10 / The Design and Compensation
of Feedback Control Systems

10.1 INTRODUCTION

The performance of a feedback contro] system is of primary importance. This sub-
ject was discussed at length in Chapter 4 and quantitative measures of performance
were developed. We have found that a suitable control system is stable and that it
results in an acceptable response to input commands, is less sensitive to system
parameter changes, results in a minimum steady-state error for input commands,
and, finally, is able to eliminate the effect of undesirable disturbances. A feedback
control system that provides an optimum performance without any necessary
adjustments is rare indeed. Usually one finds it necessary to compromise among
the many conflicting and demanding specifications and to adjust the system param-
eters to provide a suitable and acceptable performance when it is not possible to
obtain all the desired optimum specifications.

‘We have considered at several points in the preceding chapters the question of
design and adjustment of the system parameters in order to provide a desirable
response and performance. In Chapter 4, we defined and established several suita-
ble measures of performance. Then, in Chapter 5, we determined a method of inves-
tigating the stability of a control systen, since we recognized that a system is unac-
ceptable unless it is stable. In Chapter 6, we utilized the root Jocus method to effect
a design of a self-balancing scale {Section 6.4) and then iHustrated a method of
parameter design by using the root locus method (Section 6.5). Furthermore, in
Chapters 7 and 8, we developed suitable measures of performance in terms of the
frequency variable o and utilized them to design several suitable control systems.
Finally, using time-domain methods in Chapter 9, we investigated the selection of
feedback parameters in order to stabilize a system. Thus, we have been considering
the problems of the design of feedback control systems as an integral part of the
subjects of the preceding chapters. It is now our purpose to study the question
somewhat further and to point out several significant design and compensation
methods.

367
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We have found in the preceding chapters that it is often possible to adjust the
system parameters in order to provide the desired system response. However, we
often find that we are not able to simply adjust a system parameter and thus obtain
the desired performance. Rather we are forced to reconsider the strucfturc of the
system and redesign the system in order to obtain a suitable one. That is, we must

examine the scheme or plan of the system and obtain a new design or plan which -

results in 2 suitable system. Thus, the design of a control system is concerned with
the arrangement, or the plan, of the system structure and the selection of suitable
components and parameters. For example, if one desires a set of performapcg mea-
sures to be less than some specified values, often one encounters a conflicting set
of requirements. Thus, if we wish a system to have a percent overshoot less ti}a‘u
20% and @,T, = 3.3, we obtain a conflicting requirement on the system damping
ratio, ¢, as can be seen by examining Fig. 4.8. Now, if we are unable to relax these
two performance requirements, we must alter the system in some way. Often the
alteration or adjustment of a control system, in order to provide a suitable perfor-
mance, is called compensation; that is, compensation is the adjustment of_ a system
in order to make up for deficiencies or inadequacies. It is the purpose of this chapter
to consider briefly the issue of the design and compensation of control systems. '
In redesigning a control system in order to alter the system response, an addlln
tional component is inserted within the structure of the feedback system. It is thus
additional component or device that equalizes or compensates for t}_le performan.ce
deficiency. The compensating device may be an electric, mechanical, hydraulic,
poeumatic, or other type of device or network, and is often called a compensator.
Commonly, an electric circuit serves as a compensator in many control systems.
The transfer function of the compensator is designated as G(s) = Eouls) Epn(s)
and the compensator may be placed n a suitable location within the str.ucture gf the
system. Several types of compensation are shown in Fig. 10.1 for a simple smglg
loop feedback control system. The compensator placed in the feedforward path is

Compensator  Process o)
Cisy RE) I Gds) 1
%ﬂlmcccs)oc(s}ﬁ1 L A 0%y L5
\/ G(s) ~FH{)
—H(s)
(aj (b}
R{s) 1 1 G(s) G‘C(SJ Cisy R Gc(s) 1 Gis) 1 i)
~H(s) —H{s}

(c) {d}
Fig. 10.1. Types of compensation. (a) Cascade compensation. (b) Feedback compensation.
(¢} Qutput or load compensation. {d} Input compensation.
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called a cascade or series compensator. Similarly, the other compensation schemes
are called feedback, output or load, and input compensation, as shown in Fig.
10.1(b), (c), and (d), respectively. The selection of the compensation scheme
depends upon a consideration of the specifications, the power levels at varjous sig-
nal nodes in the system, and the networks available for use. It will not be possible
for us to consider all the possibilities in this chapter, and the reader is referred to
further work following the introductory material of this chapter [1, 2].

10.2 APPROACHES TO CCMPENSATION

The performance of a control system may be described in terms of the time-domain
performance measures or the frequency-domain performance measures. The per-
formance of a system may be specified by requiring a certain peak time, 7. s IRAXI-
mum overshoot, and settling-time for a step input. Furthermore, it is usually nec-
essary to specify the maximum allowable steady-state error for several test signal
inputs and disturbance inputs. These performance specifications may be defined in
terms of the desirable location of the poles and zeros of the closed-loop system
transfer function, T'(s). Thus the location of the s-plane poles and zeros of T(s)
may be specified. As we found in Chapter 6, the locus of the roots of the closed-
loop system may be readily obtained for the variation of one system parameter.
However, when the locus of roots does not result in a suitable root configuration,
one must add a compensating network (Fig. 10.1) in order to alter the Iocus of the
roots as the parameter is varied. Therefore, one may utilize the root locus method
and determine a suitable compensator network transfer function so that the result-
ant root locus results in the desired closed-loop root configuration.

Alternatively, one may describe the performance of a feedback control system
in terms of frequency performance measures. Then a system may be described in
terms of the peak of the closed-loop frequency response, M, , the resonant fre-
quency, ., the bandwidth, and the phase margin of the system. One may add a
suitable compensation network, if necessary, in order to satisfy the system specifi-
cations. The design of the network G.(s), is developed in terms of the frequency
response as portrayed on the polar plane, the Bode diagram, or the Nichols chart.
Since a cascade transfer function is readily accounted for on a Bode plot by adding
the frequency response of the network, we usually prefer to approach the frequency
response methods by utilizing the Bode diagram.

Thus, the compensation of a system is concerned with the alteration of the fre-
quency response or the root locus of the system in order to obtain a suitable system
performance. For frequency response methods, we are concerned with altering the
system so that the frequency response of the compensated system will satisfy the
system specifications. Thus, in the case of the frequency response approach, one
utilizes compensation networks to alter and reshape the frequency characteristics
represented on the Bode diagram and Nichols chart.

Alternatively, the compensation of a control system may be accomplished in the
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s-plane by root locus methods. For the case of the s-plane, the designer wishes to
alter and reshape the root locus so that the roots of the system will lie in the desired
position in the s-plane.

The time-domain method, expressed in terms of state variables, may also be
atilized to design a suitable compensation scheme for a control system. Typically,
one is interested in controlling the system with a control signal, u(z), which is a
function of several measurable state variables. Then one develops a state-variable
controller which operates on the information available in measured form. This type
of system compensation is quite useful for system optimization and will be consid-
ered briefly in this chapter.

We have illustrated several of the aforementioned approaches in the preceding
chapters. In Example 6.5, we utilized the root locus method in considering the
design of a feedback network in order to obtain a satisfactory performance. In
Chapter 8, we considered the selection of the gain in order to obtain a suitable phase
margin and, therefore, a satisfactory relative stability. Also, in Example 9.6, we
compensated for the unstable response of the pendulum by controling the pendulum
with a fupction of several of the state variables of the system,

Quite often, in practice, the best and simplest way to improve the performance
of & control system is to alter, if possible, the process itself. That is, if the system
designer is able to specify and alter the design of the process which is represented
by the transfer function G{s), then the performance of the system may be readily
improved. For example, in order to improve the transient behavior of a servomech-
anism position controller, one can often choose a better motor for the system. In
the case of ap airplane control system, one might be able to alter the aerodynamic
design of the airplane and thus improve the flight transient characteristics. Thus, a
control system designer should recognize that an alteration of the process may
result in an improved system. However, often the process is fixed and unalterable
or has been altered as much as is possible and is still found to result in an unsatis-
factory performance. Then the addition of compensation networks becomes useful
for improving the performance of the system. In the following sections we will
assume that the process has been improved as much as possible and the G(s) rep-
resenting the process is unalterable.

It is the purpose of this chapter to further describe the addition of several com-
pensation networks to a feedback control system. First we shall consider the addi-
tion of a so-called phase-lead compensation network and describe the design of the
network by root locus and frequency response techniques. Then, using both the
root locus and frequency response techniques, we shall describe the design of the
integration compensation networks in order to obtain a suitable system perfor-
mance. Finally, we shall determine an optimum controller for a system described in
terms of state variables. While these three approaches to compensation are not
intended to be discussed in a complete manner, the discussion that follows should
serve as a worthwhile introduction to the design and compensation of feedback
control systems.
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10.3 CASCADE COMPENSATICN NETWORKS

In this section, we shall consider the design of a cascade or feedback network as
shown in Fig. 10.1{a} and Fig. 10.1(b), respectively. The compensation network,
G5}, is cascaded with the unalterable process G(s) in order to provide a suitable
loop transfer function G {s)G{s)H(s). Clearly, the compensator G,(s) may be cho-
sen to alter the shape of the root locus or the frequency response. In either case,
the network may be chosen to have a transfer function

KIS, G+ 2
[T G+

Then the problem reduces to the judicious selection of the poles and zeros of the
compensa‘tor. In order to illustrate the properties of the compensation network, we
shall consider a first-order conpensator. The compensation approach developed on

the basis of a first-order compensator may then be extended to higher-order
compensators.

Consider the first-order compensator with the transfer function

Ge(s) = (10.1)

{10.2)

The design problem becomes, then, the selection of z, p, and X in order to provide
a suitable performance. When |z| < [p|, the network is called a phase-lead network
and has a pole-zero s-plane configuration as shown in Fig. 10.2. If the pole was
negligible, that is, [p| = |z, and the zero occurred at the origin of the s-plane, we
would have a differentiator so that

Go(s) = (f—) 5. (10.3)

Thus a cempexfsation 'network of the form of Eq. (10.2) is a differentiator type
network, The differentiator network of Eq. (10.3) has a frequency characteristic as

jo

g —

Fig. 10.2. The pole-zero diagram of the phase-lead network.
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Fig. 10.3. The Bode diagram of the phase-lead network.
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and a phase angle of +90°, often called a phase-lead angle. Similarly, the frequency
response of the differentiating network of Eq. (10.2) is
K(jw + z)  (Kalp)(jlw/z) + 1)

(o +p)  (lp)+ D
- Kl + jwor)

(1 + jor)

G (jw) =

(10.5)

wheret = U/p, p = az, and K; = K/e. The frequency response of this phase-lead
network is shown in Fig. 10.3. The angle of the frequency characteristic is

d(w) = tan™ owr — tan™ or. (10.6

Since the zero occurs first on the frequency axis, we obtain a phase-lead character-
istic as shown in Fig. 10.3. The slope of the asymptotic magnitude curve is -+6 db/
octave.

