful code with d,,,, =7 could correct triple errors or it
could correct double errors and detect quadruple errors.

The power of a code obviously depends on the number of bits added to each
codeword for error-control purposes. In particular, suppose that the codewords
consist of k < n message bits and n — k parity bits checking the message bits. This
structure is known as an (n, k) block code. The minimum distance of an (n, k)
block code is upper-bounded by

dyn<n—k+1 4
and the code’s efficiency is measured by the code rate
R, 2 k/n (5)

Regrettably, the upper bound in Eq. (4) is realized only by repetition codes, which
have k = 1 and very inefficient code rate R, = 1/n. Considerable effort has thus
been devoted to the search for powerful and reasonably efficient codes, a topic
we’'ll return to in the next section.

FEC Systems

Now we're prepared to examine the forward error correction system diagrammed
in Fig. 13.1-4. Message bits come from an information source at rate r,. The
encoder takes blocks of k message bits and constructs an (n, k) block code with

474 ERROR-CONTROL CODING

Input

message bits I;nc:df/; Trans- Channel

re=r d(=2+ 1 mitter T =rolke
=Ty min “

Qutput
message
bits

Regen-
erator

Receiver

P.= Py,

G(f)y=n/2

Figure 13.1-4 FEC system.

code rate R, = k/n < 1. The bit rate on the channel therefore must be greater
than r,, namely

r=(nk)ry = ry/R, ©

The code has d,,, =2t + 1 < n— k + 1, and the decoder operates strictly in an
error-correction mode. .

We'll investigate the performance of this FEC system when additive white
noise causes random errors with probability « « 1. The value of « depends, of
course, on the signal energy and noise density at the receiver. If E, represents the
average energy per message bit, then the average energy per code bit is R, E, and
the ratio of bit energy to noise density is

e & R Eyn =R, v, , (7)

where y, = E,/n. Our performance criterion will be the probability of outppt
message-bit errors, denoted by P,, to distinguish it from the word error probabil-
ity P,..

The code always corrects up to t errors per word and some patterns of more
than t errors may also be correctable, depending upon the specific code vectors.
Thus, the probability of a decoding word error is upper-bounded by

P,.< Y PGn

i=t+1

For a rough but reasonable performance estimate, we’ll take the approximation

P~ Pt +1, n)z(t:l)a‘“ &)

which means that an uncorrected word typically has ¢ + 1 bit errors. On the
average, there will be (k/n)t + 1) message-bit errors per uncorregted \f/ord, the
remaining errors being in check bits. When Nk bits are transmitted in N » |

13.1 ERROR DETECTION AND CORRECTION 47§

words, the expected total number of erroneous message bits at the output is
(k/nXt + 1)NP,,,. Hence,

1+ 1 —1

in which we have used Eq. (15) to combine (t + 1)/n with the binomial coefficient.

If the noise has a gaussian distribution and the transmission system has been
optimized (i.e., polar signaling and matched filtering), then the transmission error
probability is given by Eq. (16), Sect. 11.2, as

2= Q(/27) = Q2R . 1)
X (4nR y,)"2e R» Ry, 25

(10)

The gaussian tail approximation invoked here follows from Eq. (10), Sect. 4.4,
and is consistent with the assumption that « « 1. Thus, our final result for the
output error probability of the FEC system becomes

Py = (" R 1) [Q(/2R 7)™

11

"1)) (1)

~ (47IRc7’b) (t+1}/2e (t+ 1Ry
t

Uncoded transmission on the same channel would have

Pupe = QN/2np) = (4my,) " 2™ (12)

since the signaling rate can be decreased from r/R . tory.

A comparison of Egs. (11) and (12) brings out the importance of the code
parameters ¢ = (d,;, — 1)/2 and R, = k/n. The added complexity of an FEC
system is justified provided that r and R, yield a value of P,, significantly less
than P, . The exponential approximations show that this essentially requires
(¢t + DR, > 1. Hence, a code that only corrects single or double errors should
have a relatively high code rate, while more powerful codes may succeed despite
lower code rates. The channel parameter 7» also enters into the comparison, as
demonstrated by the following example.

Example 13.1-1 Suppose we have a (15, 11) block code with dpin = 3, s0
t=1 and R = 11/15. An FEC system using this code would have « =
0[/(22/15}y,] and P,, = 14a? whereas uncoded transmission on the same
channel would yield P,,, = Q(,/2y,). These three probabilities are plotted
versus y, in dB in Fig. 13.1-5. If y, > 8 dB, we see that coding decreases the
error probability by at least an order of magnitude compared to uncoded
transmission. At y, = 10 dB, for instance, uncoded transmission yields
P~ 4 x 107° whereas the FEC system has P,, ~ 10”7 even though the
higher channel bit rate increases the transmission error probability to
ax6x 1075

}76 ERROR-CONTROL CODING

10 '

107

10

104

10

10

108~

i 13.1-5 Curves of error
| | | ! ! L F'ﬂ‘"e.f’v Sy s
4 6 8 10 12 probabilities in Examp
’ vs. dB 13.1-1.

i ignificantly improve reliability
If v, < 8 dB, however, coding does not signi

and act’flally makes matters worse when , < 4 dB. Furthermore, an un?odebd
system could achieve better reliability than the FEC lsl)‘/stemt'smllap;);Odz
i i i i i 1.5 dB. Hence, this particu
ncreasing the signal-to-noise ratio abqut this
:10esn’t sive much signal power, but it would be effective if y, has a fixed
value in the vicinity of 8-10 dB.

Exercise 13.1-1 Suppose the system in Example 13.1-1 is operated at y,]z
8 dB so a = 0.001. Evaluate P(i, n) for i = 0, 1, 2, and 3. Do your results

support the approximation in Eq. (8)?

ARQ Systems

The automatic-repeat-request strategy for error control is based on error detec-

tion and retransmission rather than .forward. error correction, ggxzfeg;li:tlz;
ARQ systems differ from FEC systems in three 1mportapt re?pects. hlrC k, an ;;nd
block code designed for error detection generally requires .eweg c en s
has a higher k/n ratio than a code designed for error 'correctlon‘i eco in, an AR
system needs a return transmissi?n p(;lth and additional hardware
i epeat transmission of codewor :
lfglr‘:lzr:iel:rta;slr)neission bit rate must make allowance for repeated wo;cl ;:lir;ng;
sions. The net impact of these diﬂ'erencgsbbelggmclag ;:lzarer after we

i ARQ system represented by Fig. 15.1-6. ‘
OPerg:;? 35(;::Vord%o:structed by the encoder is stored temporgrllydm:(iis;irsls;
mitted to the destination where the decoder looks for errors. The ectq :ack,ww;,
positive acknowledgement (ACK) if no errors are detected, or a negativ

ds with detected errors. Third, the

13.1 ERROR DETECTION AND CORRECTION 477

Input buffer Qutput
T Forward .
—» Encoder and » = Decoder »| buffer and p—s
controller URI Rl controller
Return ACK/NAK
transmission -

Figure 13.1-6 ARQ system.

edgement (NAK) if errors are detected. A negative acknowledgement causes the
input controller to retransmit the appropriate word from those stored by the
input buffer. A particular word may be transmitted just once, or it may be trans-
mitted two or more times, depending on the occurrence of transmission errors.
The function of the output controller and buffer is to assemble the output bit
stream from the codewords that have been accepted by the decoder.

Compared to forward transmission, return transmission of the ACK/NAK
signal involves a low bit rate and we can reasonably assume a negligible error
probability on the return path. Under this condition, all codewords with detected
errors are retransmitted as many times as necessary, so the only output errors
appear in words with undetected errors. For an (n, k) block code with 4
¢ + 1, the corresponding output error probabilities are

min

" n
P, = Pli,n)= P(/ +1,n) = (il 13
1=az+1 (i, n) (¢ + 1, n) <f+ l)a (13)
£+ 1 -1
Pre=— Pwez<n/)a’“ (14)

which are identical to the FEC expressions, Egs. (8) and (9), with # in place of :.
Since the decoder accepts words that have either no errors or undetectable errors,
the word retransmission probability is given by

p=1-[P0O,n+P,]
But a good error-detecting code should yield P, <« P(0, n). Hence,
px1-POn=1-(1-2)"=~na (15)
where we’ve used the approximation (1 — a) ~ 1 — na based on no <« |.
As for the retransmission process itself, there are three basic ARQ schemes
illustrated by the timing diagrams in Fig. 13.1-7. The asterisk marks words

received with detected errors which must be retransmitted. The stop-and-wait
scheme in part a requires the transmitter to stop after every word and wait for

- acknowledgment from the receiver. Just one word needs to be stored by the input

buffer, but the transmission time delay r, in each direction results in an idle time
of duration D > 21, between words. Idle time is eliminated by the go-back-N
scheme in part b where codewords are transmitted continuously. When the recei-
ver sends a NAK signal, the transmitter goes back N words in the buffer and

478 ERROR-CONTROL CODING

Transmitted
L e FFL L FL R L
3 7

2

L

3 /ACK NAK /ACK /ACK NAK /NAK /AcK
Received
words m 2 3 4 4*]—:—r FL
0ty !
Go back Go back Go back
Transmitted N=3 N=3 N =
v Tl] s]e]salsTe] o als o7 s s o]
0T AAAIAAAN P 7' ‘
; S S S S S S SSSSS
Received V4
words DEBEBEE 3[4‘15!6[714‘516[7!4[5[6!7!
0 fy N v _J \ v !
Discarded Discarded Discarded
Fransmitted Sele?tive Selective Selective
words repeat repeat repeat
112 3‘415 2 bl'/l8[91611()!11112!13]14 lllIS
0 ol o Nl ol !

