Interfacing a Hitachi HD44780 to a Motorola 68HC11 or

Motorola 68HC12

Table of Contents
Page
Introduction 1
Hardware Operation 2
Memory 4
Instructions 5
Software Operation 8
C Code Function Descriptions 8
Test Code 12
68HC11 Assembly Code 13
Appendix A: Wire Connections 14
Appendix B: LCD11.h and LCDtest11.c 15
Appendix C: LCD12.h and LCDtest12.c 21

Appendix D: LCD.asm 27

Introduction:

This document is intended to explain the basics of interfacing a Hitachi HD44780 LCD Controller
with the Motorola 68HC11 and Motorola 68HC12 microcontrollers and to provide sample code
in the form of a C header file for the HC11 and HC12 and assembly code subroutines for the
HC11. All code for this document was developed and tested with Introl C 4.0. All tables,
diagrams, and charts from the Hitachi data sheets unless credited otherwise.

Hardware Operation:

The hardware in the HD44780 is mostly transparent to the programmer. As a result many of the
features do not need an in depth explanation. Those readers interested in more detailed
information should refer to the Hitachi Data Sheet for the HD44780. For this project the Optrex
DMC-16204 Display Module (DigiKey part number 73-1033ND) was used. This incorporates the
HD44780 as the on board LCD Screen controller.

The Optrex DMC-16204 Display Module has 14 connections between itself and the
microprocessor. On the Optrex DNC-16204, pin 2 provides power and pin 1 is connected to
ground. Pin 3 controls the brightness level of the screen and is connected to the wiper of a 10
kOhm potentiometer. Pin 4 is the register select of the LCD screen. This is used to select between
the instruction register or address counter of the HD44780. When the input to the pin is low the
instruction register is active and the data register is active when the input is high. Pin 5 is the
Read/Write select. When the input to the pin is high, the HD44780 is in read mode, when the
input is low it is set up for a write. Pin 6 is the LCD enable. This is used to clock data and
instructions into the HD44780. Pins 7 to 14 are the data pins. Pin 14 also doubles as the Busy
Flag for the LCD screen. While many LCD screens use this order for the pins, the exact pin
configuration may vary by part type and manufacturer. Be sure to refer to the LCD
documentation before using this code to ensure that they are compatible. Schematics for wiring
the LCD screen to the 6811 and 6812 are included in appendix A.

The basic operation of the screen is controlled by the state of the Register Select (RS) and the
Read/Write (R/W) pins. These operations are summarized in Table 1.

Table 1: Register Selection

RS RW Operation

Q 0 IR wrile as an internal operation (display clear, aic.)

1] 1 Read busy flag (DB7Y) and address counter (DBO to DBE)

1 0 DR writa as an intemal opearation (DR to DDRAM or CGRAM)

1 1 DR read as an intemal operation (DDRAM or CGRAM 1o DR)

Figure 1: HD44780U Block Diagram

C3C1 O3C2

— . - CL1
| - L2
Hesat | | =M
circuit = L) .
Timing
ACL CPG - penerator
_| Instruction Pl
register (IR) e O E— ——0
; , ! L
: Display | | ' COM1 1o
RS | MU instruction || saiaram | | | | | | 16-bit || Common | COM1s
RW —=| face ! EEEDHAM} 1 i sonal I~
x«Bbits | | | ¢ ragistar driver
E - P!
)]
! i 1 |
Address | |7 _ SEG1 to
counter ' 8 4;3“-':1 Tﬂ-t:it Segmeni | SEG40
| . atc . Bt
gg; to - ! . ra-gﬂzlnar circuil gﬁ
e i
Input/ Data | | B g (I
DE‘D‘ to ﬂl.lpui rillli - rﬂgm -.—1—1—-1 4t ! |
DB3 | buffer ©R) | | :
- 18 3 — LCD drive
1 ' | i
Character || Charact - |
aracter ar 5
generalor || generator G;'n'fjw . '
RAM ROM blink
(CGRAM) | | (CGROM) || toiler
GND fi4 bytes 8,920 bits !
| & LS *
: Parﬂlﬁfsﬂ converer |
A attnibule circuit
Illlrm I - -I——,—_O—D—T—- ————
TN A N AN A AN
Vi V2 V3 V4 s

Memory:
The HD44780 provides an 80x8 bit Display Data RAM (DDRAM). This is used to store the data

that is being displayed on the screen. This allows the HD44780 to store up to 40 characters per
line. It is important to note that the DMC-16204 will display only 16 characters per line. The
extra memory here can be used to store characters that may then be shifted onto the screen. All
data to be displayed must be stored in the form of an 8 bit ASCII code character.