The phase-lead compensation transfer function can be obtained with the net-
work shown in Fig. 10.4. The transfer function of this network is

HE
il

o AN
Tﬁl Ry Rz% EzT

o
Fig, 10.4. A phase-lead network.
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Gyls) = Ey(s) - R,
¢ E{s) R, + {R,(VCsY[R; + (U/C]}
_ ( R, ) (R,Cs + 1) _ 0.7
RI + Rg {{RIRZI(RI -+ Rz)}CS + 1}
Therefore, we let
_ .RI.Rg - R}. + RZ
'rw—-—~RI+R2C and oz-«—R:z
and obtain the transfer function
_ (i + ars)
Gus) = ol Frs) (10.8)

which is equal to Eq. (10.5) when an additional cascade gain K is inserted.

The maximum value of the phase lead occurs at a frequency w.,,, where wy, is
the geometric mean of p = 1/7 and z = Ver; that is, the maximum phase lead
occurs halfway between the pole and zero frequencies on the logarithmic frequency
scale. Therefore, .

1
Gm =N e

In order to obtain an equation for the maximum phase-lead angle, we rewrite the
phase angle of Eq. (10.5) as

QT — WT

%. (10.9)

¢ = tan™!

Then, substituting the frequency for the maximum phase angle, o, = /7 Vo we
have

_ @ @)~ (1)
B 1+1
_a— 1

. 2o

Since the tan ¢, equals (@ — 1)/23/«, we utilize the triangular relationship and note
that

tan ¢,

(10.10)

o~ 1

s (10.11)

$inl ¢y, =
Equation (10.11) is very useful for calculating a necessary « ratio between the pole
and zero of a compensator in order to provide a required maximum phase lead. A
plot of ¢,, versus « is shown in Fig. 10.5. Clearly, the phase angle readily obtainable
from this network is not much greater than 70°. Also, since a = (R; + R,/ R,, there
are practical limitations on the maximum vaiue of « that one should attempt to
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Fig. 10.5. The maximum phase angle ¢,, versus a for a lead network.

obtain. Therefore, if one required a maximum angle of greater than 70°, two cascade
compensation networks would be utilized. Then the equivalent compensation trans-
fer function is G (s)G,,(s) when the loading effect of G,(s) on G, (5) is
negligible.

Tt is often useful to add a cascade compensation network which provides a
phase-lag characteristic. The phase-lag network is shown in Fig. 10.6. The transfer
function of the phase-lag network is

Eys) Ry + (/Cs)
Ei(s) R;+ R, + (1/Cs)
_ RiCs+1
(R, + Ry)Cs + 1
When 7 = R, and & = {Ry + R,) /R,, we have

Go(s) =

(10.12)

1+7s
Gols) = 1+ ars
__1 (s +2)
als + pY
where z = 1/r and p = Vor. In this case, since a > 1, the pole lies closest to the
origin of the s-plane as shown in Fig. 10.7. This type of compensation network is

often called an integrating network. The Bode diagram of the phase—iag network is
obtained from the transfer function

(10.13)

Goljw) = 12T (10.14)
1+ jooar
o AN o
R
Ry
EinT TEouz
<

. l

Fig. 10.6. A phase-lag network.
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Fig. 10.7. The pole-zero diagram of the phase-lag network.

and is shown in Fig. 10.8. The form of the Bode diagram of the lag network is
similar to that of the phase-lead network; the difference is the resulting attenuation
and phase-lag angle instead of amplification and phase-lead angle. However, one
potes that the shape of the diagrams of Figs. 10.3 and 10.8 are similar. Therefore, it
can be shown that the maximum phase lag ocours at wy, = Vo,

In the succeeding sections, we wish to utilize these compensation networks in
order to obtain a desired system frequency Iocus or s-plane root location. The lead
network is utilized to provide a phase-lead angle and thus a satisfactory phase mar-
gin for a system. Alternatively, the use of the phase-lead network may be visualized
on the s-plane as enabling one to reshape the root locus and thus provide the desired
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Fig. 10.8. The Bode diagram of the phase-lag network,
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root locations. The phase-lag network is utilized not to provide a phase-lag angle,
which is normally a destabilizing influence, but rather to provide an attenuation and
increase the steady-state error constant {3]. These approaches to compensation
utilizing the phase-Jead and phase-lag networks will be the subject of the following
four sections.

10.4 SYSTEM COMPENSATION ON THE BODE DIAGRAM USING THE
PHASE-LEAD NETWORK

. The Bode diagram is used in order to design a suitable phase-fead network in pref-
erence to other frequency response plots. The frequency response of the cascade
compensation network is added to the frequency response of the uncompensated
system. That is, since the total loop transfer function of Fig. 10.1a) is
G (j)Gjw) H{jw), we will first plot the Bode diagram for G{jw)H{jw). Then one
may examine the plot for G(jw)H(jw) and determine a suitable location for p and
z of G{jew) in order to satisfactorily reshape the frequency response. The uncom-
pensated G{jw) is plotted with the desired gain to allow an acceptable steady-state
emror. Then the phase margin and the expected M, are examined to find whether
they satisfy the specifications. If the phase margin is not sufficient, phase lead may
be added to the phase angle curve of the system by placing the G (jo) n a suitable
location. Clearly, in order to obtain maximum additional phase lead, we desire to
place the network such that the frequency w,, is located at the frequency where the
magnitude of the compensated magnitude curves crosses the 0-db axis. (Recall the
definition of phase margin.) The valtue of the added phase lead required allows us to

determine the necessary value for « from Eq. (10.11) or Fig. 10.5. The zero « = .

o7 is located by noting that the maximum phase lead should occur at w,, = Vzp,
halfway between the pole and zero. Since the total magnitude gain for the network
is 20 log @, we expect a gain of 10 log « at w,,. Thus we determine the compensation
network by completing the following steps:

1. Evaluate the uncompensated system phase margin when the error constants
are satisfied.

2. Allowing for a small amount of safety, determine the necessary additional
phase lead, ¢,

3. Evaluate « from Eq. (10.11).

4. Evaluate 10 log o and determine the frequency where the uncompensated mag-
nitude curve is equal to — 10 log « db. This frequency is the new 0-db crossover
frequency and ,, simultaneously, since the compensation network provides a
gain of 10 log & at wp.

5. Draw the compensated frequency response, check the resulting phase argin,
and repeat the steps, if necessary. Finally, for an acceptable design, raise the
gain of the amplifier in order to account for the attenuation (Va).
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Example 10.1. Let us consider a single-loop feedback control system as shown in
Fig. 10.1(a), where
K
Gls) =

et
52

(10.1%)

and H(s) = 1. The uncompensated system is a type 2 system and at first appears to
possess a satisfactory steady-state error for both step and ramp input signals. How-
ever, uncompensated, the response of the system is an undamped oscillation, since
Cs) Ky
R(s) s+ K,
Therefore, the compensation network is added so that the Joop transfer function is
G,(s}G(s)H(s). The specifications for the system are

Tis)=

(10.18)

Settling time, T, < 4 sec,
Percent overshoot for a step input < 20%.

Using Fig. 4.8, we estimate that the damping ratio should be { = 0.45. The seitling
time reguirement is

T, =4 =4, (10.17)
Lo,
and therefore
1 1
Wy E = a8 2.22

Perhaps the simplest way to check the value of w, for the frequency response is to
relate @, to the bandwidth and evaluate the bandwidth of the closed-loop system.
For a closed-loop system with { = 0.45, we estimate from Fig. 7.9 thatw = 1.360,,.
Therefore, we require a closed-loop bandwidth wp = 1.36(2.22) = 3.02. The band-
width may be checked following compensation by utilizing the Nichols chart. For
the uncompensated system, the bandwidth of the system is wy = 1.36w, and w, =
/K. Therefore, a loop gain equal to K = o} = 5 would be sufficient. In order to
provide a suitable margin for the settling time, we will select K = 10 in order to
draw the Bode diagram of

K
GH(jo) = —.
Vo) = Goy
The Bode diagram of the uncompensated system is shown as solid lines in Fig. 10.5.
By using Eq. (8.58), the phase margin of the system is required to be
approximately

<o

4
0

(¥

£

Dy = m = = 45°, {10.18)

=
et
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Fig. 10.9. Bode diagram for Example 10.1.

The phase margin of the uncompensated system is zero degrees since the double
integration results in a constant 180° phase lag. Therefore we must add a 45° phase-
lead angle at the crossover (0-db) frequency of the compensated magnitude curve.
Evaluating the value of ¢, we have

o1
a+1

= sin ¢,

= sin 45°, (10.19)

and thersfore @ = 5.8. In order to provide a margin of safety, we will use « = 6..

The value of 10 log & is then equal to 7.78 db. Then the lead network will add an
additional gain of 7.78 db at the frequency w,, and it is desired to have w,, equal to
the compensated system crossover frequency. This is accomplished by drawing the
compensated slope near the 0-db axis (the dotted line) so that the new crossover is
@, and the dotted magnitude curve is 7.78 db above the uncompensated curve at
the crossover frequency. Thus the compensated crossover frequency s located by
evaluating the frequency where the uncompensated magnitude curve is equal to
—7.78 db, which, in this case, is w = 4.9. Then the maximum phase-lead angle is
added at @ = w,, = 4.9 as shown in Fig. 10.9. The bandwidth of the compensated
system may be obtained from the Nichols chart. For estimating the bandwidth, one
may simply examine Fig. 8.22 and note that the —3-db line for the closed-loop
system occurs when the magnitude of GH(jw) is ~6-db and the phase shift of
GH{jw) is approximately — 140°. Therefore, in order to estimate the bandwidth from
the open-loop diagram we will approximate the bandwidth as the frequency for
which 20 log {GH]| is equal to —6§ db. Therefore the bandwidth of the uncompen-
sated system is approximately equal to wp = 4.4, while the bandwidth of the com-
pensated system is equal t0 wp = 8.4. The lead compensation doubles the band-
width in this case and the specification that wp > 3.02 is saftisfied. Therefore the
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compensation of the system is completed and the system specifications are satis-
fied. The total compensated loop transfer function is

100 Gw/2.1) + 1]

G jw)G(lw)H(jw) = .
()Gl (o) = oo S T T (10.20)
The transfer function of the compensator is
Gu(s) = (1 + ars)
a(l + 78) 0.2
1 [+ (s2.1)] (10.21)

T 611 + (s/12.60

in the form of Eq. (10.8). Since an attenuation of Y% results from the passive RC
network, the gain of the amplifier in the loop must be raised by a factor of six so
that the total dc loop gain is still equal to 10 as required in Eq. (10.2¢). When we
add the compensation network Bode diagram to the uncompensated Bode diagram
as in Fig. 10.9, we are assuming that we can raise the amplifier gain in order to
account for this Ve attenuation. The pole and zero values are simply read from Fig.
10.9, noting that p = «z.