T. A A Pl
Recerved ///////'/////'//
CCCIV / ya v/

words K IBE (,-l7[gl()l5I10]ll‘lllll3lldlll‘l$l'

0 1.

*

2

Figure 13.1-7 ARQ schemes. {a} Stop-and-wait; (b} go-back-N ; (c) selective-repeat.

retrahsmits starting from that point. The receiver discards the N — 1 intervening
words, correct or not, in order to preserve proper sequence. The selective-repeat
scheme in part ¢ puts the burden of sequencing on the output controller and
buffer, so that only words with detected errors need to be retransmitted.

Clearly, a selective-repeat ARQ system has the highest throughput efficiency.
To set this on a quantitative footing, we observe that the total number of trans-
missions of a given word is a discrete random variable m governed by the event
probabilities P(m = 1) = 1 — p, P(m = 2) = p(1 — p), etc. The average number of
transmitted words per accepted word is then

m=11=p)+2p(1l —p)+3p*1 —p)+
, 1
=(1—p)(1+2p+3p2+"')=r‘—; (16)

since 1 + 2p + 3p* + -+ = (1 — p)~ 2. On the average, the system must transmit nim
bits for every k message bits, so the throughput efficiency is

k k
Ri=—=-(1-p (17
nmon

in which p = na, from Eq. (15).

13.1 ERROR DETECTION AND CORRECTION 479

We use the symbol R, here to reflect the fact that the forward-transmission
bit rate r and the message bit rate r, are related by

TR
r=rb/Rc

comparable to the relationship r = r,/R. in an FEC system. Thus, when the noise
has a gaussian distribution, the transmission error probability « is calculated
from Eq. (10) using R, instead of R, = k/n. Furthermore, if p« 1, then R, =~ k/n.
But an error-detecting code has a larger k/n ratio than an error-correcting code
of equivalent error-control power. Under these conditions, the more elaborate
hardware needed for selective-repeat ARQ may pay off in terms of better per-
formance than an FEC system would yield on the same channel.

The expression for m in Eq. (16) also applies to a stop-and-wait ARQ system.
However, the idle time reduces efficiency by the factor T,AT, + D) where D > 2,
is the round-trip delay and T, is the word duration given by T, = nir < kjry.
Hence,

— ‘ 1 —
Rk _1-p <X P (18)
nl+(D/T,) " nl+2tyr/k)
in which the upper bound comes from writing D/T,, = 2t,r,/k.
A go-back-N ARQ system has no idle time, but N words must be
retransmitted for each word with detected errors. Consequently, we find that

N
=1+ - (19)
I1-p
and
kK 1-p k 1—p
R, =- <- 20
T nl—p+Np~ nl—p+Qur/kp 20)

where the upper bound reflects the fact that N > 2t,/T,.

Unlike selective-repeat ARQ, the throughput efficiency of the stop-and-wait
and go-back-N schemes depends on the round-trip delay. Equations (18) and (20)
reveal that both of these schemes have reasonable efficiency if the delay and bit
rate are such that 2t,r, « k. However, stop-and-wait ARQ has very low efficiency
when 21,r, > k, whereas the go-back-N scheme may still be satisfactory provided
that the retransmission probability p is small enough.

Finally, we should at least describe the concept of hybrid ARQ systems.
These systems consist of an FEC subsystem within the ARQ framework, thereby
combining desirable properties of both error-control strategies. For instance, a
hybrid ARC system might employ a block code with dyn=t+¢+1, so the
decoder can correct up to t errors per word and detect but not correct words
with ¢ > ¢ errors. Error correction reduces the number of words that must be
retransmitted, thereby increasing the throughput without sacrificing the higher
reliability of ARQ.

480 ERROR-CONTROL CODING

Example 13.1-2 Suppose a selective-repeat ARQ system uses a simple parity-
check code with k =9, n = 10, and ¢ = 1. The transmission channel is cor-
rupted by gaussian noise and we seek the value of 7, needed to get P,, =
10 %, Equation (14) yields the required transmission error probability
a=(10"%9)"2 x 1.1 x 1073, and the corresponding word retransmission
probability in Eq. (15) is p ~ 10a « 1. Hence, the throughput efficiency will
be R, = k/n = 0.9, from Eq. (17). Since « = Q(\/ 2R y,) we call upon the plot
of Q in Table T.6 to obtain our final result y, ~ 3.1%/1.8 =53 0r 7.3 dB. As a
comparison, Fig. 13.1-5 shows that uncoded transmission would have P, ~
6 x 10°* if 3, = 7.3 dB and requires 7, * 9.6 dB to get P, = 10", The
ARQ system thus achieves a power saving of about 2.3 dB.

Exercise 13.1-2 Assume that the system in Example 13.1-2 has r, = 50 kbps
and t, = 0.2 ms. By calculating R, show that the go-back-N scheme would be
acceptable but not the stop-and-wait scheme when channel limitations
require r < 100 kbps.

13.2 LINEAR BLOCK CODES

This section describes the structure, properties, and implementation of block
codes. We start with a matrix representation of the encoding process that gener-
ates the check bits for a given block of message bits. Then we use the matrix rep-
resentation to investigate decoding methods for error detection and correction,
The section closes with a brief introduction to the important class of cyclic block
codes.

Matrix Representation of Block Codes

An (n, k) block code consists of n-bit vectors, each vector corresponding to a
unique block of k < n message bits. Since there are 2* different k-bit message
blocks and 2" possible n-bit vectors, the fundamental strategy of block coding is
to choose the 2* code vectors such that the minimum distance is as large as pos-
sible. But the code should also have some structure that facilitates the encoding
and decoding processes. We'll therefore focus on the class of systematic linear
block codes.
Let an arbitrary code vector be represented by

X=(x, x, = x)

where the elements x,, x,, ..., are, of course, binary digits. A code is linear if it
includes the all-zero vector and if the sum of any two code vectors produces
another vector in the code. The sum of two vectors, say X and Z, is defined as

X+Z&8(x; @&z, x,Pz; - x,Dz.) ()

in which the elements are combined according to the rules of mod-2 addition
given in Eq. (2), Sect. 11.4.

13.2 LINEAR BLOCK CODES 481

As a consequence of linearity, we can determine a code’s minimum distance
by the following argument. Let the number of nonzero elements of a vector X be
symbolized by w(X), called the vector weight. The Hamming distance between
any two code vectors X and Z is then

dX, Z)=wX + Z)

since x, @ z, = 1 if x, # z,, etc. The distance between X and Z therefore equals
the weight of another code vector X + Z. Butif Z=(0 0 --- O)then X + Z = X,
hence,

dmin = [MX)]min X :# (0 0 e 0) (2)

In other words, the minimum distance of a linear block code equals the smallest
nonzero vector weight.

A systematic block code consists of vectors whose first k elements (or last &
elements) are identical to the message bits, the remaining n — k elements being
check bits. A code vector then takes the form

X=(m my = m ¢ ¢; -~ ¢ (3a)
where
g=n—k (3b)
For convenience, we’ll also write code vectors in the partitioned notation
X=M | O

in which M is a k-bit message vector and C is a g-bit check vector. Partitioned
notation lends itself to the matrix representation of block codes.

Given a message vector M, the corresponding code vector X for a systematic
linear (n, k) block code can be obtained by a matrix multiplication

X =MG)
The matrix G is a k x n generator matrix having the general structure
G&[l, | P] (5a)

where 1, is the k x k identity matrix and P is a k x g submatrix of binary digits
represented by

Pir P12 " Pig
p= 1?21 I?zz 1?24 (5b)
Pxi Pkz ' Pig

The identity matrix in G simply reproduces the message vector for the first ele-
ments of X, while the submatrix P generates the check vector via

C = MP (6a)

482 ERROR-CONTROL CODING

This binary matrix multiplication follows the usual rules with mod-2 addition
instead of conventional addition. Hence, the jth element of C is computed using
the jth column of P, and

C;=mp;@mypy; D Dmpy; (66)

for j=1, 2, ..., q. All of these matrix operations are less formidable than they
appear because every element equals either O or 1.