Figure 2: 1 Line Display

Display position
(digit) f 2 3 4 5 7% 80
DDRAM L !
(hexadacimal)

Figure 3: 2 Line Display
Display
position 1 2 3 4 5 3 40
DDRAM nu;minz 0304 | - -romrrmrrrenen - 26| 27
address i | | !
(hexadecimal) | 40 | 41 |42 43| 44 66 | 67

Instructions:

The HD44780 has a number of different instructions that it can execute. These instructions are

listed in the following table:

Table 2: Instructions

Execuition Thme
_ Code {mmax) (when f_, or
Instructien AS RSN DET DBE DES DB4 DE3I DBEZ DB DB0 Descripiion fuili?'ﬂlrﬂﬂ
S 0 e o 0 i) 0 o Claars anlira MHLHIIIU &ale
display DOAAM address O in address
Counber
Bgtum 60 o 0 0 o Q o Sals DORAM addeas ©in 1.52 rd
hemia nfckass counbar. Alsa rnelums
m-ﬂmmbh-gm 5]
original pesiiion, COAAM
CONIERRE ra main l..l"rd'l-ll'rﬂﬂ
El'gdrr . [T I v 0 o 0 [§] iﬂﬁ-ﬂm&rﬂmﬂkﬂm B ERTE
mMla 58 spad display
These opsralions ara
performes duning data write
ard road.
Cisiplary oo o ©6 @ o 1 Sots enlire 0] onglf, 37 s
anioff cursar orall (G and binking
il g;:wlm paslicn characiar
E:I,mr-:r [u] a a [¥] a 1 = hhw:-:..uuu-r.amt shifts T =
i display witheul changing
ah DOAAM conberls.
Finiciion a a a u] 1 oL M Stz interinco data langth s
sal £OL), nurmibar af o linga
oM, and chamacter IFL
Sal o a a 1 AL MGG ACG ACG MGG ACG Sais CORAM addmss, Tps
CGEARM CEAARN dala is e ard
acidress recaboe] after this setling.
Sat a 4 1 ADD ADD ADD ADD ADD ADD ACD Sets DDEAM addrass. 37 s
DORAK DORAM daka 5 sand ang
address recekeed after this seting.
Faad busy 0] BF & aAC AC aAC AC aC AL Faeads busy flag [BF) 0 s
rl.nga. indicaling Flemal operalion &
Epire] partamned and rancs
ackdress courtlr conlanks.
Wi dala 1 { Wiibe dala ‘s data inby DORAM ar <l]
I G ar CORAM. g = 4 p8*°
DDA
Faal tata 1 i | Faad data FAeads data fram DORAM or a7 s
fram SG ar CORAM |, = 4 8"
DDA R
WD =1 Incremend DOAAM: Cisplay data RAM Execution ime
D =0: Decrement CORAM: Cramschar ganeralor changes whan
= = 1: Accompanies mﬂ'ﬁ'-ﬂ'li'. FRAM Ireguency changes
ST =1 Display shill ACG: CGAAM adormss Example:
ST = CUrsor move ADD: CDDRAM addrass Whant_orf is
RL =1: &hift o the righl COMeapOnS 10 CLMSOr agq T
AL =0 SR e el SErEgE] .E'i
DL =1 @bies, DL=10 4bils AL: Mddrass coumar usad for T Ee s = 0
M =1 2Wmss. MN=3; 1lina bath DD &nd CERAM
F =1, S=10dat% =0 §xidas AOdraEsas
BF =1: Inemaly opaaing
BE = N glaclons sacamabla
Mata: — indicates no effecth,

It is important to note that the HD44780 can only execute one instruction at a time. Before
sending an instruction to the display, the busy flag must to be read. If the busy flag is zero, then
the instruction can be sent to the display, otherwise the instruction must be held by the
microprocessor until the current instruction has completed execution and the busy flag is cleared.

Instruction Descriptions:

Clear Display
This instruction writes a 0x20 to all locations in the DDRAM. It also sets the DDRAM address to
zero and unshifts the display, if it had been shifted. It also sets the display to increment mode.

Return Home
The DDRAM Address is set to zero and the display is unshifted, if it had been shifted.

Entry Mode Set

This instruction has two parameters, which it controls. The first is I/D. If this bit is high, the
display increments the DDRAM address by one every time a character is written to the screen. If
it is low, then the display address will be decremented by one every time a character is written.
The second parameter is S. When S is high, the display shifts after a character is written to the
screen. It will shift to the right if I/D = 0 or to the left if I/D=1. When S is low, the display does
not shift when a character is written.

Display Control On/Off

This instruction has 3 parameters that the user can set. The first is D. This turns the display on
when it is high and off when it is low. The second parameter is C. This displays the cursor when it
is high and turns the cursor off when it is low. The last parameter is B. When this is high the
character indicated by the cursor will blink. When it is low the display will not blink.