Example 10.2. A feedback control system has a loop transfer function

_K

s(s +2Y

it is desired to have a steady-state error for a ramp input less than 5% of the mag-

nitude of the ramp. Therefore, we require that

~AL_A

? e, 0.054

Furthermore, we desire that the phase margin of the system be at least 45°. The
first step is to plot the Bode diagram of the uncompensated transfer function

_ K

Jw0.5fe + 1)
_ 20

Jw{0.5fw + 1)

GH(s) = (10.22)

20. (10.23)

GH{jm) =
(10.24)
as shown in Fig. 10.10(a). The frequency at which the magnitude curve crosses the

0-db line is 6.2 radfsec and the phase margin at this frequency is determined readily
from the equation of the phase angle of GH{jw) which is

{GH(fm = i) = —9F — tan™? (0.50). (10.25)
At the crossover frequency, o = w, = 6.2 rad/sec, we have

o) = —162°, (10.26)
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Fig. 10.19(a). Bode diagram for Example 10.2.

and therefore the phase margin is 18°. Using Eq. (10.25) to evaluate the phase mar-
gin is often easier than drawing the complete phase angle curve which is shown in
Fig. 10.10(a). Thus we need to add a phase-lead network so that the phase margin
is raised to 45° at the new crossover (0-db) frequency. Since the compensation
crossover frequency is greater than the uncompensated crossover frequency, the
phase lag of the uncompensated system is greater also. We shall account for this
additional phase lag by attempting to obtain a maximum phase lead of 45° — 18° =

27° plus a small increment (10%) of phase lead to account for the added lag. Thus -

we will design a compensation network with a maximum phase lead equal to 27° +
3° = 30°. Then, calculating «, we obtain

o —

1 = sin 30°
= 0.5, (10.27)

o+

and therefore a = 3.

The maximum phase lead occurs at w,,, and this frequency will be selected so
that the new crossover frequency and w,, coincide. The magnitude of the lead net-
work at w,, is 10 log o = 10 log 3 = 4.8 db. The compensated crossover frequency
is then evaluated where the magnitude of GH{jw) is —48 dband thus w, = @, =
8.4, Drawing the compensated magnitude line so that it intersects the 0-db axis at
= @, = 8.4, we find that z = 4.8 and p = az = 14.4. Therefore the compensation

network is

1(1+ /4.8

3T sady (10.28)

Gs) =

Loop gain G, In decibels
=] =
N P
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The total de loop gain must be raised by a factor of 3 in order to account for the
factor 1/ = %. Then the compensated loop transfer function is

20{(s/4.8) + 1]
$(0.55 + D{(s/14.4) + 11’
In order to verify the final phase margin, we may evaluate the phase of

G.(jw)GH(jw) at® = w, = 8.4 and therefore obtain the phase margin. The phase
angle is then

G (s}GH(s) = (10.29)

[ — ~1 — - % m:fﬁ
@lw,) 9F — tan™* (0.5, — tan 14_4+f£am T8

~9F — 76.5 — 30.0° + 60.2°
—136.7, (10.30}

Therefore the phase margin for the compensated system is 43.7°. If we desire to
have exactly 45° phase margin, we would repeat the steps with an increased value
of a; for example, with & = 3.5. In this case, the phase lag increased by 7° between
@ = 6.2 ahd w = 8.4, and therefore the allowance of 3° in the calculation of o was
not sufficient.

The Nichols diagram for the compensated and uncompensated system is shown
on Fig. 10.10(b). The reshaping of the frequency response locus is clear on this
diagram. One notes the increased phase margin for the compensated system as well
as the reduced magnitude of M, , the maximum magnitude of the closed-loop fre-
quency response. In this case, M,,, has been reduced from an uncompensated value
of + 12 db to a compensated value of approximately + 3.2 db. Also, we note that the

(3

closed-loop 3-db bandwidth of the compensated system is equal to 12 rad/sec com-

pared with 9.5 rad/sec for the uncompensated system.

Examining both Examples 10.1 and 10.2 we note that the system design is sat-
isfactory when the asymptotic curve for the magnitude 20 log |GG crosses the 0
db line with a slope of —6 db/octave.

10.5 COMPENSATION ON THE s-PLANE USING THE PHASE-LEAD
NETWORK

The design of a phase-lead compensation network may also be readily accom-
plished on the s-plane. The phase-lead network has a transfer function

{s + (Van)] - (s + z)’
[s + (1/7)] (s + p}

-where « and 7 are defined for the RC network in Eq. (10.7). The locations of the
zero and pole are selected in order to result in a satisfactory root locus for the
compensated system. The specifications of the system are used to specify the
desired location of the dominant roots of the system. The s-plane root locus method
is as follows:

Gels) = {10.31)

10.5 COMPENSATION ON THE s-PLANE USING THE PHASE-LEAD NETWORK 373

1. List the system specifications and franslate these specifications into a desired
root location for the dominant roots.

2. Sketch the uncompensated root locus and determine whether the desired root
focations can be realized with an uncompensated system.

3. If the compensator is necessary, place the zero of the phase-lead network
directly below the desired root location.

4. Determine the pole location so that the total angle at the desired root location
is 18¢° and therefore is on the compensated root locus.

5. Evaluate the total system gain at the desired root location and then calculate
the error constant.

6. Repeat the steps if the error constant is not satisfactory.

Therefore, we first locate our desired dominant root locations so that the domi-
nant roots satisfy the specifications in terms of { and w, as shown in Fg. 10.11(a).
The root locus of the uncompensated system is sketched as illustrated in Fig.
10.11{b). Then the zero is added to provide a phase lead of +90° by placing it
directly below the desired root location. Actually, some caution must be maintained

Jeo
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() {d}
Fig, 10,11, Compensation on the s-plane using a phase-lead network,



374 THE DESIGN AND COMPENSATION OF FEEDBACK CONTROL SYSTEMS

since the zero must not alter the dominance of the desired roots; that is, the zero
should not be placed nearer the origin than the second pole on the real axis or a real
root near the origin will result and will dominate the system response. Thus, in Fig.
10.11(c), we note that the desired roof is directly above the second pole, and we
place the zero z somewhat to the left of the pole.

Then the real root will be near the real zero, the coefficient of this term of the
partial fraction expansion will be relatively small, and thus the response due to this
real root will have very little effect on the overall system response. Nevertheless,
the designer must be continuaily aware that the compensated system response will
be influenced by the toots and zeros of the system and the dominant roots will not
by themselves dictate the response. It is usually wise to allow for some margin of
error in the design and to test the compensated system using a digital simulation
{e.g., CSMP simulation}.

Since the desired root is a point on the root locus when the final compensation
is accomplished, we expect the algebraic sum of the vector angles to be 180° at that
point. Thus we calculate the angle from the pole of compensator, 9, in order to
result in a total angle of 180°. Then, locating & line at an angle §, intersecting the
desired root, we are able to evaluate the compensator pole, p, as shown in Fig.
10.11(d).

The advantage of the s-plane method is the ability of the designer to specify the

location of the doninant roots and, therefore, the dominant transient response. The
disadvantage of the method is that one cannot directly specify an error constant (for
example, K,) as in the Bode diagram approach. After the design is completed, one
evaluates the gain of the system at the root location, which depends upon p and z,
and then calculates the error constant for the compensated system. If the error
constant is nt satisfactory, one must repeat the design steps and alter the location
of the desired root as well as the location of the compensator pole and zero, We
shall reconsider the two examples we completed in the preceding section and design
a compensation network using the root locus (s-plane) approach.

Example 10.3. Let us reconsider the system of Examﬁle 10.1 where the open-loop
uncompensated transfer function is

GH(s) = % (10.32)
The characteristic equation of the uncompensated system is
1+ GH(s) =1+ % =g, (10.33)

and the root locus is the jw-axis, Therefore we desire to compensate this system
with a network, G.(s), where

s+ z

Gos) = s+p

{10.34)
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and |z < |p|. The specifications for the system are

Settling time, T, < 4 sec,
Percent overshoot for a step input < 30%.

Therefore the damping ratio should be = 0.35. The settling time requirement is

T,

4

-t =

4,

and therefore {w, = 1. Thus we will choose a desired dominant root location as

at § = —z = —1 as shown in Fig. 10.12. Then, measuring

root, we have

Fi, f1m o~ 1% J2

as shown in Fig. 10.12 (thus { = 0.45).
Now, we place the zero of the compensator directly below the desired location

& = —2(116%) + 90° = —142°.

(10.35)

the angle at the desired
v pMLE FrOP s/ RS
_FRoot pogifise  TT
fygcorr 35

PoLes .

Therefore, in order to have a total of 180° at the desired root,|we evaluate the angle
from the undetermined pole, 6,, as
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Fig. 16.12, Phase-lead 'compensation for Example 10.3.
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- 180° = —142° — 6, (10.36)

or 4, = 38°. Then a line is drawn at an angle ¢, = 38° intersecting the desired root
location and the real axis as shown in Fig. 10.12. The point of intersection with the
real axis is then s = —p = —3.6. Therefore, the compensator is

s+1

[ 10.37
s+ 3.6 - ( )

Gels) =

and the compensated transfer function for the system is
Kis+ 1)
s + 3.8)

The gain K, is evaluated by measuring the vector lengths from the poles and zeros
to the root location. Hence

GH{(5)G(s) = (10.38)

L 223325 _

1. " (10.39
3 8.1 { )

Ky

Finally, the error constants of this system are evaluated. We find that this system
with two open-loop integrations will result in a zero steady-state exror for a step and
ramp input signal. The acceleration constant is

.|

o0

K, === =225 (10.40)

The steady-state performance of this system is quite satisfactory and, therefore,
the compensation is complete. When we compare the compensation network eval-
uated by the s-plane method with the network obtained by using the Bode diagram
approach, we find that the magnitudes of the poles and zeros are different. How-
ever, the resulting system will have the same performance and we need not be
concerned with the difference. In fact, the difference arises from the arbitrary
design step (Number 3), which places the zero directly below the desired root loca-
tion. If we placed the zero at 5 = —2.1, we would find that the pole evaluated by
the s-plane method is approximately equal to the pole evaluated by the Bode dia-
gram apptoach.

The specifications for the transient response of this system were originally
expressed in terms of the overshoot and the settling time of the system. These
specifications were translated, on the basis of an approximation of the system by a
second-order system, to an equivalent { and @, and therefore a desired root loca-
tion. However, the original specifications will be satisfied only if the roots selected
are dominant. The zero of the compensator and the root resulting from the addition
of the compensator pole result in a third-order system with a zero. The validity of
approximating this system with a second-order system without a zero is dependent
upon the validity of the dominance assumption. Often, the designer will simulate
the final design by using an analog computer or a digital computer and obtain the
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actual transient response of the system. In this case, an analog computer simulation
of the system resulted in an overshoot of 40% and a settling time of 3.8 sec for a
step input. These values compare moderately well with the specified values of 30%
and 4 sec and justify the utilization of the dominant root specifications. The differ-
ence in the overshoot from the specified value is due to the third root which is not
negligible. Thus, again we find that the specification of dominant roots is a useful
approach, but must be utilized with caution and understanding. A second atieropt
to obtain a compensated system with an overshoot of 3% would utilize a compen-
sator with a zero at —2 and then calculate the necessary pole location to yield the
desired root locations for the dominant roots. This approach would move the third
root farther to the left in the s-plane, reduce the effect of the third root on the
transient response, and reduce the overshoot.