The matrix representation of a block code provides a compact analytical
vehicle and, moreover, leads to hardware implementations of the encoder and
decoder. But it does not tell us how to pick the elements of the P submatrix to
achieve specified code parameters such as d,,;, and R, . Consequently, good codes
are discovered with the help of considerable inspiration and perspiration, guided
by mathematical analysis. In fact, Hamming (1950) devised the first popular
block codes several years before the underlying theory was formalized by Slepian
(1956).

Example 13.2-1 Hamming codes A Hamming code is an (n, k) linear block
code with g > 3 check bits and

n=2-1 k=n—gq (7a)
The code rate is

q

R = 291

=1-

k (Th)
n

and thus R, = 1 if g » 1. Independent of g, the minimum distance is fixed at
dmin =3 (7(“)

so a Hamming code can be used for single-error correction or double-error
detection. To construct a systematic Hamming code, you simply let the k
rows of the P submatrix consist of all g-bit words with two or more 1s,
arranged in any order.

For example, consider a systematic Hamming code with g =3, so
n=2%—1=7and k =7 — 3 = 4. According to the previously stated rule, an
appropriate generator matrix is

1
1
1

SO O -
oo —= O
S - O O
_0 O O
_— O
— O = e

0

The last three columns constitute the P submatrix whose rows include all
3-bit words that have two or more 1s. Given a block of message bits M =

13.2 LINEAR BLOCK CODES 483

Input
—» Buffer L 4

Message register

my l sy l m: I my I
Message
I ' . ‘ 3™
my o omy omy omy om,om; o may om. o omy “~e—» To transmitte

S?
™ % j N\ % e Check bits
T [

Figure 13.2-1 Encoder for (7, 4) Hamming code.

(my my; my m,), the check bits are determined from the set of equations
c,=m @&m,BEm, PO
;=08 m,@m;Pmy,
cG3=m dm, 0@ m,

These check-bit equations are obtained by substituting the elements of P into
Eq. (6).

Figure 13.2-1 depicts an encoder that carries out the check-bit calcu-
lations for this (7, 4) Hamming code. Each block of message bits going to the
transmitter is also loaded into a message register. The cells of the message
register are connected to exclusive-OR gates whose outputs equal the check
bits. The check bits are stored in another register and shifted out to the trans-
mitter after the message bits. An input buffer holds the next block of message
bits while the check bits are shifted out. The cycle then repeats with the next
block of message bits.

Table 13.2-1 lists the resulting 2* = 16 codewords and their weights. The
smallest nonzero weight equals 3, confirming that d,_,, = 3.

Table 13.2-1 Codewords for the (7, 4) Hamming code

M C wX] M C wX)
00001000 0 10001 01 3
0001|011 3 1001110 4
0010110 3 101001 1t 4
001 1|1 01 4 1011|000 3
610011 i 4 1100010 3
0101|100 3 1101]001 4
0110001 3 11101100 4
01 11|00t o 4 U TR U N T B 7

484 ERROR-CONTROL CODING

Exercise 13.2-1 Consider a systematic (6, 3) block code generated by the sub-

matrix
1 1 0
P=10 1 1
1 01

Write the check-bit equations and tabulate the codewords and their weights
to show thatd,,, = 3.

Syndrome Decoding

Now let Y stand for the received vector when a particular code vector X has been
transmitted. Any transmission errors will result in Y % X. The decoder detects or
corrects errors in Y using stored information about the code.

A direct way of performing error detection would be to compare ¥ with every
vector in the code. This method requires storing all 2* code vectors at the receiver
and performing up to 2* comparisons. But efficient codes generally have large
values of k, which implies rather extensive and expensive decoding hardware. As
an example, you need g = 5 to get R, 2 0.8 with a Hamming code; then n > 31,
k = 26, and the receiver must store a total of n x 2* > 10 bits!

More practical decoding methods for codes with large k involve parity-check
information derived from the code’s P submatrix. Associated with any systematic
linear (n, k) block code is a ¢ x n matrix H called the parity-check matrix. This

matrix is defined by
P
HT & H)
14‘

where H' denotes the transpose of H and 1, is the ¢ x q identity matrix. Relative -

to error detection, the parity-check matrix has the crucial property
XH'=0 0 --- 0) (9

provided that X belongs to the set of code vectors. However, when Y is not a
code vector, the product Y H7 contains at least one nonzero element.
Therefore, given HT and a received vector Y, error detection can be based on

S=YHT (10)

a g-bit vector called the syndrome. If all elements of § equal zero, then either Y
equals the transmitted vector X and there are no transmission errors, or Y equals
some other code vector and the transmission errors are undetectable. Otherwise,
errors are indicated by the presence of nonzero elements in S. Thus, a decoder for
error detection simply takes the form of a syndrome calculator. A comparison of
Eqgs. (10) and (6) shows that the hardware needed is essentially the same as the
encoding circuit.

Error correction necessarily entails more circuitry but it, too, can be based on
the syndrome. We develop the decoding method by introducing an n-bit error

13.2 LINEAR BLOCK CODEs 485

vector E whose nonzero elements mark the positions of transmission errors in Y.
For instance, if X =(1 0 1 1 OQ)and Y=(1 001 1)then E=(0 01 0 1). In
general,

Y=X+E (11a)
and, conversely,
X=Y+E (11b)

since a second error in the same bit location would cancel the original error. Sub-
stituting Y = X + E into S = YH” and invoking Eq. (9), we obtain

S=(X+EH"=XH" + EHT = EH" (12)

which reveals that the syndrome depends entirely on the error pattern, not the
specific transmitted vector.

However, there are only 27 different syndromes generated by the 2" possible
n-bit error vectors, including the no-error case. Consequently, a given syndrome
does not uniquely determine E. Or, putting this another way, we can correct just
2% — 1 patterns with one or more errors, and the remaining patterns are uncorrect-
able. We should therefore design the decoder to correct the 29 — 1 most likely
error patterns — namely those patterns with the fewest errors, since single errors
are more probable than double errors, and so forth. This strategy, known as
maximum-likelihood decoding, is optimum in the sense that it minimizes the word-
error probability. Maximum-likelihood decoding corresponds to choosing the
code vector that has the smallest Hamming distance from the received vector.

To carry out maximum-likelihood decoding, you must first compute the syn-
dromes generated by the 2¢ — 1 most probable error vectors. The table-lookup
decoder diagrammed in Fig. 13.2-2 then operates as follows. The decoder calcu-
lates S from the received vector Y and looks up the assumed error vector E stored
in the table. The sum Y + E generated by exclusive-OR gates finally constitutes

é; é

é : Y+ E
F R
), vl ow]
' I
Syndrome calculator]
5y
——E——{ Table]

Figure 13.2-2 Table-lookup decoder.

oD
P

486 ERROR-CONTROL CODING

the decoded word. If there are no errors, or if the errors are uncorrectable, then
S=(0 0 - 0)soY + E = Y. The check bits in the last g elements of ¥ + E may
be omitted if they are of no further interest.

The relationship between syndromes and error patterns also sheds some light
on the design of error-correcting codes, since each of the 2?7 — 1 nonzero syn-

. n .
dromes must represent a specific error pattern. Now there are (1) = n single-error

, n .
patterns for an n-bit word, (2) double-error patterns, and so forth. Hence, if a

code is to correct up to ¢ errors per word, ¢ and n must satisfy

2‘1—12n+<:)+~-+<';> (13)

In the particular case of a single-error-correcting code, Eq. (13) reduces to
2% — 1 = n. Furthermore, when E corresponds to a single error in the jth bit of a
codeword, we find from Eq. (12) that § is identical to the jth row of HT. There-
fore, to provide a distinct syndrome for each single-error pattern and for the no-
error pattern, the rows of HT (or columns of H) must all be different and each
must contain at least one nonzero element. The generator matrix of a Hamming
code is designed to satisfy this requirement on H, while ¢ and n satisfy 29 — 1 = n.

Example 13.2-2 Let’s apply table-lookup decoding to a (7, 4) Hamming code
used for single-error correction. From Eq. (8) and the P submatrix given in
Example 13.2-1, we obtain the 3 x 7 parity-check matrix

11101100
H=[PT | IJ=l0 1 1 1|0 10
11011001

There are 2° — 1 = 7 correctable single-error patterns, and the corresponding
syndromes listed in Table 13.2-2 follow directly from the columns of H. To
accommodate this table the decoder needs to store only (¢ + n) x 29 = 80 bits.

Table 13.2-2 Syndromes for

the (7, 4) Hamming code
s E
0 0 0 0O 0 0 0 0 00
1 0 1 1 00 00 00
1 1 1 01 00000
1 10 001 ¢ 000
0 1 1 0 001 00O
1 00 00 0 01 00
010 00 0 00 1 0
0 0 1 00 0 0 0 01

13.2 LINEAR BLOCK CODES 487

But suppose a received word happens to have two errors, such that E =
{1 0000 1 0). The decoder calculates S = YHT = EH" =(1 1 1) and the
syndrome table gives the assumed single-error pattern £E=(0 1 0 0 0 0 0).
The decoded output word Y + E therefore contains three errors, the two
transmission errors plus the erroneous correction added by the decoder.