Cursor or Display Shift

This instruction shifts either the cursor or display by 1 character, without modifying the data
stored in the DDRAM. The direction of the shift is determined by the value in the R/L bit. Both
lines shift simultaneously. The shifting type and direction are summarized in the following table:

Table 3: Shift Functions

sIC R/L

_I} a Shifis the cursor position io the left. (AC is decremented by one.)

0 1 Shifts the cursor position 1o the right. (AC is incrementad by one.)

| 1] Shifts the entire display to the left. The cursor follows the display shift,
1 1

Shifts the entire display 1o the right, The cursor follows the display shift.

Figure 4: 2 Line by 16 Character Display

Digplay

pasien ‘E345-ﬂ:"!i1l}1112'|:||l151u
oA nnm-:;'m-:utﬁnﬁ-n?mwmummw

addrass 1
41.‘. # .1.21:|..u A% a5 &7 4&4!} iMBlC:lu-lE.-iF
HOSL TR0 dispiay Exfencion drivar
ﬂﬂ*-l'r'
For o1 02 03 04 ':-5 -:-ﬂ u:nrce. u-am-:numl}nE-r ..;.-
ahifl |]
o vagazias 45 4-5-1? 494 umamﬁ lF 5[:-
For ETD:'{IWEIJEMD!-DEE?I::HWMMDE-:EM
ghiff righg ——— T

57140 4142 43 44048 45 4?4&49 mquu-:qpug

Function Set

This instruction is used to initialize the display and what format the display will be using. This is
done only during the initialization process and it may not be changed later in the program. DL is
the data length of the interface. For this program, DL is always high, since the only the 8 bit
interface is used. N is the number of display lines and F is the font size.

Table 4: Function Set

No. of — — -
Display Duty

M F Lines Character Font Factor Remarks

i a 1 5= 8 dots 1/a8

i 1 1 5« 10 dods 111

T v 2 § x 8 dols 1/16 Cannot display two lines for 5 x 10 dot character font

Mote: * Indicates don't cara.

Set DDRAM Address

This sets the DDRAM to the address included in the instruction. When the display is in single line
mode the addresses range from 0x00 to 0x4F. In 2 line mode, the instructions range from 0x00 to
0x27 for the first line and from 0x40 to 0x67 for the second line.

Read Busy Flag

This instruction sends the state of the Busy Flag to the microcontroller. This appears on bit 7 and
is used to determine if the LCD screen controller is still executing an instruction. If the bit is high,
then there is an instruction executing that must be completed before another instruction can be
written to the LCD screen controller

Write Data to DDRAM
This instruction writes an 8-bit pattern to the DDRAM.

Software Operation:

The code to control the LCD screen was developed as both a C header files for the 68HC11 and
68HC12 and as several assembly language subroutines for the 68HC11. The C header files were
written to provide an easy interface to the LCD screen. The two files are similar with the only
differences being the ports used by the screen and the delay cycles used. The assembly code is
much smaller then the C code and is also in many ways far more flexible. The code for these files
is included in the Appendices.

C Code:

The C code was written as a header file that could be included in any program that interfaces with
an LCD screen. For the 68HC11, the code uses Port C for writing data and Port A[3:5] for the
control signals. For the 68HC12, the header file uses Port H for writing data and Port G[0:2] for
the control signals.

The header file contains six functions to control the LCD screen. These are OpenXLCD,
SetDDRamAddr, BusyXLCD, WriteCmdXLCD, WriteDataXLCD, and WriteBuffer. These
functions provide all the basic features needed to display data on the screen and to position the
cursor.

OpenXLCD:

This function executes all the initialization routines required by the HD44780 before it can be
used. This routine sets the controller for 8-bit data entry and also initializes the number of display
lines and the character font of the LCD screen. This is done by passing the desired type of display
to the controller when OpenXLCD is called. The choices available are:

Screen Display Value
5x8 single line 0x30
5x8 double line Ox3F
5x10 single line 0x34

These values may only be changed on startup. They can not be changed after the LCD screen has
been initialized. The initialization routine ends by turning on the display and cursor, clearing the
entire display and setting the DDRAM address to 0.

It is important to note that this function must be customized for the processor on which it is
running. This is because there are several delay loops that are executed by this routine. These are
all time dependant and were designed around the microprocessor’s clock, 2 MHz for the 6811
and 8 MHz for the 6812. If this code is ported to other processors then these, the delay loops will
need to be rewritten to take into account the clock frequency of the processor you are using.

Figure 5: 8 Bit Interface

! Poiwisr on

Wait for more than 15 ma Wait for mare than 40 ms

aftar Vg nses o 4.5V after Vo risas to 2.7 v
RIS RAWDE7 DB6 DBS DB4 DB3DE2 D81 DBO | BF cannct oe checked befors this instruction.
06 D 0 1 1 . & s s

Function sei [Inlarface i 8 ks ong.)