Example 10.4. Now let us reconsider the system of Example 10.2 and design a
compensator based on the s-plane approach. The open-loop system transfer func-
tion is

GH(s) = (10.41)

. s(s +2)
1t is desired that the damping ratic of the dominant roots of the system be { = 0.45
and that the velocity error constant be equal to 20. In order to satisfy the error
constant requirement, the gain of the uncompensated system must be X = 40.
When K = 40, the roots of the uncompensated system are

s+ 25+ 40 = (s + 1+ 76.25)(s + 1 — j6.25). (10.42)

The damping ratio of the uncompensated roots is approximately 0.16, and therefore
a compensation network must be added. In order to achieve a rapid settling time,
we will select the real part of the desired roots as {w, = 4 and therefore T, = 1 sec.
Also, the natural frequency of these roots is fairly large, w, = 9; hence the velocity
constant shouid be reasonably large. The location of the desired roots is shown on
Fig. 10.13 for {w, = 4, { = 0.45, and v, = 9.

The zero of the compensator is placed at s = —z = —4, directly below the
desired root location. Then the angle at the desired root location is
¢ = —116" — 104 + 90° = - 13(°, (10.43)

Therefore the angle from the undetermined pole is determined from
~180° = - 130° - g,

and thus §, = 50°. This angle is drawn to intersect the desired root location, and p
is evaluated as s = —p = —10.6 as shown in Fig. 10.13. The gain of the compen-
sated system is then

_ 9(8.25)(10.4)

K=o =965 (10.44)



378 THE DESIGN AND COMPENSATION OF FEEDBACK CONTROL SYSTEMS

|
\
i = 045\}
N
\
d
/ \ 76
/ jos
s
/£
; N M
’ \
, 7
— Compensated
/ root Igcus 2
; A
\
- |
Al - o
—i2 ~16 -8 —6 -4 —2 0

[+4
Fig. 10.13. The design of a phase-lead network on the s-plane for Example 10.4.

The compensated system is then
96.5(s + 4)

= . 10.45)
ClSYGH) = 5 + 10.6) ¢
Therefore the velocity constant of the compensated system is
; 96.5(4)
= i = wem—— = 18.2. 10.46)
K, = lim s{G()H($)G)} = 55 s (

The velocity constant of the compensated system is less than the desired }falue of
0. Therefore, one must repeat the design procedure for a second choice oi? a
desired rootf. If we choose o, = 10, the process may be repeated and the resulting
gain K will be increased. The compensator pole and zero location will r—_,also be
altered. Then the velocity constant may be again evaluated. We will leave it as an
exercise for the reader to show that for e, = 10, the velocity constant is K, = 22.7
when z = 4.5 and p = 11.6.
Finally, for the compensation network of Eq. (10.45), we have

s+ 4 _(s+1/a'r)

= . (10.47)
s+ 106 (s 1)

G.(s) =
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The design of an RC-lead network as shown in Fig. 10.4 follows directly from Egs.
(10.47) and (10.7), and is

R (R,Cs + 1)
Gels) = (R1 n R,) (R BJR, + R)Cs + 1 (10.48)

Thus, in this case, we have

and

_ R+ R, 106
a_—R2 —"'—4.

Then, choosing C = 1| uf, we obtain R, = 250,000 ohms and R, = 152,000 ohms.

The phase-lead compensation network is a useful compensator for aktering the
performance of a control system. The phase-lead network adds a phase-lead angle
in order to provide adequate phase margin for feedback systems. Using an s-plane
design approach, the phase-lead network may be chosen in order to alter the system
root locus and place the roots of the system in a desired position in the s-plane.
When the design specifications include an error constant requirement, the Bode
diagram method is more suitable, since the error constant of a system designed on
the s-plane must be ascertained following the choice of a compensator pole and
zero. Therefore, the root locus method often results in an iterative design procedure
when the error constant is specified. On the other hand, the root locus is a very
satisfactory approach when the specifications are given in terms of overshoot and
settling time, thus specifying the { and w, of the desired dominant roots in the s-
plane. The use of a lead network compensator always extends the bandwidth of a
feedback system which may be objectionable for systems subjected to large
amounts of noise. Also, lead networks are not suitable for providing high steady-
state accuracy systems requiring very high error constants. In order to provide large
error constants, typically X, and K,, one must consider the use of integration-type
compensation networks, and, therefore, this will be the subject of concern in the
following section.

10.6 SYSTEM COMPENSATION USING INTEGRATION NETWORKS

For a large percentage of control systems, the primary objective is to obtain a high
steady-state accuracy. Furthermore, it is desired to maintain the transient perfor-
mance of these systems within reasonable limits. As we found in Chapters 3 and 4,
the steady-state accuracy of many feedback systems may be increased by increas-
ing the amplifier gain in the forward channel. However, the resulting transient
response may be totally unacceptable, if not even unstable. Therefore it is often
necessary to introduce a compensation network in the forward path of a feedback
control system in order {o provide a sufficient steady-state accuracy.
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Fig. 10.14. A single-loop feedback control system.

Consider the single-loop control system shown in Fig. 10.14. The compensation
network is to be chosen in order to provide a large error constant. The steady-state
error of this system is

. . R(s)
fim e(t) = lm + [ T+ Gc(s)G(s)H(s)] ' (104
We found in Section 3.5 that the steady-state error of a system depends upon the
pumber of poles at the origin for G(s)G(s)H(s). A pole at the origin may be con-
sidered an integration and therefore the steady-state accuracy of a system uli-
mately depends upon the number of integrations m the transfer function
G ($)G(s)H(s). I the steady-state accuracy is not sufficient, we will introduce an
integration-type network G.(s) in order to compensate for the lack of integration in
the original transfer function G(s)H(s).
One form of controller available and widely used in industrial process control is
called a three-mode controller or process controller. This controller has a transfer
function

U(s) K

—L = Gyls) = K, +— + Kps. 10.50
(5 (s) » T3 D ( )
The controller provides a proportional term, an integration term, and a derivative
term. The equation for the output in the time domain is

de(t)
dr
The three mode controller is also called a PID controller since it contains a propor-

tional, an integration, and a derivative term. The transfer function of the derivative
term is actually

(10.51)

w(t)= K,e()+ K, [ e(f) dt + Ep

Kps

10.52
Ta¥ + 1 ( )

Gyls) =

but usually 7, is much smaller than the time constants of the process itself and may
be neglected.

For an example, let us consider a temperature control system where the transfer
function of the heat process is G(s) = K,/ (r;s + 1) and the measurement transfer

function is

His) = e85 + 1
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The steady-state error of the uncompensated system is then

. Als

1 =} _—

;EE e(r) &Eﬁ d {I + G(s}H(s)}
A

= TK{ (10.53)

where R(s) = A/ls, a step input signal. Clearly, in order to obtain a small steady-
state error (less than 0.05 A, for example), the magnitude of the gain K, must be
quite large. However, when K, is quite large, the transient performance of the
system will very likely be unacceptable. Therefore, we must consider the addition
of a compensation transfer function G,(s) as shown in Fig. 10.14. In order to elim-
inate the steady-state error of this system, we might choose the compensation as

Guls) = K, + %:M

{10.54)
This compensation may be readily constructed by using an integrator and an ampli-
fier and adding their output signals. Now, the steady-state error for a step input of
the system is always zero, since

. . Als
Nim e(8) = 1Mm s 3 (G
= Jim A
§—0) i+ {(Kzs -+ Kg)/S}{Klll[(’TlS + 1)(723 + 1}]}
={0. (10.55)

The transient performance can be adjusted to satisfy the system specifications by
adjusting the constants K,, K, and K. The adjustment of the transient response is
perhaps best accomplished by using the root locus methods of Chapter 6 and draw-
ing a root locus for the gain K, K, after locating the zero 5§ = — K/K, on the s-plane
by the method gutlined for the s-plape in the preceding section.

The addition of an integration as G,(s) = K, + (K /s) may also be used to
reduce the steady-state error for a ramp input, r{(2) = ¢, ¢t = 0. For example, if the
uncompensated system GH{s) possessed one integration, the additional infegration
due to G,(s) would result in a zero steady-state error for a ramp input. In order to
ilustrate the design of this type of infegration compensation, we will consider a
temperature controf system in some detail.

Example 10.5. The uncompensated loop transfer function of a temperature control
system is

K
{Zs + D055 + 1)

where K; may be adjusted. In order to maintain zero -steady-state error for a step
input, we will add the compensation network

GH(s) = (10.36)
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Gls) = K; + -I?

' (10.57)
= K, (———————-—S + fale).

Furthermore, the transient response of the system is required to have an overshoot
less than or equal to 10%. Therefore, the dominant complex roots must be on (or
below) the £ = 0.6 line as shown in Fig. 10.15. We will adjust the compensator zero
so that the real part of the complex roots is {w, = 0.75 and thus the settling time is
T, = 4ftw, = % sec. Now, as in the preceding section, we will determine the
Tocation of the zero, z = — K,/K;, by assuring that the angle at the desired root is
— 18(°, Therefore, the sum of the angles at the desired root is

—180° = —127° — [04° — 38 + 8,,

where 8, is the angle from the undetermined zero. Therefore, we find that §, =
+§9° and the location of the zero is z = ~0.75. Finally, in order to determine the
gain at the desired root, we evaluate the vector lengths from the poles and zeros

and obtain 1.25(1.06)1.6 _
95 B

The compensated root locus and the location of the zero are shown in Fig. 10.15. It
should be noted that the zero, z = —K3/K;, should be placed to the left of the pole
at s = —0.5 in order to ensure that the complex roots dominate the transient
response. In fact, the third root of the compensated system of Fig. 10.15 may be
determined as s = — 1.0, and therefore this real root is only % times the real part of
the complex roots. Thus, while complex roots dominate the response of the system,

K=KK,= 2.23.
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Fig. 10.15. The s-plane design of an integration compensator.
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the equivalent damping of the system is somewhat less than £ = 0.60 due to the real
root and zero.