If multiple transmission errors per word are sufficiently infrequent, we
need not be concerned about the occasional extra errors committed by the
decoder. If multiple errors are frequent, a more powerful code would be
required. For instance, an extended Hamming code has an additional check
bit that provides double-error detection along with single-error correction;
see Prob, 13.2-12,

Exercise 13.2-2 Use Egs. (8) and (10) to show that the jth bit of S is given by
S;=YP1yD@YaP2i® D Vi P D Vir

Then diagram the syndrome-calculation circuit for a (7, 4) Hamming code,
and compare it with Fig. 13.2-1.

Cyclic Codesy

The code for a forward-error-correction systemn must be capable of correcting
t > 1 errors per word. It should also have a reasonably efficient code rate R, =
k/n. These two parameters are related by the inequality

1-R, > ! log, [Z’, (n)] (14)
n o\

which follows from Eq. (13) with ¢ = n — k = n(1l — R,). This inequality under-
scores the fact that if we want R, &~ 1, we must use codewords with n>» 1 and
k > 1. However, the hardware requirements for encoding and decoding long
codewords may be prohibitive unless we impose further structural conditions on
the code. Cyclic codes are a subclass of linear block codes with a cyclic structure
that leads to more practical implementation. Thus, block codes used in FEC
systems are almost always cyclic codes.

To describe a cyclic code, we'll find it helpful to change our indexing scheme
and express an arbitrary n-bit code vector in the form

X={x,y X,-2 "' X; Xo) (15)

Now suppose that X has been loaded into a shift register with feedback connec-
tion from the first to last stage. Shifting all bits one position to the left yields the
cyclic shift of X, written as

Xlé(xn—l Xp-3 7 Xy X xn—l) “6)

A second shift produces X" = (x,_3 " X; Xg Xa_1 X._2), and so forth. A linear
code is cyclic if every cyclic shift of a code vector X is another vector in the code.

488 ERROR-CONTROL CODING

This cyclic property can be treated mathematically by associating a code
vector X with the polynomial

X(p) =X, 1 PP A X2 0" A X+ X0 (17

where p is an arbitrary real variable. The powers of p denote the positions of the
codeword bits represented by the corresponding coefficients of p. Formally,
binary code polynomials are defined in conjunction with Galois fields, a branch of
modern algebra that provides the theory needed for a complete treatment of
cyclic codes. For our informal overview of cyclic codes we’ll manipulate code
polynomials using ordinary algebra modified in two respects. First, to be in
agreement with our earlier definition for the sum of two code vectors, the sum of
two polynomials is obtained by mod-2 addition of their respective coefficients.
Second, since all coefficients are either 0 or 1, and since 1 @ 1 = 0, the subtraction
operation is the same as mod-2 addition. Consequently, if X(p) + Z(p) = O then
X(p) = Z(p).
We develop the polynomial interpretation of cyclic shifting by comparing

PX(P) = Xy P" + Xp 2 p" N H o+ XPT+ X
with the shifted polynomial
X(P) =Xy 2 P 4+ X PP+ XoP + Xy
If we sum these polynomials, noting that (x;, & x,)p? = 0, etc., we get

pX(p) + X’(P) = xn—lpn + xn~l
and hence
X'(p) = pX(p) + x,-1(p" + 1) (18)

Iteration yields similar expressions for multiple shifts.
The polynomial p* + 1 and its factors play major roles in cyclic codes. Specifi-
cally, an (n, k) cyclic code is defined by a generator polynomial of the form

Gp)=p*+g,_p* '+ +gp+1 (19)

where g = n — k and the coefficients are such that G(p) is a factor of p" + 1. Each
codeword then corresponds to the polynomial product

X(p) = Qulp)G{p) (20)

in which Q,(p) represents a block of k message bits. All such codewords satisfy
the cyclic condition in Eq. (18) since G(p) is a factor of both X(p)and p" + 1.

Any factor of p" + 1 that has degree g may serve as the generator polynomial
for a cyclic code, but it does not necessarily generate a good code. Table 13.2-3
lists the generator polynomials of selected cyclic codes that have been demon-
strated to possess desirable parameters for FEC systems. The table includes some
cyclic Hamming codes, the famous Golay code, and a few members of the impor-
tant family of BCH codes discovered by Bose, Chaudhuri, and Hocquenghem.
The entries under G(p) denote the polynomial’s coefficients; thus, for instance,
101 I meansthatG(p)=p* +0+p+ L

13.2 LINEAR BLOCK CODES 489

Table 13.2-3 Selected cyclic codes

Typc n k Rc dmin G(p)
Hammin 7 4 057 3 i ot
wdesg 5 11 073 3 10 ot
31 26 084 3 100 101
15 7 046 5 111 010 001
BCHd 320 068 S 11 101 101 001
codes 63 45 om 7 I 111 000 001 011 001 111
Golay 23 12 052 7 101 011 100 011
code

Cyclic codes may be systematic or nonsystematic, depending on the term
0,/p) in Eq. (20). For a systematic code, we define the message-bit and check-bit
polynomials

Mp)=m_p*" '+ -+ mp+mg
Cp)=co-ip" '+ -+ P+ 6o

and we want the codeword polynomials to be

X(p) = p*M(p) + C(p) (21)
Equations (20) and (21) therefore require p?M(p) + C(p) = Q M{P)G(p), or
p*M(p) G
—_—t = —_— 22
) Qudp) + G0) (22a)

This expression says that C(p) equals the remainder left over after dividing pM(p)
by G(p), just as 14 divided by 3 leaves a remainder of 2 since 14/3 = 4 + 2/3. Sym-
bolically, we write
M
p (p)] (22)
G(p)
where rem [] stands for the remainder of the division within the brackets.
The division operation needed to generate a systematic cyclic code is easily
and efficiently performed by the shift-register encoder diagrammed in Fig. 13.2-3.

S . Feedback
Buffer
Input v\H

C(p) = rem [

L0 Check bits
#&—— To transmitter
e e 2 O]

Message bits

Figure 13.2-3 Shift-register encoder.

490 ERROR-CONTROL CODING

Encoding starts with the feedback switch closed, the output switch in the
message-bit position, and the register initialized to the all-zero state. The k
message bits are shifted into the register and simultaneously delivered to the
transmitter. After k shift cycles, the register contains the g check bits. The feed-
back switch is now opened and the output switch is moved to deliver the check
bits to the transmitter.

Syndrome calculation at the receiver is equally simple. Given a received
vector Y, the syndrome is determined from

Y(p)

= — 23
oo [22] o
If Y(p) is a valid code polynomial, then G(p) will be a factor of Y(p) and Y(p)/G(p)
has zero remainder. Otherwise we get a nonzero syndrome polynomial indicating
detected errors.

Besides simplified encoding and syndrome calculation, cyclic codes have
other advantages over noncyclic block codes. The foremost advantage comes
from the ingenious error-correcting decoding methods that have been devised for
specific cyclic codes. These methods eliminate the storage needed for table-
lookup decoding and thus make it practical to use powerful and efficient codes
with n > 1. Another advantage is the ability of cyclic codes to detect error bursts
that span many successive bits. Detailed exposition of these properties are pre-
sented in texts such as Lin and Costello (1983).

Example 13.2-3 Consider the cyclic (7, 4) Hamming code generated by
Gp=p>+0+p+ 1. Well use long division to calculate the check-bit
polynomial C(p) when M = (1 1 0 0). We first write the message-bit poly-
nomial
M@p)=p*+p*+0+0
s0 p'M(p) = p>M(p) = p°® + p* + 0 + 0 + 0 + 0 + 0. Next, we divide G(p) into
p*M(p), keeping in mind that subtraction is the same as addition in mod-2
arithmetic. Thus,
Quip)=p’+p’+p+0
PP+0+p+1]p°+p*+0 +0 +0 +0+0
pP+0 +pt+p’
pPP+pt+p’+0
pP>+0 +p*+p’
p*+0 +p*+0
pPP+0 +pi+p
0 +0 +p+0
0 +0 +0+0
Cp)=0 +p+0

so the complete code polynomial is

X(p)=p*Mp) + Cp)=p*+p°+0+0+0+p+0

13.3 CONVOLUTIONAL CODEs 491

Input

D
v
i
9

(g2 =10) (gi=1)
,2

@) /——————0 To transmitter
a e

Input Register bits Register bits after shift
bit before shift ry = = rg =
m rs r fo r ro®r,®@m ra®m
1 0 0 0 0 1 i
1 0 i 1 1 0 i
0 1 0 1 0 0 1
0 0 0 i 0 1 0
(k)

Figure 13.2-4 (a) Shift-register encoder for {7, 4) Hamming code; (b) register bits when
M=(1100.

which corresponds to the codeword
X=(1 100} 010

You'll find this codeword back in Table 13.2-1, where you'll also find the
cyclic shift X’ =(1 000 1 0 1)andall multiple shifts.