Wasd for mor than 4.1 ms

FiS FWDET D88 DRS DE4 DE3 D82 DE1 D80 | _BF cannol be checked befors ths nstruction,
9 0 0 0 ' Fungtion sed [Irterface is 8 bas iong)

1 1 = - - -

Wail tor mosa Shan 100 us

RS AANDET DBG DRS DB4 D83 A2 DB DBO | | BF sannot be checked batoro this nstruction.

O o 0 0 1|1 'L Function sat (interfacs is 8 bils long)

BF can ba chacked after the allowing inairueetons

Whan BF ig nol checked, the waiting tire batwaan

instructions i longer than the exeoution instuction
time. [See Tabe &)

Funclion sat {Infarfaca u_!. I:HE: I-nn.g. Spacity iha

A5 AAVDET DES DS DEL DES DEZ D81 DED numbear of feplay linss and charactes Tanl)
g O 0 0 1 1 N F = = T reurribar of display lines and characier fonk
'ﬂl' D' 00 0 0 1 U. D- .|:| cannot be changed atter this poind
¢ 00 0 0 0 O 0 0 1 Display off
¢ 0 0 0 0 0 0 1 DS Display ciear
Entry mode st
Y

Inisaization ands

WriteCmdXLCD:

This function is used to write commands to the LCD screen. The command to be issued is passed
in as a parameter of the function.

There are several different commands, which can be issued to the LCD controller. These are for
clearing the display, resetting the DDRAM address to 0, turning the display and cursor on or off,
and shifting the display and cursor. The basic format of each of these is summarized in Table 2
above.

WriteDataXLCD:

This function is used to write data to the LCD screen. The data to be written is passed in as a
parameter of this function. This is very similar in operation to the WriteCmdXLCD routine. The
data to be displayed must be written to the display as an ASCII character. The character set
stored in the controller is listed in Table 5 below.

Table 5: Character Set

R EEE — B =P
woooo0t | (2| | . 1 I:TEJ. 3 a | F[F LS |:'|
oo 3| |2 B FB i -ll M4 '!-I]I.:'filg =
I AN = 1T E S e
won o || FFDTIAR] | [+ [T[FF[p|5
wooror| 8| a1 JFF A=
AT LR DT an:EFIE
o111 | 18) r?l:r_l'.:ll.l.lgl.l.l ?*F_:'g]'[
woroo| 00| |0 [BH[H = A [AFUr
01001 | (2) ;::' TV | T ""-IH
w1010 | (3) I"l"= -.TE.J'Z Ijll'IL“J:F
ol F3KLKL | AFEOE R
woroo| | 2 % |L[¥F[1]] gﬁiijlj':"i'ﬁ
0ot 101 | (6) - - H J__ [} LA™ *. -
RN e T

w11 | e '-'il:l —|0|* A ; O [

SetDDRamAddr:

This function sets the address of the cursor. This is a special case of the WriteCmdXLCD
function. The function is almost identical to WriteCmdXLCD, the only difference being that the
value passed into the function is logically ORed with 0x80, which places a 1 in the leading
location. This is used to signify that an address is being sent to the display as opposed to a
character or other command.

BusyXLCD:

This function is used to check the busy flag of the LCD screen. When the busy flag is high, the
LCD controller is still processing a previous command and cannot accept any new instructions.
As a result, the busy flag must be checked before each attempt to write a command or data to the
LCD screen. This step is incorporated in the WriteCmdXLCD, WriteDataXLCD and
SetDDRamAddr functions, as they all call the BusyXLCD instruction as their first operation, and
wait until the flag is cleared before proceeding to issue a new instruction.

WriteBuffer:

This command is used to write a string of characters, stored in a buffer, to the LCD screen. This
function contains a while loop that simply makes repeated calls to the WriteDataXLCD function
until the entire buffer has been transmitted. The only limitation on the use of the buffer is that only
data can be sent to the screen. Instructions must be sent separately by calling WriteCmdXLCD.

Test Code:

There are two C programs included with this document. One is LCDtestl1l.c and the other is
LCDtest12.c. Both programs execute the same set of operations and are used to exercise the
LCD Screen to ensure that it is working properly by issuing a variety of instructions to the LCD
screen.

The code initially turns the display off for a short time. It then prints:

| Good Mor ni ng |
| Dave

After another short delay, the cursor moves to address OXCA and prints "Hello" at this location.

| Good Mor ni ng |
| Dave Hel | o

Following yet another delay, "ABCDE" is written to Address 0x41 and the display is shifted left 5
times.

| Mor ni ng ABCDE|
| Hel | o |

The last instruction clears the display after another delay.