16.7 COMPENSATION ON THE s-PLANE USING A PHASE-LAG NETWORK

The phase-lag RC network of Fig. 10.6 is an integration-type network and may be
used to increase the error constant of a feedback control system. We found in Sec-
tion 10.3 that the transfer function of the RC phase-lag network is of the form

1(s+2)

Gels) ='; (s + p);

{10.58)

as given in Eq. (10.13}, where
1 1 R+ R, 1
) -—, p

7w

T R, @ Ry ar
The steady-state error of an uncompensated system is
. , R(s)
1 1} = —_—f. .
lim () = lim S{ 1+ GH(S)} (10.59)
Then, for example, the velocity constant of a type-one system is
Ky = 11_:53 s{GH(s)} (10.60)

as shown in Section 4.4. Therefore, if GH(s) is written as
K Hfz . (s + z)

GH(S) - 3
s, G + 09

(10.61)

we obtain the velocity constant

Kﬂgi1Zi

Ky=—+7—7". {10.62)

1S, s

We will now add the integration type phase-lag network as a compensator and
determine the compensated velocity constant. If the velocity constant of the
uncompensated system (Eq. 10.62} is designated as K., We have

Koy = lim s{Gs)GH(5)} = im (Ge(5)) Kypepmy
§— §—0

= (2) () Ko = () () (L.

The gqin on the compensated root locus at the desired root location will be (K/a).
Now, if the pole and zero of the compensator are chosen so that|z] = ofp| < 1, the

{10.63)
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resultant K, will be increased at the desired root location by the ratio z/p = a.
Then, for example, if z = 0.1 and p = 0.01, the velocity constant of the desired root
location will be increased by a factor of 10. However, if the compensator pole and
zero appear relatively close together on the s-plane, their effect on the location of
the desired root will be negligible. Therefore the compensator pole-zero combina-
tion near the origin may be used to increase the error constant of a feedback system
by the factor « while altering the root location very slightly. The factor o does have
an upper limit, typically about 100, since the required resistors and capacitors of
the network become excessively large for a higher a. For example, when z = 0.1
and « = 100, we find from Eq, (10.58) that

1
=0' E
z 1 R
and
_ R, + Ry
r:rz—l()()«»————R2 .

If we let C = 10 uf, then R, = | megohm and R, = 99 megohms. As we increase
o, we increase the magnitude of R, required:. However, we should note that an
attenuation, «, of 1000 or more may be obtained by utilizing pneumatic process
controllers which approximate a phase-lag characteristic (Fig. 10.8).

The steps necessary for the design of a phase-lag network on the s-plane are as
follows:

1. Obtain the root locus of the uncompensated system.

2. Determine the transient performance specifications for the system and locate
suitable dominant root locations on the uncompensated root locus that will
satisfy the specifications.

3. Calculate the loop gain at the desired root location and, thus, the system error
constant.

4. Compare the uncompensated error constant with the desired error constant
and calculate the necessary increase that must result from the pole-zero ratio
of the compensator, a. ’

5. With the known ratio of the pole-zero combination of the compensator, deter-
mine a suitable location of the pole and zero of the compensator so that the
compensated root locus will still pass through the desired root location.

The fifth requirement can be satisfied if the magnitude of the pole and zero is
less than one and they appear to merge as measured from the desired root location.
The pole and zero will appear to merge at the root location if the angles from the
compensator pole and zero are essentially equal as measured to the root location.
One method of locating the zero and pole of the compensator is based on the
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requirement that the difference between the angle of the pole and the angle of the
zero as measured at the desired root is less than 2°, An example will illustrate this
approach to the design of a phase-lag compensator.

Example 10.6. Counsider the uncompensated system of Example 10.2, where the
uncompensated open-loop transfer function is

_K
s(s + 2

It is required that the damping ratio of the dominant complex roots is 0.45, while a
systeng velocity constant equal to 20 is attained. The uncompensated root locus is
avertical line at s = —landresultsinarootonthe { =0.45lineats = —1 *+ j2 as
shown in Fig. 10.16. Measuring the gain at this root, we have K = (2.24) = 5.
Therefore the velocity constant of the uncompensated system is

GH(s) = (10.64)

K- 3
K T e DR e D
vy T ES
Thus the ratio of the zero to the pole of the compensator is
z K, 20
—| = T GOED e o
’P] K“g;ncomp 2.5 . (1065)

E'xamining Fig. 10.17, we find that we might set z = —{.1 and then p = —0.1/8. The
difference of the angles from p and z at the desired root is approximately one
degree, and therefore, s = —1 = ;2 is still the location of thé dominant roots. A

t=045 \
} } 2

K=5-"
Jea
\“

G

Fig. 10.16. Root locus of the uncompensated system of Example 10.6.
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Fig. 10.17. Root locus of the compensated system of Example 10.6. Note that the actual
root will differ from the desired root by a slight amount. The vertical portion of the locus

leaves the o axis at o = —0.95.

sketch of the compensated root locus is shown as a heavy line in Fig. 10.17. There-
fore the compensated system transfer function is

“5s + 0.1
s(s + {5 + 0.0125)°

where (K/o) = § or K = 40 in oxder to account for the attenuation of the lag
network.

Gs)GH(s) =

(10.66)

Example 10.7. Let us now consider a system which is difficult to compensate by
a phase-lead network. The open-loop transfer function of the uncompensated sys-
tem is

GH(s) = (10.67)

s(s + 1087

It is specified that the velocity constant of this system be equal to 20, while the
damping ratio of the dominant roots be equal to 0.707. The gain necessary fora kK,
of 20 is

K

10y

or K = 2000. However, using Routh’s criterion, we find that the roots of the char-
acteristic equation lie on the jo-axis at %710 when K = 2000. Clearly, the roots of

K,=20
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Fig. 10.18. Design of a phase-lag compensator on the s-plane.

the system when the K -requirement is satisfied are a long way from satisfying the
damping ratio specification, and it would be dificult to bring the dominant roots
from the jo-axis to the { = 0.707 line by using a phase-lead compensator. Therefore,
we will attempt to satisfy the K- and {-requirements by using a phase-lag network.
"The uncompensated root locus of this system is shown in Fig. 10.18 and the roots
are shown when { = 0.707 and 5 = —2.9 = j2.9. Measuring the gain at these roots,
we find that K = 236, Therefore, the necessary ratio of zero to pole of the compen-
sator is

z 2000
*= ]E{ =53¢ = 8

Therefore we will choose z = 0.1and p = 0.1/9 in order to allow a small margin of
safety. Examining Fig. 10.18, we find that the difference between the angle from
the pole and zero of G.(s) is negligible. Therefore the compensated system is

236(s + 0.1)
s(s + 100%(s + 0.0111)

Go(s)GH(s) = (10.68)
where (Kfo) = 236 and a = 9.

The design of an integration compensator in order to increase the error constant
of an uncompensated control system is particularly illustrative using s-plane and
root locus methods. We shall now tumn to similarly useful methods of designing
integration compensation using Bode diagrams.
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10.8 COMPENSATION ON THE BODE DIAGRAM USING A PHASE-LAG
NETWORK '

The design of a phase-lag RC network suitable for compensating a feedback control
system may be readily accomplished on the Bode diagram. The advantage of the
Bode diagram is again apparent for we will simply add the frequency response of
the compensator to the Bode diagram of the uncompensated system in order to
obtain a satisfactory system frequency response. The transfer function of the phase-
lag network written in Bode diagram form is

(10.69)

as we found in Eq. (10.14). The Bode diagram of the phase-lag network is shown in
Fig. 10.8 for two values of «. On: the Bode diagram, the pole and zero of the com-
pensator have a magnitude much smaller than the smallest pole of the uncompen-
sated system. Thus the phase lag is not the useful effect of the compensator, but
rather it is the attenuation —20 log a which is the useful effect for compensation.
The phase-lag network is used to provide an attenuation and, therefore, to lower
the 0-db (crossover) frequency of the system. However, at lower crossover fre-
quencies, we usually find that the phase margin of the system is increased and our
specifications may be satisfied. The design procedure for a phase-lag network on
the Bode diagram is as follows:

1. Draw the Bode diagram of the uncompensated system with the gain adjusted
for the desired error constant,

2. Determine the phase margin of the uncompensated system and, if it is insuff-
cient, proceed with the following steps.

3. Determine the frequency where the phase margin requirement would be satis-
fied if the magnitede curve crossed the 0-db line at this frequency, w, . (Allow
for 5 phase lag from the phase-lag network when determining the new cross-
over frequency.)

4. Place the zero of the compensator one decade below the new crossover fre-
quency w, and thus ensure only 5 of lag at w, (see Fig. 10.8).

5. Measure the necessary attenuation atw; in order to ensure that the magnitude
curve crosses at this frequency.

6. Calculate o by noting that the attenuation is 20 log «.
7. Calculate the pole as w, = lar = w /o and the design is completed.

An exampie of this design procedure will lfustrate that the method is simple to
carry out in practice.

Example 10.8. Let us reconsider the system of Example 10.6 and design a phase-
lag network so that the desired phase margin is obtained. The uncompensated trans-
fer function is
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¢

K K
Jja(je +2)  jo.5je + 1)

where K, = K/2. It is desired that K, = 20 while a phase margin of 4% is attained.
The uncompensated Bode diagram is shown as a solid line in Fig. @0.19. The
uncompensated system has a pbase margin of 2(°, and the phase margin must be
increased. Allowing 5° for the phase-lag compensator, we locate the frequ'ency @
where ¢(w) = — 130°, which is to be our new crossover frequency w, In this case,
we find that @, = 1.5, which allows for a small margin of safety. The attenuation
necessary to cause w, to be the new crossover frequency is equal to 20 db, account-
ing for a 2-db difference between the actual and asymptotic curves. Then we find
that 20 db = 20 log «, or & = 10, Therefore the zero is one decade below the
Crossover, or w, = w,/10 = 0.15, and the pole is at w, = «,/10 = 0.015. The com-
pensated system is then

GH(jw) = (10.70)

206660 + 1)
je0.5/0 + 1)(66.6jw + 1)

Gju)GH(jw) = (10.71)

The frequency response of the compensated system is shown in Fig. 10.19 with
dotted lines. It is evident that the phase lag introduces an attenuation which lowers
the crossover frequency and, therefore, increases the phase margin. Note that the
phase angle of the lag network has almost totally disappeared at the crossover fre-
quency w,. As a final check, we numerically evaluate the phase margin atwy = 1.5
and find that ¢,,, = 45°, which is the desired result. Using the Nichols chart, we

10
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50 <~ —ny
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E il -]
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2 e
g% <<
~kd %
10 bl =
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| il »
—10 Uncompensated ; $leo)
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; — —160°
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Fig. 10.19. Design of a phase-lag netwoik on the Bode diagram for Example 10.8.
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find that the closed-loop bandwidth of the system has been reduced from w = 10
rad/sec for the uncompensated system to w = 2.5 rad/sec for the compensated
system.

Example 18.9. Let us reconsider the system of Example 10.7 which is

K
Julje + 10
. CE
T je(0. e + 1)?

where K, = K/100. A velocity constant of K, equal to 20 is specified. Furthermore,
a damping ratio of 0.707 for the dominant roots is required. From Fig. 8.18, we
estimate that a phase margin of 65° is required. The frequency response of the
uncompensated system is shown in Fig. 10.20. The phase margin of the uncompen-
sated system is zero degrees. Allowing 5° for the lag network, we locate the fre-
quency where the phase is — 110°. This frequency is equal to 1.74, and therefore we
shall attempt to locate the new crossover frequency at w; = 1.5, Measuring the
necessary attepuation at @ = ag, we find that 23 db is required; 23 = 20 log «,
or a = 14.2. The zero of the compensator is located one decade below the crossover
frequency and thus

GH(jw) =
(10.72)

r
We

@, = "i""am 0.15.