Finally, Fig. 13.2-4 shows the shift-register encoder and the register bits
for each cycle of the encoding process when the input is M = (1 1 0 0). After
four shift cycles, the register holds C =(0 1 0)—in agreement with our
manual division.

Exercise 13.2-3 Let Y(p) = X(p) + E(p) where E(p) is the error polynomial. Use
Egs. (20) and (23) to show that the syndrome polynomial S(p) depends on
E(p) but not on X(p).

133 CONVOLUTIONAL CODES

Convolutional codes have a structure that effectively extends over the entire
transmitted bit stream, rather than being limited to codeword blocks. The con-
volutional structure is especially well suited to space and satellite communication
systems that require simple encoders and achieve high performance by sophisti-
cated decoding methods. Our treatment of this important family of codes consists
of selected examples that introduce the salient features of convolutional encoding
and decoding.

492 ERROR-CONTROL CODING

Convolutional Encoding

The fundamental hardware unit for convolutional encoding is a tapped shift
register with L + 1 stages, as diagrammed in Fig. 13.3-1. Each tap gain g is a
binary digit representing a short-circuit connection or an open circuit. The
message bits in the register are combined by mod-2 addition to form the encoded
bit

xj=mj-LgL@”'@mj~1gn Dm;go

L
=Ym_,g, (mod-2) (1)
i=0

The name convolutional encoding comes from the fact that Eq. (1) has the form of
a binary convolution, analogous to the convolutional integral

x(t) = Jm(t — Ag(4) da

Notice that x; depends on the current input m; and on the state of the register
defined by the previous L message bits. Also notice that a particular message bit
influences a span of L + 1 successive encoded bits as it shifts through the register.

To provide the extra bits needed for error control, a complete convolutional
encoder must generate output bits at a rate greater than the message bit rate ry.
This is achieved by connecting two or more mod-2 summers to the register and
interleaving the encoded bits via a commutator switch. For example, the encoder
in Fig. 13.3-2 generates n = 2 encoded bits

Xj=m; ,@m;_, &m; xj=m;_, dm (2)
which are interleaved by the switch to produce the output stream
X = x| x{xy x5 Xy x5
The output bit rate is therefore 2r, and the code rate is R, = 1/2—like an (n, k)
block code with R, = k/n = 1/2.
However, unlike a block code, the input bits have not been grouped into

words. Instead, each message bit influences a span of n(L + 1) = 6 successive
output bits. The quantity n(L + 1) is called the constraint length measured in terms

Message bits

State
- input

ol T~

Encoded bits

Figure 13.3-1 Tapped shift register for
¥, convolutional encoding.

13.3 CONVOLUTIONAL CODES 493

‘ y Input Input rate

Output

rate 2r,
Figure 13.3-2 Convolutional encoder
withn=2 k=1,and L =2

of encoded output bits, whereas L is the encoder’s memory measured in terms of
input message bits. We say that this encoder produces an (n, k, L) convolutional
codet withn=2k=1,and L = 2.

Three different but related graphical representations have been devised for
the study of convolutional encoding: the code tree, the code trellis, and the state
diagram. We'll present each of these for our (2, 1, 2) encoder in F ig. 13.3-2, start-
ing with the code tree. In accordance with normal operating procedure, we
presume that the register has been cleared to contain all 0s when the first message
bit m, arrives. Hence, the initial state is m_,m, = 00 and Eq. (2) gives the output
x;xy =00ifm, =0or x\x] = 1lifm = 1.

The code tree drawn in Fig. 13.3-3 begins at a branch point or node labeled a
representing the initial state. If m; = 0, you take the upper branch from node a to
find the output 00 and the next state, which is also labeled a since mom, = 00 in
this case. If m, = 1, you take the lower branch from a to find the output 11 and
the next state mom,; = 01 signified by the label b. The code tree progressively
evolves in this fashion for each new input bit. Nodes are labeled with letters
denoting the current state m;_,m;_,; you go up or down from a node, depending
on the value of m,; each branch shows the resulting encoded output x| x7 calcu-
lated from Eq. (2), and it terminates at another node labeled with the next state.
There are 2/ possible branches for the jth message bit, but the branch pattern
begins to repeat at j = 3 since the register lengthis L + 1 = 3.

Having observed repetition in the code tree, we can construct a more
compact picture called the code trellis and shown in Fig. 13.3-4a. Here, the nodes
on the left denote the four possible current states, while those on the right are the
resulting next states. A solid line represents the state transition or branch for
m; =0, and a broken line represents the branch for m; = 1. Each branch is
labeled with the resulting output bits x}x}. Going one step further, we coalesce
the left and right sides of the trellis to obtain the state diagram in Fig. 13.3-4b.
The self-loops at nodes a and d represent the state transitions a-a and d-d.

Given a sequence of message bits and the initial state, you can use either the
code trellis or state diagram to find the resulting state sequence and output bits.
The procedure is illustrated in Fig. 13.3-4c, starting at initial state a.

+ Notation for convolutional codes has not been standardized and varies from author to author,
as does the definition of constraint length.

00

a1 N
0
a 10
1 o<
b o
) od
il a 11
T
< ow
i1 a—
b 0l
m,=0 01 P ¢
10
Start d
. o
1 ®a
T
m, =1 10 b
¢ 10 ,
States 00 Emmm—
b o
a=00 d
b =01 11
=10 b 1
d=11 ot %4
C
T w
01 b
d 01
10 ®c
4 10
d
Current state Output Next state
00 =y Oz a =
01 =bh e b=01
0=rc c=10
N=d d=11
(a)
Input 1 1 0 1 1 1 0
State b d I b d d
Output 11 01 ol 00 o1 10 01

(c)
Figure 13.34 (a) Code trellis; (b) state diagram for (2, 1, 2) encoder.

Figure 13.3-3 Code tree for (2, 1,2)

13.3 CONVOLUTIONAL CODES 495

Numerous other convolutional codes are obtained by modifying the encoder
in Fig. 13.3-2. If we just change the connections to the mod-2 summers, then the
code tree, trellis, and state diagram retain the same structure since the states and
branching pattern reflect only the register contents. The output bits would be dif-
ferent, of course, since they depend specifically on the summer connections.

If we extend the shift register to an arbitrary length L + 1 and connect it to
n > 2 mod-2 summers, we get an (1, k, L) convolutional code with k = 1 and code
rate R, = 1/n < 1/2. The state of the encoder is defined by L previous input bits,
so the code trellis and state diagram have 2L different states, and the code-tree
pattern repeats after j = L + 1 branches. Connecting one commutator terminal
directly to the first stage of the register yields the encoded bit stream

X =mx{x| - myxyxy - myxixy - (3)
which defines a systematic convolutional code with R, = 1/n.

Code rates higher than 1/n require k > 2 shift registers and an input distribu-
tor switch. This scheme is illustrated by the (3, 2, 1) encoder in Fig. 13.3-5. The
message bits are distributed alternately between k = 2 registers, each of length
L + 1 = 2. We regard the pair of bits m;_,m; as the current input, while the pair
m;_,m;_, constitute the state of the encoder. For each input pair, the mod-2
summers generate n = 3 encoded output bits given by

" o
Xj=mj_y@®m;_,dm Xj=m;_;bm_, Om;

"

Thus, the output bit rate is 3r,/2, corresponding to the code rate R, = k/n = 2/3.
The constraint length is n(L + 1) = 6, since a particular input bit influences a span
of n = 3 output bits from each of its L + 1 = 2 register positions.

State Laput Input rate r,,

X, Output
rate
Mar,

X .t

xfi’}m

Figure 13.3-5 (3, 2, 1) encoder.

496 ERROR-CONTROL CODING
01010

(4t

01-111 11-000

00-101 O1-1K)
11-101 10-111

- }
LO-000 () 00011 1] 11-118

01-001

10-010 11011

00-110 10-001

10 4
Figure 13.3-6 State diagram for

10-100 (3, 2, 1) encoder.

Graphical representation becomes more cumpersome for ci)nvolutlonal clod;i
with k > 1 because we must deal with input bits in groups of 2 . LCopsequent Y.
branches emanate and terminate at each node, and there are 2*" different Ztatgs.
As an example, Fig. 13.3-6 shows the state diagram for the (3, 2, 1) en‘(j:ober l11n
Fig. 13.3-5. The branches are labeled with the k = 2 input bits followed by the

ing n = 3 output bits.
fesullt_l;llf convolutignal codes employed for FEC systems-usually have small
values of n and k, while the constraint length typically fall; in the range of 10 to
30. All convolutional encoders require a commptator switch gt the o.utpl:)t, as
shown in Figs. 13.3-2 and 13.3-5. For codes with k > 1, the input dl.StI.‘l utgr
switch can be eliminated by using a single register qf length kL apd 'shlf;mght e
bits in groups of k. In any case, convolutional enchmg hardware is simpler than
the hardware for block encoding since message bits enter the register unit at a
steady rate r, and an input buffer is not needed.