Assembly Code:

The assembly code for the LCD screen consists of two subroutines that can be included with any
program to provide an interface to the LCD controller to the Motorola 68HC11. It is a good idea
when using these programs to allow for a large stack, since all parameters are passed via the
stack. The subroutines that are used are Writelcd, which writes the data to the LCD screen and
Initlcd which executes all the screen initialization routines.

Writelcd:

This subroutine handles all data and instruction writes to the LCD screen. The data to be written
is passed to the subroutine by the A register and the RS and R/W states are passed by the B
register. In the subroutine, these values are then pushed onto the stack. The subroutine then
checks the busy flag. Once the busy flag is clear the data is popped off the stack and written to
Port C. Then the control pin states are then popped off the stack and written to Port A. Several
clock cycles later the enable is pulsed and the data is written to the HD44780. The control pins
are then cleared and the subroutine returns control to the calling function.

Initlcd:

This subroutine functions identically to the OpenXLCD function in the C code. The screen type is
passed to the subroutine in the A register and is then pushed onto the stack. It is popped off the
stack later in the subroutine so that it can be written to Port C. The user does not need to specify
any other information when using this subroutine.

Test Code:

This is very simple code that shows how the Writelcd and Initlcd subroutines are used in a
program. This is not, however, intended in any way as a diagnostic tool to check the functioning
of the screen. If there is a question as to whether or not the screen is bad, it is recommended that
the sample C code be run, as it provides a far more comprehensive test of the functions and
features of the HD44780.

Function differences between the C code and Assembly code routines

There are very few actual differences between the C header file and the assembly code
subroutines. The differences between them are summarized briefly below.

1) The assembly code version reduces the number of different operations need by the programmer
as it combines the WriteCmdXLCd, WriteDataXLCD, DDRamAddr, and BusyXLCD functions
into a single subroutine. This can be done since the only difference between the first 3
instructions is the state of the RS and R/W pins. As the programmer must pass the state of the
control pins to the subroutine from the main code, the functions can be combined into a single
subroutine. In addition as there is only one subroutine, the BusyXLCD functions can be included
in that subroutine since it is not called by any other subroutine.

2) The C header file provides a function to write a string of ASCII characters to the screen. This
function was omitted from the assembly code subroutine. This was left as an exercise for the
students. To write a string of data or a sequence of data and instructions, the Writelcd subroutine
must be slightly modified.

The programmer simply pushs the data or instructions, and the control signals for them, onto the
stack in reverse execution order. The new Writelcd subroutine must recieve the number of
instructions stored on the stack and continue processing them until all the instructions have been
transmitted. This has an advantage over the C header WriteBuffer function in that it can handle
both instructions and data since the control signals are passed along with the data to be written to
the screen.

Appendix A: Wiring Connections

0V (GROUND) LCD GND Pin 1 (rightmost)

(10K pot is included

10 Kohms on the LCD boar d)

+5V LCD +5V Pin 2
(connected

inter nally) X>— —&O—— LCD Contrast Pin 3
Port A4 Pin 30 XO—X> LCDRS Pin 4
Port A3 Pin 31 OO——<X> LCDR/ W Pin 5
Port A5 Pin 29 SO———X> | D Enable Pin 6

Port co Pin 9 XO——<X> LCDPin 7

Port C1 Pin 10 O———<X> LcD Pin 8

Port C2 Pin 11 OO—<X> LCD Pin 9

Port c3 Pin 12 OO——X> LCD Pin 10

Port 4 Pin 13 OO—<X> LCDPin 11

Port 5 Pin 14 OO———X> Lcp pin 12

Port C6 Pin 15 XO—<X> LcD Pin 13

Port 7 Pin 16 OXO————<X> LCD Pin 14 (leftmost)

68HC11 LCD Wiring Connections

68HC11

0V (GROUND) LCD GND Pin 1 (rightmost)

(10K pot is included

10 Kohms on the LCD boar d)

+5V LCD +5V Pin 2

(connected

inter nally) X— —&O—— LCD Contrast Pin 3
Port G4: 38 Pin 11 X———<X> LCDRS Pin 4
Port G3: J8 Pin 14H LCD R/ W Pin5
Port G5: J8 Pin 12H LCD Enable Pin 6

Port HO: J9 pin 370X0———X> LCD Pin 7
Port H1: J9 Pin 38 QXO——<X> Lcp pin 8
Port H2: J9 Pin 35 O———<X> Lep Pin 9
Port H3: 39 Pin 36 XO———<X> Lep Pin 10
Port H4: J9 pin 33— X> Lep Pin 11
Port H5: 39 Pin 34XO———<X> | D pin 12
Port H6: J9 Pin SlH LCD Pin 13
Port H7: 39 Pin 32— X> LeD Pin 14