The pole is then
o = 22 015
P e 142

Therefore the compensated system is

2006.66fc + 1)
Jjo{0.1je + 1)? (94.6jw + 1)

The compensated frequency response is shown in Fig. 10.20. As a final check, we
numerically evaluate the phase margin at ; = 1.5 and find that ¢, = 67°, which is
within the specifications.

Therefore, a phase-lag compensation network may be used to alter the fre-
quency response of a feedback control system in order to attain satisfactory system
performance. Examining both Examples 10.8 and 10.9, we note again that the sys-
tem design is satisfactory when the asymptotic curve for the magnitude of the com-
pensated system crosses the 0 db line with a slope of —6 db/octave. The attenuation
of the phaselag network reduces the magnitude of the crossover (0-db) frequency
to a point where the phase margin of the system is satisfactory. Thus, in contrast to
the phase-lead network, the phase-lag network reduces the closed-loop bandwidth
of the system as it maintains a suitable error constant.

Glja)GH(jow) = (10.73)
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Fig. 10.20. Design of a phase-lag network on the Bode diagram for Exampie 10.9.

One might ask, why do we not place the compensator zero more than one
decade below the new crossover ), (see item 4 of the design procedure) and thus
ensure less than 5° of lag at w, due to the compensator? This question may be
answered by considering the requirements placed on the resistors and capacitors of
the lag network by the values of the poles and zeros (see Eq. 10.12). As the magni-
tudes of the pole and zero of the lag network are decreased, the magnitudes of the
resistors and the capacitor required increase proportionately. The zero of the lag
compensator in terms of the circuit components is z = I/R,C, and the « of the
network is @ = (R; + Ruo)/Rz. Thus, considering the preceding example, 10.9, we
require a zero at z = 0.15 which can be obtained with C = 1 uf and R, = 6.66
megohms. However, for a = 14, we require a resistance R, of Ry= Ryfa— 1) =
88 megohms. Clearly, a designer does not wish to place the zero z further than one
decade below w, and thus require larger values of Ry, R,, and C.

The phase-lead compensation network alters the frequency response of a net-
work by adding a positive (leading) phase angle and, therefore, increases the phase
margin at the crossover (0-db) frequency. It becomes evident that a designer might
wish to consider using a compensation network which provided the attenuation of
a phase-lag network and the lead-phase angle of a phase-lead network. Such a net-
work exists and is called a lead-lag network and is shown in Fig. 10.21. The transfer
function of this network is ’

Ex(s) _ (RiCy5 + DR Cos + 1) (10.74)
Eis) RR,CiCys® + (R, Cy + RyCy + RyCo)s + v
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Fig. 10.21. An RC lead-lag network.

When ar, = RiCy, Bre = R Cy, ime = RiRC,C,, we note that f = 1 and then
Eq. (10.74) is

Eqo(s) _ {1 + ars {1 + Brys)
Eis) (147}l +mes)

where o > 1, 8 < 1. The first terms in the numerator and denominator, which are
a function of 74, provide the phase-lead portion of the network. The second terms
which are a function of 7,, provide the phase-lag portion of the compensation net-
work. The parameter 8 is adjusted to provide suitable attenuation of the low fre-
quency portion of the frequency response, and the parameter « is adjusted to pro-
vide an additicnal phase lead at the new crossover (0-db) frequency. Alternatively,
the compensation may be designed on the s-plane by placing the lead pole and zero
compensation in order to locate the dominant roots in a desired location. Then the
phase-lag compensation is used to raise the error constant at the dominant root
location by a suitable ratio, 1/8. The design of a phase lead-lag compensator follows
the procedures already discussed, and the reader is referred to further literature
illustrating the utility of lead-lag compensation {2, 31,

(10.75)

10.9. COMPENSATION ON THE BODE DIAGRAM USING ANALYTICAL
AND COMPUTER METHODS

1t is desirable to use computers, when appropriate, to assist the designer in the
selection of the parameters of a compensator. The development of algorithms for
computer-added design is an important alternative approach to the trial-and-error
methods considered in earlier sections. By the use of compensators, computer pro-
grams have been developed for the selection of suitable parameter values based on
satisfaction of frequency response criteria such as phase margin [ 16, 171,

An analytical technique of selecting the parameters of a lead or fag network has
been developed for Bode diagrams [ 18, 191, For a single-stage compensator

I+ ars

Gls) = 1+7s

s (10.76)

where ¢ < 1 yields a lag compensator and @ > 1 yields a lead compensator. The
phase contribution of the compensator at the desired crossover frequency w, (see
Eq. 10.9)1s
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QT — WT

p = tané = I+ (@fa (19.77)
The magnitude M (in db) of the compensator at @, is
1 + (war)* .
— M0 el
¢ =10 I+ (o (10.78)

Eliminating @ . from Eqs. 10.77 and 10.78, we obiain the nontrivial solution equa-
tion for e as .

(p?—c + D+ 2pPca+ pPet+ ct—c =0, (10.79)

For a single-stage compensator, it is necessary that ¢ > p? + 1. If we solve for a
from Eq. 10.79, we can obtain r from

o 1—¢
T_.‘:;;ﬁ — (10.80)

The design steps for a lead compensator are:

1. Select the desired o,

2. Determine the phase margin desired and therefore the required phase ¢ for Eq.
10.77.

. Verify that the phase lead is applicable, ¢ > 0 and M > (.
Determine whether a single stage will be sufficient when ¢ > p* + L.
Determine « from Eq. 10.79.

Determine 7 from Eq. 10.80.

O

If one needs to design a single lag compensator, then ¢ < 0 and M < 0 (step 3).
Also, step 4 will require ¢ < [1/(1 + p®)]. Otherwise the method is the same.

Example 10.10. Let us reconsider the system of Example 10.1 and design a lead
network by the analytical technique. Examine the uncompensated curves in Fig.
10.9. We select w, = 5. Then, as before, we desire a phase margin of 45°. The
compensator must yield this phase, so

p = tan 45° = 1. (10.81)
The required magnitude contribution is 8 db or M = 8§, so that
¢ = 10 ¥ = 631, (10.82)
Using ¢ and p we obtain
—4.31a® + 12.62a + 73.32 = 0. (10.83)

Solving for « we obtain « = 5.84. Solving Eq. (10.80), we obtain 7 = 0.510. There-
fore the compensator is
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1+ 2.98¢
1+ 0.51s

The pole is equal to 1.96 and the zero is 0.336. This design is similar to that obtained
by the iteration technique of Section 10.4.

Gels) = (10.84)

10.10 THE DESIGN OF CONTROL SYSTEMS [N THE TIME-DOMAIN

The design of antomatic control systems is an important function of control engi-
neering. The purpose of design is to realize a system with practical components
which will provide the desired operating performance. The desired performance can
be readily stated in terms of time-domain performance indices. For example, the
maximum overshoot and rise time for a step input are valuable time-domain indices.
In the case of steady-state and transient performance, the performance indices are
normally specified in the time domain and, therefore, it is natural that we wish to
develop design procedures in the time domain.

The performance of a control system may be represented by integral perfor-
mance measures as we found in Section 4.5. Therefore, the design of a system must
be based on minimizing a performance index such as the integral of the squared
error (ISE) as in Section 4.5. Systems which are adjusted to provide a minimum
performance index are often called optimuwm control systems. We shall consider, in
this section, the design of an optimum control system where the system is described
by a state variable formulation.

However, before proceeding to the specifics, we should note that we did design
a system in the time domain in Example 9.6. In this example, we considered the
unstable portion of an inverted pendulum system and developed a suitable feedback
control so that the system was stable. This design was based on measuring the state
variables of the system and using them to form a suitable control signal «(f) so that
the system was stable. In this section, we shall again consider the measurement of
the state variables and their use in developing a control signal «(f) so that the per-
formance of the system is optimized.

The performance of a conirol system, written in terms of the state variables of
a system, may be expressed in general as

J= f Y ok, u, 1) d, (10.85)
1]

where x equals the state vector and u equals the control vector.*

We are interested in mimimizing the error of the system and, therefore, when the
desired state vector is represenied as x; = 0, we are able 1o consider the error as
identically equal to the value of the state vector. That is, we desire the system to be

* Nate that J is used to denote the performance index, instead of J, which was used in Chapter 4. This
will enable the reader to readily distinguish the performance index from the identity matrix which is
represented by the bold-faced capital 1.
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Fig. 10.22, A control system in terms of x and u.

at equilibrium, x = x; = 0, and any deviation from equilibrium is considered an
eror. Therefore we will consider, in this section, the design of optimum control
systems using state-variable feedback and error-squared performance indices[1, 2,
4, 5].

The control system which we will consider is shown in Fig. 10.22 and may be
represented by the vector differential equation

% = Ax + Bu. (10.86)

We will select a feedback controller so that v is some function of the measured state
variables x and therefore

u = h(x). {10.87)
For example, one might use
uy = kixy,
253 = kyxa,
Un = k. (10.88)

Alternatively, one might choose the control vector as

uy = ki(xy + Xa),
s = ka(xs + x3), (10.839)

"T'he choice of the control signals is somewhat arbitrary and depends partially upon
the actual desired performance and the complexity of the feedback structure allow-
able. Often we are limited in the number of state variables available for feedback,
since we are only able to utilize measurable state variables.

Now, in our case, we limit the feedback function to a linear function so that u
= Hx where H is an m X » matrix. Therefore, in expanded form, we have

7 X
. by e ] [

=] : : (10.90)
i | o ]| |
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Then, substituting Eq. (10.90) into Eq. {10.86), we obtain
x = Ax + BHx = Dx, {10.91)

where D is the # X » matrix resulting from the addition of the elements of A and
BH.

Now, returning to the error-squared performance index, we recall from Section
4.5 that the index for a single state variable, x,, is written as

ty
J o= f (x () dr. (10.92)
0
A performance index written in terros of two state variables would then be
£;
7= f "% + Dt (10.93)
1]
‘Therefore, since we wish fo define the performance index in terms of an integral of
the sum of the state variables squared, we will utilize the matrix operation
X
Xz
x=[x, X, %3, ---5 %) | - =0+ d+ 3+ .+ 48, (1094
Xy
where x7 indicates the transpose of the x matrix.* Then the general form of the
performance index, in terms of the state vector, is

s
J= f of'x) dr. (10.95)
[1]

Again considering Eq. (10.95), we will let the final time of interest be £ = «, In
order to obfain the minimum value of J, we postulate the existence of an exact
differential so that

d
= x™Px) = ~x"x, {10.96)

where P is to be determined. A symmetric P matrix will be used in order to simplify
the algebra without any loss of generality. Then, for a symmetric P matrix, py =
ps. Completing the differentiation indicated on the left-hand side of Eq. (10.96), we
have

% xPx) = XPx + XPx.