Exercise 13.3-1 Consider a systematic (3, 1, 3) convolutional code. List the
possible states and determine the state transitiqns producefi by m; =0 Zm;
m; = 1. Then construct and label the state diagram, takl.ng th;: 3e_cho e
output bits to be m;, m;_, & m;. and m;_,®m;_,. (See Fig. P13. or a
convenient eight-state pattern.)

Free Distance and Coding Gain

We previously found that the error-control power of a block code dep:nds up;)n
its minimum distance, determined from the weights of the gode\yords. convo Et
tional code does not subdivide into codewords, so we consider instead the welngCe
w(X) of an entire transmitted sequence X generated by some message sequence.

13.3 CONVOLUTIONAL CODES 497

The free distance of a convolutional code is then defined to be

The value of d, serves as a measure of error-control power.

It would be an exceedingly dull and tiresome task to try to evaluate d ; by
listing all possible transmitted sequences. Fortunately, there's a better way based
on the normal operating procedure of appending a “tail” of Os at the end of a
message to clear the register unit and return the encoder to its initial state. This
procedure eliminates certain branches from the code trellis for the last L tran-
sitions.

Take the code trellis in Fig. 13.3-4q, for example. To end up at state a, the
next-to-last state must be either a or ¢ so the last few branches of any transmitted
sequence X must follow one of the paths shown in Fig. 13.3-7. Here the final state
is denoted by e, and each branch has been labeled with the number of 1s in the
encoded bits — which equals the weight associated with that branch. The total
weight of a transmitted sequence X equals the sum of the branch weights along
the path of X. In accordance with Eq. (5), we seek the path that has the smallest
branch-weight sum, other than the trivial all-zero path.

Looking backwards L + 1 = 3 branches from e, we locate the last path that
emanates from state g before terminating at e. Now suppose all earlier transitions
followed the all-zero path along the top line, giving the state sequence aa - - abce.
Since an a-a branch has weight 0, this state sequence corresponds to a minimum-
weight nontrivial path. We therefore conclude that d =040+ 4+0+2+1
+ 2 =35. There are other minimum-weight paths, such as aa --- abcae and
aa - - abcbce, but no nontrivial path has less weight than d, = 5.

Another approach to the calculation of free distance involves the generating
Junction of a convolutional code. The generating function may be viewed as the
transfer function of the encoder with respect to state transitions. Thus, instead of
relating the input and output bits streams by convolution, the generating function
relates the initial and final states by multiplication. Generating functions provide
important information about code performance, including the free distance and
decoding error probability.

We'll develop the generating function for our (2, I, 2) encoder using the
modified state diagram in Fig. 13.3-8a. This diagram has been derived from F 1g.

Figure 13.3-7 Termination of
d 1 d (2, 1, 2) code trellis.

498 ERROR-CONTROL CODING

W, D W, ' 2 : W, = TiD, W,

(a) I

W, = T(D. W,

Figure 13.3-8 (a) Modified state diagram for (2, 1, 2) encoder; (b) equivalent block diagram.

13.3-4b with four modifications. First, we've eliminated the a-a loop which con-
tributes nothing to the weight of a sequence X. Second, we've drawn the c-a
branch as the final c-e transition. Third, we've assigned a state variable W, at
node a, and likewise at all other nodes. Fourth, we’ve labeled each branch with
two *“gain” variables D and I such that the exponent of D equals the branch
weight (as in Fig. 13.3-7), while the exponent of I equals the corresponding
number of nonzero message bits (as signified by the solid or dashed branch line).
For instance, since the c-e branch represents x;x7 = 11 and m; = 0, it is labeled
with D2I°® = D2. This exponential trick allows us to perform sums by multiplying
the D and I terms, which will become the independent variables of the generating
function.

Our modified state diagram now looks like a signal-flow graph of the type
sometimes used to analyze feedback systems. Specifically, if we treat the nodes as
summing junctions and the DI terms as branch gains, then Fig. 13.3-8a represents

the set of algebraic state equations
W, = D*IW, + IW. W. =DW, + DW, (6a)
a
W, = DIW, + DIW, W, = D*W.

The encoder’s generating function T(D, I) can now be defined by the input-output
equation

T(D, I) & W,/W, (6b)

13.3 CONVOLUTIONAL CODES 499

These equations are also equivalent to the block diagram in Fig. 13.3-8b, which
further emphasizes the relationships between the state variables, the branch gains,
and the generating function. Note that minus signs have been introduced here so
that the two feedback paths c-b and d-d correspond to negative feedback.

Next, the expression for T(D, I) is obtained by algebraic solution of Eq. (6), or
by block-diagram reduction of Fig. 13.3-8b using the transfer-function relations
for parallel, cascade, and feedback connections in Fig. 3.1-8. (If you know
Mason’s rule, you could also apply it to Fig. 13.3-8a.) Any of these methods pro-
duces the final result

DI
= 7
0, 1) = =50 (7a)
=D +2D°%1> +4D71% + - --
— 224*5Dd1d—4 (7b)

d=5

where we've expanded (1 — 2DI)™! to get the series in Eq. (7b). Keeping in mind
that T(D, I) represents all possible transmitted sequences that terminate with a c-e
transition, Eq. (7b) has the following interpretation: for any 4 > 5, there are
exactly 247 % valid paths with weight w{X) = d that terminate with a c-e transition,
and those paths are generated by messages containing d — 4 nonzero bits. The
smallest value of w(X) is the free distance, so we again conclude that d, = 5.

As a generalization of Eq. (7), the generating function for an arbitrary convo-
lutional code takes the form

T(D,)= Y Y A, hDI' (8)
d=ds i=1
Here, A(d, i) denotes the number of different input-output paths through the
modified state diagram that have weight d and are generated by messages con-
taining i nonzero bits.

Now consider a received sequence Y = X + E, where E represents transmission
errors. The path of ¥ then diverges from the path of X and may or may not be a
valid path for the code in question. When Y does not correspond to a valid path,
a maximum-likelihood decoder should seek out the valid path that has the smallest
Hamming distance from Y. Before describing how such a decoder might be imple-
mented, we'll state the relationship between generating functions, free distance,
and error probability in maximum-likelihood decoding of convolutional codes.

If transmission errors occur with equal and independent probability o per bit,
then the probability of a decoded message-bit error is upper-bounded by

1 8T(D, I)

P, < X 9

ol |poaar=ai=1

The derivation of this bound is given in Lin and Costello (1983, chap. 11) or
Yiterbi and Omura (1979, chap. 4). When « is sufficiently small, series expansion

500 ERROR-CONTROL CODING

of T(D, I) yields the approximation
P, = M%L) 2rodsi2 v/; «1 (10

where

=
M) = Y iAld,, i)
i=1
The quantity M(d,) simply equals the total number of nonzero message bits over
all minimum-weight input-output paths in the modified state diagram.

Equation (10) supports our earlier assertion that the error-control power ofa
convolutional code depends upon its free distance. For a performance compari-
son with uncoded transmission, we'll make the usual assumption of gaussian
white noise and (S/N)g = 2R, 7, = 10 so Eq. (10), Sect. 13.1, gives the transmis-
sion error probability

a x (4nR, y,) Ve Rew

The decoded error probability then becomes

p z__f_\lﬁdgif_e«m,dﬂzm (11)
be k(4nR,)'b)dfi“

whereas uncoded transmission would yield

P |
Pube ~ (47:)%)1/2 € (12}
Since the exponential terms dominate in these expressions, we see that convolu-
tional coding improves reliability when R, d;/2 > 1. Accordingly, the quantity
R.d,/2 is known as the coding gain, usually expressed in dB.

Explicit design formulas for d, do not exist, unfortunately, so good convolu-
tional codes must be discovered by computer search and simulation. Table 13.3-1
lists the maximum free distance and coding gain of convolutional codes for select-
ed values of n, k, and L. Observe that the free distance and coding gain increase

Table 13.3-1 Maximum free dis-
tance and coding gain of selected
convolutional codes

n k R L d Rdjp
4 1 14313 163
310 13 3 10 168
2 1 12 3 6 150
6 10 250
9 12 300
32 23 03 7 1B
3034 38 300

13.3 CONVOLUTIONAL CODES 501

with increasing memory L when the code rate R, is held fixed. All listed codes are
nonsystematic; a systematic convolutional code has a smaller d, than an
optimum nonsystematic code with the same rate and memory.

Example 13.3-1 The (2, 1, 2) encoder back in Fig. 13.3-2 has T(D, I) =
D3I1/(1 — 2DI), so ¢T(D, 1)/é1 = D*/(1 — 2DI)*. Equation (9) therefore gives

2’1 — 2)]*?
T =4l — a))?

and the small-o approximation agrees with Eq. (10). Specifically, in Fig.
13.3-8a we find just one minimum-weight nontrivial path abce, which has
w(X) = 5 = d, and is generated by a message containing one nonzero bit, so
M(d,) = 1.