68HC12 LCD Wiring Connections

68HC12

Appendix B: LCD11.h and LCDtestl1.c

LCD11.h

/1l LCD Screen routines for the Motorola 6811 using a Htachi //
HD44780

/1 Witten by Lee Rosenberg - rosenl @pi.edu

/1 Devel oped for use with Introl C 4.0

/1 Cctober 21, 1998

#i ncl ude <HC11Al. h>

voi d OpenXLCD(char); [l configures 1/0O pins for externa
LCD

voi d Set DDRamAddr (char); // sets display data address

char BusyXLCD(void); /1l returns busy status of the LCD
void WiteCndXLCD(char); // wite a conmand to the LCD

void WiteDat aXLCD(char); /[l wites data byte to the LCD

void WiteBuffer(char *buffer); //Wites a string to the LCD

/***

Wite Buffer
Function: Wite a string of bytes to the HD44780
| nput Paraneters: char *buffer
Return Type: None

***/

void WiteBuffer(char *buffer)

{
whi |l e(*buffer) [l while buffer not enpty
whi | e(BusyXLCD()) ; /'l check if screen busy
WiteDataXLCD(*buffer); // wite a character
buf f er ++; /1l increment pointer
}
return;
}

/**

QpenXLCD

Function: This configures the LCD screen.

| nput Paraneters: char |cdtype

Return Type: None

Notes: This function nust be run before the LCD screen
can be used.

***/

voi d QpenXLCD(char | cdtype)

{ int i;
_H11PORTC = O; /[l initialize control port A and
_H11DDRC = 0xO00; /1l Data port C

“H11PORTA = 0x00;

/1l delay for 15ns. This is custom zed for the HC11l and nust //be
changed for other processors

for(i=0; i<40,000; i++);

/1l set up interface to LCD
_H11DDRC = OxFF;
_H11PORTC = Ox3F; /1 Function set command (8 bit)

_H11PORTA = 0x20; /1 clock command in
for(i=0; 1<30;i++); // delay for ~ 15 us
_H11PORTA = 0x00;

/1l delay for at least 4.1 ns
for(i=0;i<9000;i ++);

/1l setup interface
_H11PORTC=0x3F; /1l Function set conmand (8 bit)
_H11PORTA = 0x20; /1l clock in comuand
for(i=0;i<30;i++); [/ delay for ~15 us
_H11PORTA = 0x00;

/1l delay for at |east 100us
for(i=0;i<500;i++);

/1l set up interface
_H11PORTC = Ox3F; /1l function set conmand (8 bit)
_H11PORTA = 0x20;
for(i=0;i<30;i++); [/ delay for ~15 us
_H11PORTA = 0x00;

WiteCnmdXLCD(| cdtype); // function set 8 bit interface
Wit eCrdXLCD(0x0C) ;

Wit eCnmdXLCD(0x01); [l turn off display
return;

/**

Wit eCrdXLCD

Function: Wites a command to the controller
| nput Parameter: char cnd

Return Type: None

Notes: Before witing the command the function checks
that the display is not busy by calling
Busy XLCD.

***/

void WiteCndXLCD(char cnd)

{
int i;
whi | e(BusyXLCD()); // Check LCDis not in use
_H11DDRC = OxFF;
_H11PORTC = cnd, [l wite cnmd to port
_H11PORTA = 0x00; /1l set control signals
for(i=0; 1<30; i++); /1l delay for ~15 us
_H11PORTA=0x20; /1l clock in the command
for(i=0;i<30;i++); /1l delay for ~15 us
_H11PORTA=0x00;
for(i=0;i<30;i++); /1l delay for ~15 us
_H11DDRC=0x00;
return;

}

/**

Set DDRamAddr

Function: Set the address of the LCD controller

| nput Parameter: char DDaddr

Return Type: None

Notes: This function sets the address of the LCD screen
to the address that is passed in as a char. The
address is automatically nodified to the correct
format for the screen.

**/

voi d Set DDRamAddr (char DbDaddr)

{
int i;
whi | e(BusyXLCIY)); /1 check if screen is in use
_H11DDRC=0xFF;
_H11PORTC=(DDaddr | 0x80);// wite cnd and addr to port
_H11PORTA=0x00;

for(i=0;i<30;i++); /1l delay for ~15 us
_H11PORTA=0x20; /1l clock in the command
for(i=0;i<30;i++); /1l delay for ~15 us
_H11PORTA=0x00;

for(i=0;i<30;i++); /1l delay for ~15 us

_H11DDRC =0x00;

return;

/***

BusyXLCD
Function: This checks the busy status of the HD 44780
| nput Paraneter: None
Return Type: char
Notes: This is necessary to ensure that the LCD screen
is ready to recieve data.