*The matrix operation x"x is discussed in Appendix €, Section C.4.

A T L S
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Then, substituting Eq. (10.91), we obtain

% (x"Px) = (Dx)"Px + x"P(Dx)
= x"D"Px + x"PDx (10.97)
= xT(D'P + PD)x, '

where (Dx)7 = xD7 by the definition of the transpose of a product. If we let
(D'P + PD) = —I, then Eq. (10.97) becomes

.(%(xf‘px) — (10.98)

which is the exact differential we are seeking. Substituting Eq. (10.98) into Eq.
(10.93), we obtain

= d
J-—fe ——{—i-;(xTPx) dt
= —x"Px|§
= xT((Px(0). (10.9%9)

In the evaluation of the limit at t = «, we have assumed that the system is stable
and hence x(0) = 0 as desired. Therefore, in order to minimize the performance
index J, we consider the two equations

I= f " Xxdr = x*(0)Px(0) (10.100)
1]

and
D'P + PD = -1, (10.101)
The design steps are then as follows:

1. Determine the matrix P which satisfies Fq. (10.101), where D is known.
2. Minimize J by determining the minimum of Eq. (10.100).

Example 10.11. Consider the control system shown in Fig. 10.23 in signal-flow
graph form. The state variables are identified as x; and x,. The performance of this

x9(0) x;{(})
5 s
1

«O O O
X3 xy

i

a [
f o | —

Fig. 10.23. The signal-flow graph of the control system of Example 10.10.
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system is quite unsatisfactory since an undamped response results for a step input
or disturbance signal. The vector differential equation of this system is

dix,t 10 ti|=x ] 10.102
Slal= 18 s+ (e .1
6 1
a=[5 4

We will choose a feedback control system so that

where

u(t) = —kixs — kX, {10.103)

and therefore the control signal is a linear function of the two state variables. The
sign of the feedback is negative in order to provide negative feedback. Then Eq.
(10.102) becomes

¥ = s (10.104)
o= —kixy — kaXs,

or, in matrix form, we have

X =Dx (10.105)

To 1
=k, —k, X.

We note that x, would represent the position of a position-control system and the
transfer function of the system would be G(s) = 1/Ms?, where M = 1 and the
friction is negligible. In any case, in order to avoid needless algebraic manipulation,
we will Iet &, = 1 and determine a suitable value for 4, so that the performance
index is minimized. Then, writing Eq. (10.101), we have

D'P + PD = —I,
0 =1 ]I:Pn p12]+ l:Pn Pm][ 0 1 :I - [_I 0]_ (10.106)
1 -k Dz Do Pz Pae -1 —k 0 -1
Completing the matrix multiplication and addition, we have

=P~ P~ —1L
P1r— kaPiz — paa =0, (10.107)

Pia— Kooy + Prg — KaPap = — 1.
Then, solvig these simultaneous equations, we obtain

1 1 K+ 2
Pz = ‘2*, Doy = }é;, P11 = —2—[;
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The integral performance index is then
J = xT(0)Px(0), (10.108)

and we shall consider the case where each state is initially displaced one unit from
equilibrium so that x™(0) = [1, 1]. Therefore Eq. (10.108) becomes

_ P P 1
J =11 [Pm Pzz] [1:‘

= (P11 + P2}
=1[1,1
[z, 1] [ (P2 + Pzz):l

= _(Pn + P} + (P12 + Pan) = puy + 2p1e + pas. {10.109)
Substituting the values of the elements of P, we have

10.110
_ K+ 2k, + 4 ¢ )

2k,
In order to minimize as a function of k,, we take the derivative with respect {o &»
and set it equal to zero as follows:
8J k(R + 2) — 2 + 2key + 4) _
By (ko)

and therefore k3 = 4 and &, = 2 when J is a minimum. The minimum value of J is
obtained by substifuting &; = 2 into Eq. (10.110) and thus we obtain

0, (10.111)

Jmm = 3,
The system matrix D, obtained for the compensated system, is then
D = [W‘; _1] (10.112)

The characteristic equation of the compensated system is therefore

_ Aol
detEAI-DImdet{I )\+2:|

= M+ 2h + 1. (10-113)

Since this is a second-order system, we note that the characteristic equation is of
the form (s 4+ 2lw,s + wd), and therefore the damping ratio of the compensated
system is £ = 1.0. This compensated system is considered to be an optimum system
in that the compensated system results in a minimum value for the performance
index. Of course, we recognize that this system is only optimum for the specific set
of initial conditions that were assumed. The compensated system is shown in Fig.
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—ky = —1t
Fig. 10.24. The compensated control system of Exampie 10.10.

10.24. A curve of the performance index as a function of &, is shown in Fig. 10.25.
It is clear that this system is not very sensitive to changes in &, and will maintain a
near minimum performance index if the &z is altered some percentage. We define
the sensitivity of an optimum system as
ATIT
apt
R 10.114
Se = Rk (10.114)

where & is the design parameter. Then, for this example, we have & = k; and
therefore

0.08/3

SRt == o5z = 0107. (10.115)

Example 10.12. Now let us reconsider the system of the previous example where
both the feedback gains, k; and k,, are unspecified. In order to simplify the algebra,
without any loss in insight into the problem, let us set k; = k; = k. The reader may
prove that if k; and %y are unspecified then k; = k; when the minimum of the

,..
I
[N PO

Fig. 10.25. The performance index versus the parameter k.
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performance index (Eq. 10.100) is obtained. Then for the system of the previous
example, Eqg. (10.105) becomes

= Dx
= [ - 2 _;]X- (10.1186)
In order to determine the P matrix, we utilize Eq. (10.101), which is
DTP +PD = -1, (10.117)
Solving the set of simultaneous equations resulting from Eq. (10.117), we find that
1 (k+1) L+ 2k)

Pzz=ﬂ» P22=”"§k_2“: P11 2%

Let us consider the case where the system is initially displaced one unit from equi-
Hbrium so that xT(3) = [1, 0]. Then the performance index (Eq. 10.100) becomes

I= f " Xfx dt = XF(O)PX(0) = pay. (10.118)
9
Thus the performance index to be minimized is
a2 1
J=pu= i 1+ 7 (10.119)

Clearly, the minimum value of J is obtained when & approaches infinity; the resulf
is Jm = 1. A plot of J versus £ is shown in Fig. 10.26. This plot fllustrates that the

Fig. 10.26. Performance index versus the feedback gain k& for Example 10.11.
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performance index approaches a minimum asymptotically as k approaches an infi-
nite value. Now we recognize that in providing a very large gain &, we cause the
feedback signal

u(r) = —k(xs(t} + x2(8))

to be very large. However, we aré restricted to realizable magnitudes of the control
signal u(s). Therefore we must introduce a constraint on u(¢) so that the gain k is
not made too large. Then, for example, if we establish a constraint on u{s) so that

lu(t)] = 50, (10.120)

we require that the maximum acceptable value of £ in this case

knax = i—f—c% = 50. (10.121)
1

Then the minimum value of J is

1

2kmax
= 1.01,

which is sufficiently close to the absolute minimum of J in order to satisfy our
requirements.

Upon examination of the performance index (Eq. 10.95), we recognize that the
reason the magnitude of the control signal is not accounted for in the original cal-
culations is that u(#) is not included within the expression for the performance
index. However, there are many cases where we are concerned with the expendi-
ture of the conirel signal energy. For example, in a space vehicle attitade control
system, [u(r)]* represents the expenditure of jet fuel energy and must be restricted
in order to conserve the fuel energy for long periods of flight. In order to account
for the expenditure of the energy of the control signal, we will utilize the perfor-
mance index

Jmm =1+
{10.122)

7= f " &flx + B, (10.123)
G

where A 18 & scalar weighting factor and I = identity matrix. The weighting factor A
will be chosen so that the relative importance of the state variable performance is
contrasted with the importance of the expenditure of the system energy resource
which is represented by u”u. As in the previous paragraphs we will represent the
state variable feedback by the matrix equation

u= Hx (16.124)
and the system with this state variable feedback as

%= Ax+ Bu

= Dx. (10.125)

S g s e
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Now, substituting Eq. (10.124) into Eq. (10.123), we have
J= L " (TIx + AHRTHN) di
= fﬂ " (L + AHPE)] dt
- f " xTQx d, (10.126)

a

where Q = (I + AHYH) is an # X n matrix. Following the development of Egs.
{10.95) through (10.99), we postulate the existence of an exact differential so that

—g; XPx) = —x'Qx. (10.127)
Then in this case we require that
D'P + PD = —(QQ, (10.128)
and thus we have as before (Eq. 10.99)
J = xT(0Px(0). (10.129)

Now the design steps are exactly as for Eqs. (10.100) and (10.101) with the excep-
tion that the left side of Eq. (10.128) equals —Q instead of ~1. Of course, if A = 0,
Eq. (10.128) reduces to Eq. (10.101). Now, let us reconsider the previous example
when X is other than zero and account for the expenditure of control signal energy.

Example 10.13. Let us reconsider the system of the previous example which is
shown in Fig. 10.23. For this system we use a state variable feedback so that

u = (10.130)
= K0 1 = gax.
6 k Xg
Therefore, the matrix Q is then
Q = (I + \H'H)
= (f + AT (10.13D)
= (1 + MDA

As in the previous example we will let xT(0} = [1, 01 so that J = py;. We evaluate
P from Eq. (10.128) as

DTP + PD

il

’:S L (10.132)

il

Thus we find that

;= - 2 — 10.%
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and we note that the right-hand side of Eq. (10.133) reduces to Eq. (10.119) when A
= §. Now the minimum of J is found by taking the derivative of J, which is

3 2 _
L S S L it (10.134)

Therefore, the minimum of the performance index occurs when & = kpm, Where
Fooun 18 the solution of Eq. (10.134).

A simple method of solution for Eq. (10.134) is the Newton-Raphson method
flustrated in Section 5.4. Let us complete this example for the case where the con-
trol energy and the state variables squared are equally important so that A = 1.
Then Eq. (10.134) becomes 4k® + &* — 1 = 0, and using the Newton-Raphson
method, we find that by = 0.555. The value of the performance index J obtained
with kmin is considerably greater than that of the previous example, since the expen-
diture of energy is equally weighted as a cost. The plot of J versus k for this case is
shown in Fig. 10.27. Also the plot of J versus k for Example 10.11 is shown for
comparison on Fig. 10.27. It has become clear from this and the previous examples
that the actual minimum obtained depends upon the initial conditions, the definition
of the performance index, and the value of the scalar factor A.