If y,=10, then R,y,=15, ax85x107% and maximum-likelihood
decoding yields P,, ~ 6.7 x 1077, as compared with P,,, ~ 4.1 x 107°. This
rather small reliability improvement agrees with the small coding gain
R d;/2 = 5/4.

be ~ 25a5;’2

Exercise 13.3-2 Let the connections to the mod-2 summers in Fig. 13.3-2 be
changed such that xX;=mandxj=m;_,®Om;_, &m,.

(a) Construct the code trellis and modified state diagram for this system-
atic code. Show that there are two minimum-weight paths in the state
diagram, and that d; = 4 and M(d,) = 3. It is not necessary to find T(D, I).

(b) Now assume y, = 10. Calculate a, P,,, and P, . What do you con-
clude about the performance of a convolutional code when R . d,/2 = 17

Decoding Methods

There are three generic methods for decoding convolutional codes. At one
extreme, the Viterbi algorithm executes maximum-likelihood decoding and
achieves optimum performance but requires extensive hardware for computation
and storage. At thd other extreme, feedback decoding sacrifices performance in
exchange for simplified hardware. Between these extremes, sequential decoding
approaches optimum performance to a degree that depends upon the decoder’s
complexity. We'll describe how these methods work with a (2, 1, L) code. The
extension to other codes is conceptually straightforward, but becomes messy to
portray for k > 1.

Recall that a maximum-likelihood decoder must examine an entire received
sequence Y and find a valid path that has the smallest Hamming distance from Y.
However, there are 2" possible paths for an arbitrary message sequence of N bits
(or Nn/k bits in Y), so an exhaustive comparison of ¥ with all valid paths would
be an absurd task in the usual case of N » 1. The Viterbi algorithm applies
maximum-likelihood principles to limit the comparison to 2** surviving paths,
independent of N, thereby bringing maximum-likelihood decoding into the realm
of feasibility.

502 ERROR-CONTROL CODING

A Viterbi decoder assigns to each branch of each surviving path a metric that
equals its Hamming distance from the corresponding branch of Y. (We assume
here that Os and ls have the same transmission-error probability; if not, the
branch metric must be redefined to account for the differing probabilities.)
Summing the branch metrics yields the path metric, and Y is finally decoded as
the surviving path with the smallest metric. To illustrate the metric calculations
and explain how surviving paths are selected, we'll walk through an example of
Viterbi decoding.

Suppose that our (2, 1, 2) encoder is used at the transmitter, and the received
sequence starts with Y = 11 01 11. Figure 13.3-9 shows the first three branches of
the valid paths emanating from the initial node 4, in the code trellis. The number
in parentheses beneath each branch is the branch metric, obtained by counting
the differences between the encoded bits and the corresponding bits in Y. The
circled number at the right-hand end of each branch is the running path metric,
obtained by summing branch metrics from a,. For instance, the metric of the
pathag byc, byis0+2+2=4.

Now observe that another path aga,a, b, also arrives at node b, and has a
smaller metric 2 + 1 + 0 = 3. Regardless of what happens subsequently, this path
will have a smaller Hamming distance from Y than the other path arriving at b,
and is therefore more likely to represent the actual transmitted sequence. Hence,
we discard the larger-metric path, marked by an X, and we declare the path with
the smaller metric to be the survivor at this node. Likewise, we discard the larger-
metric paths arriving at nodes a3, ¢3,and d;,leaving a total of 2*£ = 4 surviving
paths. The fact that none of the surviving path metrics equals zero indicates the
presence of detectable errorsin Y.

Figure 13.3-9

13.3 CONVOLUTIONAL CODES 503

00 01 i 0

®)

Maximum
likelihood path

Figure 13.3-10 Illustration of the Viterbi algorithm for maximum-likelihood decoding.

Figure 13.3-10 depicts the continuation of Fig. 13.3-9 for a complete message
of N = 12 bits, including tail 0s. All discarded branches and all labels except the
running path metrics have been omitted for the sake of clarity. The letter T under
a node indicates that the two arriving paths had equal running matrics, in which
case we just flip a coin to choose the survivor (why?). The maximum-likelihood
path follows the heavy line from a, to a,,, and the final value of the path metric
signifies at least two transmission errors in Y. The decoder assumes the corre-
sponding transmitted sequence Y + E and message sequence M written below
the trellis.

A Viterbi decoder must calculate two metrics for each node and store 2*" sur-
viving paths, each consisting of N branches. Hence, decoding complexity
increases exponentially with L and linearly with N. The exponential factor limits
practical application of the Viterbi algorithm to codes with small values of L.

When N » 1, storage requirements can be reduced by a truncation process
based on the following metric-divergence effect: if two surviving paths emanate
from the same node at some point, then the running metric of the less likely path
tends to increase more rapidly than the metric of the other survivor within about
5L branches from the common node. This effect appears several times in Fig.
13.3-10; consider, for instance, the two paths emanating from node b;. Hence,
decoding need not be delayed until the end of the transmitted sequence. Instead,
the first k message bits can be decoded and the first set of branches can be deleted
from memory after the first 5Ln received bits have been processed. Successive
groups of k message bits are then decoded for each additional n bits received
thereafter.

Sequential decoding, which was invented before the Viterbi algorithm, also
relies on the metric-divergence effect. A simplified version of the sequential algo-
rithm is illustrated in Fig. 13.3-11a, using the same trellis, received sequence, and

504 ERROR-CONTROL CODING

j=0 | 2
dq L

ta) d;

Running metric
1

(b)

0

Figure 13.3-11 lilustration of sequential decoding.

metrics as in Fig. 13.3-10. Starting at a,, the sequential decoder pursues a single
path by taking the branch with the smallest branch metric at each successive
node. If two or more branches from one node have the same metric, such as at
node d,, the decoder selects one at random and continues on. Whenever the
current path happens to be unlikely, the running metric rapidly increases and the
decoder eventually decides to go back to a lower-metric node and try another
path. There are three of these abandoned paths in our example. Even so, a com-
parison with Fig. 13.3-10 shows that sequential decoding involves less computa-
tion than Viterbi decoding.

The decision to backtrack and try again is based on the expected value of the
running metric at a given node. Specifically, if « is the transmission error prob-
ability per bit, then the expected running metric at the jth node of the correct
path equals jna, the expected number of bit errors in Y at that point. The sequen-
tial decoder abandons a path when its metric exceeds some specified threshold A
above jna. If no path survives the threshold test, the value of A is increased and
the decoder backtracks again. Figure 13.3-11b plots the running metrics versus j,
along with jno and the threshold line jna + A for a = 1/16 and A = 2.

13.3 CONVOLUTIONAL CODES 505

Sequential decoding approaches the performance of maximum-likelihood
decoding when the threshold is loose enough to permit exploration of all prob-
able paths. However, the frequent backtracking requires more computations and
results in a decoding delay significantly greater than Viterbi decoding. A tighter
threshold reduces computations and decoding delay but may actually eliminate
the most probable path, thereby increasing the output error probability com-
pared to that of maximum-likelihood decoding with the same coding gain. As
compensation, sequential decoding permits practical application of convolutional
codes with large L and large coding gain since the decoder’s complexity is essen-
tially independent of L.

We've described sequential decoding and Viterbi decoding in terms of algo-
rithms rather than block diagrams of hardware. Indeed, these methods are usually
implemented as software for a computer or microprocessor that performs the
metric calculations and stores the path data. When circumstances preclude algo-
rithmic decoding, and a higher error probability is tolerable, feedback decoding
may be the appropriate method. A feedback decoder acts in general like a
“sliding block decoder” that decodes message bits one by one based on a block
of L or more successive tree branches. We'll focus on the special class of feedback
decoding that employs majority logic to achieve the simplest hardware realization
of a convolutional decoder.