**/

char BusyXLCD(voi d)

int i;
_H11DDRC=0x00;
_H11PORTA=0x08; /'l set control bits
for(i=0;i<30;i++); /1l delay for ~15 us
_H11PORTA=0x28; /1l clock themin
for(i=0;i<30;i++); /1l delay for ~15 us
i f(_H1L1PORTC & 0x80) /1 read busy flag
{

_H11PORTA = 0x00; /Il if set

return 1;
}
el se

_H11PORTA = 0x00; [l if clear

return O;
}

/***

Wit eDat aXLCD
Function: Wites data to the LCD
| nput Paranmeter: char data
Return Type: None
Notes: This function takes ascii data and wites it to
the LCD screen. All data is passed in as a char.

**/

void WiteDataXLCD(char data)

{
int i;
whi | e(BusyXLCIX)) ; /'l check if screen is ready
_H11DDRC = OxFF;

_H11PORTC = dat a; /[l wite data

_H11PORTA = 0x10;

for(i=0;i<30;i++); /1l delay for ~15 us
_H11PORTA=0x30; /1l clock in data
for(i=0;i<30;i++); /1 dlay for ~ 15 us

_H11PORTA=0x00;
_H11DDRC= 0x00;
return;

LCDtestll.c

/* Basic test programfor the Htachi HD 44780

This will test all the nmjor functions and commands to ensure
that the screen is functioning correctly. */

/1 Al necessary include statenents

#i ncl ude <HC11Al. h> /'l register declarations
#i nclude <introl.h> /! Introl functions

#i ncl ude <stdi o. h> [/ 1/ 0O commands

#i ncl ude <stdlib. h> [/ Standard C functions
#i ncl ude <l cdll. h> [/ LCD functions

voi d mai n()

int i, j;
char buffer[]="hello";

OpenXLCD(0x3F) ; [lintialize the screen
WiteCmdXLCD(0x80); // set address to O

Wit eDat aXLCD(0x47) ; /[l wite "Good Morning Dave"
Wi t eDat aXLCD(Ox6F) ;
Wi t eDat aXLCD(Ox6F) ;
Wit eDat aXLCD(0x64) ;
Wi t eDat aXLCD(0x20) ;
W i t eDat aXLCD(0x4D) ;
Wi t eDat aXLCD(Ox6F) ;
Wit eDat aXLCD(0x72);
Wi t eDat aXLCD(Ox6E) ;
Wit eDat aXLCD(0x69) ;
Wi t eDat aXLCD(Ox6E) ;
Wit eDat aXLCD(0x67) ;
Wit eCnmdXLCD(0xQ0) ;
W i t eDat aXLCD(0x44) ;
Wit eDat aXLCD(0x61) ;
Wit eDat aXLCD(0x76) ;
Wi t eDat aXLCD(0x65) ;

WiteCnmdXLCD(0x08); // turn off display

for(i=0; 1<10; i++) /1 del ay
for(j=0; j<40000; j++);

WiteCmdXLCD(0x0C); // turn on display and cursor
for(i=0; 1<10; i++) /1 del ay

for(j=0; j<40000; j++);
Set DDRamAddr (OxCA); // set cursor address to 4F

WiteBuffer(&uffer); [/wite buffer to screen
for(i=0;i<10;i ++) /1 del ay
for(j=0;]j<40000;) ++);

Set DDRamAddr (0x90); // go to address 16
Wit eDat aXLCD(0x41) ; /1 wite ABCDE
Wit eDat aXLCD(0x42) ;
Wit eDat aXLCD(0x43) ;
Wit eDat aXLCD(0x44) ;
Wi t eDat aXLCD(0x45) ;

WiteCnmdXLCD(0x18); // shift display left 5 tines
WiteCndXLCD(0x18);
WiteCnmdXLCD(0x18);
WiteCndXLCD(0x18);
WiteCnmdXLCD(0x18);

for(i=0;i<10;i ++) /1 del ay
for(j=0;]j<40000;) ++);

WiteCrdXLCD(0x01); // clear display

Appendix C: LCD12.c and LCDtest12.c

LCD12.c

/1l LCD Screen routines for the Motorola 6812 using a Hitach
/1 HD44780

/1 Witten by Lee Rosenberg - rosenl @pi . edu

/1 Devel oped for use with Introl C 4.0

[l Cctober 21, 1998

#i ncl ude <hc812a4. h> /'l register declarations

#i ncl ude <dbugl2. h> /1l D-Bugl2 nonitor

voi d OpenXLCD(char); /1l configures I/0O pins for LCD

voi d Set DDRamAddr (char); // sets display data address

char BusyXLCD(void); [l returns busy status of the LCD
void WiteCrdXLCD(char); // wite a command to the LCD

void WiteDat aXLCD(char); /[l wites data byte to the LCD

void WiteBuffer(char *buffer); // Wites a string to LCD

/***

Wite Buffer
Function: Wite a string of bytes to the HD44780
| nput Paraneters: char *buffer
Return Type: None

***/

void WiteBuffer(char *buffer)
whi |l e(*buffer) [l while buffer not enpty

whi | e(BusyXLCD()); // check if screen busy
WiteDataXLCD(*buffer); // wite character
buf f er ++; /1l increment pointer

}

return;

/**

QpenXLCD

Function: This configures the LCD screen.

| nput Paraneters: char | cdtype

Return Type: None

Notes: This function nust be run before the LCD screen
can be used.