The design of several parameters may be accomplished in a similar manner to
that illustrated in the examples. Also, the design procedure can be carried out for
higher-order systems. However, one must then consider the use of a digital com-
puter to determine the solution of Eq.(10.101) in order to obtain the P matrix. Also,
the computer would provide a suitable approach for evaluating the minimum value
of J for the several parameters. The newly emerging field of adaptive and optimal

0 i | 1 |
2.0 Q.5 jE1 1.5 2.0
k

¥ig. 10.27. Performance index versus the feedback gain & for Example 10.12.
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control systems is based on the formulation of the time-domain equations and the
determination of an optimum feedback control signal u(z) [3, 6, 10]. The design of
control systems using time-domain methods will continue 1o develop in the future
and will provide the control engineer with many interesting challenges and
opportunities.

10.11 STATE-VARIABLE FEEDBACK

In the previous section we considered the use of state-variable feedback in achiev-
ing optimization of a performance index. In this section we will use state-variable
feedback in order fo achieve the desired pole location of the closed-loop transfer
function T(s). The approach is based on the feedback of all the state variables, and
therefore

u = Hx, (10.135)

When using this state-variable feedback, the roots of the characteristic equation are
placed where the transient performance meets the desired response.

As an example of state-variable feedback, consider the feedback system shown
in Fig. 10.28. This position control uses a field controlled motor, and the transfer
function was obtained in Section 2.5 as

K

G0) = G+ s = RiILy

(10.136)

xy =8

Potentiometer “"""'—'-"-l

I

= \
r{ﬂm/ K4

Rf i
AATAYS
Lf%
Lr
R=18
4g

dr
Tachometer —

X3 ™

Fig. 10.28, A position control system with state-variable feedback.
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Fig. 10.29. The signal flow graph of the state-variable feedback system.

where K = K Kn/JL; For our purposes we will assume that f/J = 1 and R#/Ls =
5. As shown in Fig. 10.28, the system has feedback of the three state variables:
position, velocity, and field current. We will assume that the feedback constant for
the position is equal to 1, as shown in Fig. 10.29, which provides a signal-flow graph
representation of the system. Without state-variable feedback of x, and x5, we set
K; = K; = 0 and we have

K
sGs + s + 5

This system will become unstable when X = 30. However, with variable feedback
of all the state variables we can assure that the system is stable and set the transient
performance of the system to a desired performance.

In general, the state-variable feedback signal-flow graph can be converted to the
block diagram form shown in Fig. 10.30. The transfer function G(s) remains unaf-
fected (as in Eq. 10.137) and the H{s) accounts for the state variable feedback.

G(s) = (10.137)

Therefore,
K; + K, 1
— 2 TP —
H(s) = K; [s +( X, ) s+ Ka} {10.138)
and
2
G(s)H(s) = AL+ s + WEJ] (10.139)

sis+ s+ 5

+ + -
R 66 Iccs) R(S)‘T ThET o)
H{S) K352 -+ (Ka + Kz}s‘ + i

(a} [0
Fig. 10.30. An equivalent biock diagram representation of the state-variable feedback
system.
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where M = KK and @ = (K3 + K.)/ K. Since K; and K; may be set indepen-
dently, the designer may select the location of the zeros of G(s)}H(s).

As an illustration, let us choose the zeros of GH(s) so that they cancel the real
poles of G(s). We set the mumnerator polynomial

H(s)= K;;(:;2 + Os -E-—RI—-])

= Ka(s + I){x + 3). (10.140)
This requires K3 = Y% and @ = 6, which sets K, = 1. Then

_ M(s 1) £5)
GH(s) =~ e s (10.141)

where M = KK,. The closed-loop transfer function is then

C(s) G(s) K

R(s) 1+ GEYH(sy (s + 1)(s + 5)s + M)
Therefore, while we could choose M = 10 which would ensure the stability of the
system, the closed-loop response of the system will be dictated by the polesat s =
~1and s = ~5. Therefore we will usually choose the zeros of GH(s) in order to
achieve closed-loop roots in a desirable location in the left-hand plane and assure
system stability.

(10.142)

Example 10.14. Let us again consider the system of Fig. 10.30(b) and set the zeros
of GH(s) at 5 = —4 + j2 and 5§ = —4 — j2. Then the numerator of GH(s) will be

H(s) = Kg (S2 + Os ‘?‘““1“‘"“)
K;
=Kes +4+72s + 4~ D)
= K3(s? + Bs + 20). (10.143)
Therefore K; = %o and O = 8 resulting in K2 = 720, The resulting root locus for

M(s% + 85 + 20)
s(s + Dis + 5

is shown in Fig. 10.31. The system is stable for all values of gain M = KK;. For M
= 10 the complex roots have { = 0.73, so that we might expect an overshoot for a
step input of approximately 5%. The settling time will be approximately 1 second.
The closed-loop transfer function is

() G(s)

Re) - T8 S TT 6 HG)

G(s)H(s) = {10.144)

200
T (s + 345 1 3.20(s + 3.45 — [3.9)(s + 9.1

(10,145
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Fig. 10.31. The compensated system root locus.

An alternative approach is to set the closed-loop roots of 1 + G(s)H(S) = O at
desired locations and then solve for the gain values of X, K; and K; that are

required. For example, if we desire closed-loop roots at s = —10, 5 = =5 + j and
s = —5~j we have the characteristic equation
g{s} = (s + 10)s* + 10s + 26) (10.146)

= §% + 20s% 4+ 1265 + 260 = Q.

Since

1+ GYH(s) = s{s + s + 5 + M'(s2 + Qs +"I—§-;) =0, (10.147)

we equate Eq. (10.146) and Eq. (10.147), obtaining M = 14, @ = 121, Ky = 14/260 -

and X, = 6.462.
In many cases the state variables are available and we can use state variable
feedback to obtain a stable, well-compensated system.

10.12 SUMMARY

In this chapter we have considered several alternative approaches to the design and
compensation of feedback control systems. In the first two sections, we discussed
the concepts of design and compensation and noted the several design cases which
we completed in the preceding chapters. Then, the possibility of introducing cas-
cade compensation networks within the feedback loops of confrol systems was
examined. The cascade compensation networks are useful for altering the shape of
the root locus or frequency response of a system. The phase-lead network and the
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phase-lag network were considered in detail as candidates for system compensa-
tors. Then, system compensation was studied by using a phase-lead s-plane net-
work on the Bode diagram and the root locus s-plane diagram successively. System
compensation using integration networks and phase-lag networks was also consid-
ered on the Bode diagram and the s-plane. We noted that the phase-lead compen-
sator increases the phase margin of the system and thus provides additional stabil-
ity. When the design specifications include an error constant, the design of a phase
lead network is more readily accomplished on the Bode diagram. Alternatively,
when an error constant is not specified, but the settling time and overshoot for a
step input are specified, the design of a phase-lead network is more readily carried

Table 10,1 A Summary of the Characteristics of Phase-Lead and Phase-Lag Compensation
Networks

Compensation

Phase-lead Phase-lag

Approach Addition of phase-fead angle Addition of phase-lag to yield an
near the crossover frequency or increased error constant while
to vield the desired dominant maintaining the desired dominant
roots in the s-plane roots in the s-plane or phase
margin on the Bode diagram

Results 1. Increases system bandwidth 1. Decreases system bandwidth
2. Increases gain at higher
frequencies
Advantages 1. Yields desired response 1. Suppresses high frequency
2. Faster dynamic response noise
2. Reduces the steady-state
error
Disadvantages 1. Requires additional amplifier 1. Slows down transient
gain response

. Increases bandwidth and

thus susceptibility to noise

. May require large values of

components for the RC
network

. May require large values of

componeats for the RC
network

Applications . When fast fransient . When error constants are
response is desired specified
Not applicable . When phase decreases rap- . When no low frequency range

idly near the crossover
frequency

exists where the phase is
equal to the desired phase
margin
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out on the s-plane. When large error constants are specified for a feedback system,
it is usually easier to compensate the system by using integration (phase-lag) net-
works. We also noted that the phase-lead compensation increases the system band-
width, while the phase-lag compensation decreases the system bandwidth. The
bandwidth often may be an important factor when noise is present at the input and
generated within the system. Also we noted that a satisfactory system is obtained
when the asymptotic course for magnitude of the compensated system crosses the
0 db line with a slope of —6 db/octave. The characteristics of the phase-lead and
phase-lag compensation networks are summarized in Table 10.1. Also, the design
of control systems in the time domain was briefly examined. Specifically, the opti-
mum design of a system using state-variable feedback and an integral performance
index was considered. Finally, the s-plane design of systems utilizing state-variable
feedback was examined.

PROBLEMS

10.1. The design of the Lunar Excursion Module (LEM) is an interesting control problem
i6]. The Apollo 11 lunar landing vehicle is shown in Fig. P10.1(a). The attitude control system
for the lunar vehicle is shown in Fig. P10.1{b). The vehicle damping is negligible and the
attitude is controlled by gas jets. The torgue, as a first approximation, will be considered to
be proportional to the signal V{s) so that T(s) = K, V(s). The loop gain may be selected by
the designer in order to provide a suitable damping. A damping ratio of { = 0.5 witha settling
time less than 2 sec is required. Using a lead-network compensation, select the necessary
compensator G.{s) by using (a) frequency response techniques, and {b) root locus methods.

10.2. A magnetic tape-recorder transport for modern computers requires a high-accuracy,
rapid-response control system. The requirements for a specific transport are as follows: (1)
the tape must stop or start in 3 msec; (2) it must be possible to read 45,000 characters per
second. This system was discussed in Problem 6.11. Tt is desired to set J = 5 x 1073, and K,
is set on the basis of the maximum error allowable for a velocity input. In this case, it is
desired to maintain a steady-state speed etror of less than 2%. However, it is not possible to
use a tachometer in this case and thus K, = 0. In order to provide a suitable performance, a
compensator G.{s) is inserted in cascade between the photocell transducer and the amplifier.
Select a compensator Ge(s) so that the overshoot of the system for & step input is less than
30%.

10.3. A simplified version of the attitude rate control for the F-94 or X-15 type aircraft is
skown in Fig. P10.3. When the vehicle is flying at four times the speed of sound (Mach 4) at
an altitude of 100,000 feet, the parameters are

i
e 0.04, K, = .02, fm, = 0.04, Wy = 2
a

Design a compensation network so that the complex poles have approximately a{ = 0.707
and @, = 3.

1.4, Magnetic particle clutches are useful actuator devices for high power requirements,
since they can typically provide a 200-watt mechanical power output. The particle clutches
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Compensation Actuator Vehicle

+ V(s T(s)
Referencc———-—O—-n Gs) - K, - “}:Yl@" Attitude

: Kl

1))
Fig. P10.1. Apollo 11 lunar excursion module viewed from the command ship. Inside the
LEM were astronauts Neil Armstrong and Edwin Aldrin, Jr. The LEM landed on the moon
on July 20, 1969, (Photo courtesy of NASA Manned Spacecraft Center.)

Hydraulic
Compensation actuator Adreraft
+ 2
R Guls) 1 KiwHr,s + 1) a4
5 s24 20,5 + wd dt
1 =
Rate gyro

Figare P10.3
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