Consider a message sequence M =mym, --- and the systematic (2, 1, L)
encoded sequence

X = x{x{xyxi - (13a)
where
L
xj=m;, xj=Ymy_;g; (mod-2) (13b)
i=0

We'll view the entire sequence X as a codeword of indefinite length. Then, bor-
rowing from the matrix representation used for block codes, we’ll define a gener-
ator matrix G and a parity-check matrix H such that

X =MG XHT=0 0

To represent Eq. (13), G must be a semi-infinite matrix with a diagonal structure
given by
1 g6 0 g0 - 0 g

1 go 0 g, O 00 gy

5066 ERROR-CONTROL CODING

This matrix extends indefinitely to the right and down, and the triangular blank
spaces denote elements that equal zero. The parity-check matrix is

g 1]
g, 0 go 1
g1 0 go 1
=" (14b)
gL 0 . . -
g. 0

which also extends indefinitely to the right and down.
Next, let E be the transmission error pattern in a received sequence
Y = X + E. We'll write these sequences as

Y=y1y1)ay: E=celejere; -
so that y; = m; @). Hence, given the error bit e}, the jth message bit is
m;=y;® e (15)

A feedback decoder estimates errors from the syndrome sequence
S=YH"=(X + E)yH" = EH"
Using Eq. (14b) for H, the jth bit of S 1s

L L
S;= VZO,V}—igi @ .V}' = A.Zoe}_[g‘ Dej (16)

where the sums are mod-2 and it’s understood that y;_; = ¢;_; =Uforj — i <0.
As a specific example, take a (2, 1, 6) encoder with g, = g, = g5 = g6 = 1 and
g1 =4¢3=4gs=0,50
$;i=Yi-6®Vi-s DYDY, DYj (17a)
=¢i_Pej.sDej_, De;De (17b)

Equation (17a) leads directly to the shift-register circuit for syndrome calculation
diagrammed in Fig. 13.3-12. Equation (17b) is called a parity-check sum and will
leads us eventually to the remaining portion of the feedback decoder.

To that end, consider the parity-check table in Fig. 13.3-13a where checks
indicate which error bits appear in the sums s;_¢, 5;_4, 5;,_,, and s;. This table
brings out the fact that e;_¢ is checked by all four of the listed sums, while no
other error bit is checked by more than one. Accordingly, this set of check sums
is said to be orthogonal on €;_s. The tap gains of the encoder were carefully
chosen to obtain orthogonal check sums.

13.3 CONVOLUTIONAL CODES 507

Yi-2 ¥ Vy-a Yis Yo |—*

5

}

Figure 13.3-12 Shift-register circuit for syndrome calculation for a systematic (2, 1, 6) code.

€2 €pit €lo €0 Clu € €4 o €5 a4 u &3 € € £ & 4

sef VLV v ViV

Sp ViV v Vv

Spt ViV v vV

5, v v v Vi

Figure 13.3-13 Panty-check table for a systematic (2, 1, 6) code.

When the transmission error probability is reasonably small, we expect to
find at most one or two errors in the 17 transmitted bits represented by the
parity-check table. If one of the errors corresponds to ej_¢ = 1, then the four
check sums will contain three or four 1s. Otherwise, the check sums contain less
than three 1s. Hence, we can apply these four check sums to a majority-logic gate
to generate the most likely estimate of e _ .

Figure 13.3-14 diagrams a complete majority-logic feedback decoder for our
systematic (2, 1, 6) code. The syndrome calculator from Fig. 13.3-12 has two

Error correciic

—p Yi-s m;
Syndrome calculator _-.*gp,__

Majority
logic gate
Check sums

P

| —
I oo Y s, IOY O Y o0 RO

Error feedback
Figure 13.3-14 Majority-logic feedback decoder for a systematic (2, 1, 6) code.

508 ERROR-CONTROL CODING

outputs, ;.. and s;. The syndrome bit goes into another shift register with taps
that connect the check sums to the majority-logic gate, whose output equals the
estimated error &,_,. The mod-2 addition y;_s @ &;_¢ =m;_, carries out error
correction based on Eq. (15). The error is also fed back to the syndrome register
to improve the reliability of subsequent check sums. This feedback path accounts
for the name feedback decoding.

Our example decoder can correct any single-error or double-error pattern in
six consecutive message bits. However, more than two transmission errors pro-
duces erroneous corrections and error propagation via the feedback path. These
effects result in a higher output error than that of maximum-likelihood decoding.
See Lin and Costello (1983, chap. 13) for the error analysis and further treatment
of majority-logic decoding.

13.4 PROBLEMS

13.1-1 Calculate the probabilities that a word has no errors, detected errars, and undetected errors
when a parity-check code with n = 4 is used and a = 0.1

13.1-2 Do Prob. 13.1-1 with n = 9 and a = 0.05.

13.1-3 Consider the square-array code in Fig. 13.1-1. (a) Confirm that if a word has two errors, then
they can be detected but not corrected. (b) Discuss what happens when a word contains three errors.
13.1-4 An FEC system contaminated by gaussian white noise must achieve P,, <107 with
minimum transmitted power. Three block codes under consideration have the following parameters:

n k d in
31 26 3
31 21 S
31 16 7

Determine which code should be used, and calculate the power saving in dB compared to uncoded
transmission.

13.1-5 Do Prob. 13.1-4 with P,, < 107°,

13.1-6 Calculate «, P,,, and P,,, at y, = 2, §, and 10 for an FEC system with gaussian white noise
using a (31, 26) block code having d_,, = 3. Plot your results in a form like Fig. 13.1-5.

13.1-7 Do Prob. 13.1-6 for a (31, 21) code having 4, = 5.

13.1-8 A selective-repeat ARQ system with gaussian white noise is to have P,, = 10™* using one of
the following blocks codes for error detection:

n k dmin
12 11 2
15 11 3
16 i1 4

Calculate r,/r and y, for each code and for uncoded transmission. Then plot y, in dB versus ry/r.
13.1-9 Do Prob. 13.1-8 for P, = 107°.

13.1-10 A go-back-N ARQ system has gaussian white noise, y, = 6 dB, r = 500 kbps, and a one-way
path length of 45 km. Find P,,, the minimum value of N, and the maximum value of r, using a
(15, 11) block code with d,, = 3 for error detection.

13.4 pPROBLEMS 509

13.1-11 Do Prob. 13.1-10 using a (16, 11) block code with d_;, = 4.

13.1-12 A stop-and-wait ARQ system uses simple parity checking with n = k + 1 for error detection.
The system has gaussian white noise, r = 10 kbps, and a one-way path length of 18 km. Find the
smallest value of k such that P,, < 107° and r, > 7200 bps. Then calculate y, in dB.

13.1-13 Do Prob. 13.1-12 with a 60-km path length.

13.1-14] Derive m as given in Eq. (19) for a go-back-N ARQ system. Hinr: 1f a given word has
detected errors in i successive transmissions, then the total number of transmitted words equals
I+ Ni.

13.1-15 Consider a hybrid ARQ system using a code that corrects ¢ errors and detects £ > t errars
per n-bit word. Obtain an expression for the retransmission probability p when o <« 1. Then take
d e = 4 and compare your result with Eq. (15).

13.1-16 Suppose a hybrid selective-repeat ARQ system uses an (n, k) block code withd_;, =2t + 2 to
correct up to t errors and detect ¢ + 1 errors per word. (a) Assume o <« 1 to obtain an approximate
expression for the retransmission probability p, and show that

n—1
Pbez<)az?I
t+1

{b) Evaluate « and p for a (24, 12) code with d,_,, = § when P,, = 10~°. Then assume gaussian white
noise and find P,, for uncoded transmission with the same value of y,.

13.2-1 Let U and V be n-bit vectors. (a) By considering the number of I's in U, V, and U + V,
confirm that U, ¥ <wlU)+w¥). (b) Now let U=X+Y and V=Y + Z. Show that
U + V = X + Z and derive the triangle inequality

dX,)< dX, Y)+ dY, 2Z)

13.2-2 Let X be a code vector, let Z be any other vector in the code, and let Y be the vector that
results when X is received with i bit errors. Use the triangle inequality in Prob. 13.2-1 to show that if
the code has d,,, = £ + land if i < ¢, then the errors in Y are detectable.

13.2-3 Let X be a code vector, let Z be any other vector in the code, and let Y be the vector that
results when X is received with i bit errors. Use the triangle inequality in Prob. 13.2-1 to show that if
the code has d,,;, > 2t + 1 and if i < t, then the errors in Y are correctable.

13.24 A triple-repetition code is a systematic (3, 1) block code generated using the submatrix
P =[1 1} Tabulate all possible received vectors Y and S = YH'. Then determine the correspond-
ing maximum-likelihood errors patterns and corrected vectors Y + E.

13.2-§ Construct the lookup table for the (6, 3) block code in Exercise 13.2-1.

13.2-6 Consider a (5, 3) block code obtained by deleting the last column of the P submatrix in Exer-
cise 13.2-1. Construct the lookup table, and show that this code could be used for error detection but
not correction.

13.2-7 Let the P submatrix for a (15, 11) Hamming code be arranged such that the row words
increasing in numerical value from top to bottom. Construct the lookup table and write the check-bit
equations.

13.2-8 Suppose a block code with ¢ = 1 is required to have k = 6 message bits per word. (a) Find the
minimum value of n and the number of bits stored in the lookup table. (b) Construct an appropriate
P submatrix.

13.2-9 Do Prob. 13.2-8 with k = §.

13.2-10 It follows from Eq. (4} that XHT = MA with 4 = GH”. Prove Eq. (9) by showing that any
element of 4 has the property a;; = 0.

13.2-11 The original (7, 4) Hamming code is a nonsystematic code with

1

10 0 1
H=}0 1 00
0 0 11

(=R
O =