***/

voi d QpenXLCD(char | cdtype)
{ int i;
_H12PORTH = 0;
_H12DDRH = 0x00;
_H12PORTG = 0x00;
_H12DDRG= OxFF;

/1l delay for 15ns. This is custom zed for the HC12 and nust //
be changed for other processors

for(i=0; i1<130,000; i++);

/1l set up interface to LCD
_H12DDRH = OxFF;
_H12PORTH = Ox3F; /1 Function set conmand (8 bit)
_H12PORTG = 0x20; /1 clock command in
for(i=0; 1<100;i++); /1l delay for ~12.5 us
_H12PORTG = 0x00;

/1l delay for at least 4.1 ns
for(i=0;i<40000;i ++);

/1l setup interface
_H12PORTH=0x3F; /1l Function set conmand (8 bit)
_H12PORTG = 0x20; /1l clock in comuand
for(i=0;i<100;i++); // delay for ~12.5 us
_H12PORTG = 0x00;

/1l delay for at |east 100us
for(i=0;i<1000;i ++);

/1 set up interface

H12PORTH = Ox3F; /1l function set conmand (8 bit)
_H12PORTG = 0x20;

for(i=0;i<100;i ++); /1l delay for ~12.5 us
_H12PORTG = 0x00;

WiteCrdXLCD(| cdtype); /1l function set conmand 8 bit
Wit eCrdXLCD(0x0C) ;

Wit eCnmdXLCD(0x01); /'l clear screen

return;

}

/**

Wit eCrdXLCD

Function: Wites a command to the controller

| nput Parameter: char cnd

Return Type: None

Notes: Before witing the command the function checks
that the display is not busy by calling
Busy XLCD.

***/

void WiteCndXLCD(char cnd)

{
int i;
whi | e(BusyXLCD()); // check status of LCD
_H12DDRG = OxFF;
_H12DDRH = OxFF;
_H12PORTG = 0x00; /1l set control signals
_H12PORTH = cnd,; [l wite cnmd to port
for(i=0; i<100; i++); /1l delay for ~12.5 us
_H12PORTG=0x20; /'l clock the command in
for(i=0;i<100;i ++); /1l delay for ~12.5 us
_H12PORTG=0x00;
for(i=0;i<100;i ++); /1l delay for ~12.5 us
_H12DDRH=0x00;
return;

}

/**

Set DDRamAddr

Function: Set the address of the LCD controller

| nput Parameter: char DDaddr

Return Type: None

Notes: This function sets the address of the LCD screen
to the address that is passed in as a char. The
address is automatically nodified to the correct
format for the screen.

**/

voi d Set DDRamAddr (char DbDaddr)

{
int i;
whi | e(BusyXLCIY)); /1 check status of LCD
_H12DDRG = OxFF;
_H12DDRH=0xFF;
_H12PORTH=(DDaddr | 0x80);// wite cnd and addr to port
_H12PORTG=0x00;
for(i=0;i<100;i ++); /1l delay for ~12.5 us
_H12PORTG=0x20; /1 clock command in

for(i=0;i<100;i ++); /1l delay for ~12.5 us

_H12PORTG=0x00;

for(i=0;i<100;i ++); /1l delay for ~12.5 us
_H12DDRH =0x00;
return;

/***

BusyXLCD
Function: This checks the busy status of the HD 44780
| nput Paraneter: None
Return Type: char
Notes: This is necessary to ensure that the LCD screen
is ready to receive data.

**/

char BusyXLCD(voi d)

int i;
_H12DDRG = OxFF;
_H12DDRH=0x00;
_H12PORTG=0x08; /'l set control bits
for(i=0;i<100;i ++); /1l delay for ~12.5 us
_H12PORTG=0x28; /1l clock in the command
for(i=0;i<100;i ++); /1l delay for ~12.5 us
i f(_H12PORTH & 0x80) /1l Read the busy flag
{
_H12PORTG = 0x00; [l if it is busy return 1
return 1,
}
el se
_H12PORTG = 0x00; [l if it is not busy return O
return O,
}

}

/***

Wit eDat aXLCD
Function: Wites data to the LCD
| nput Paraneter: char data
Return Type: None
Notes: This function takes ASCI| data and wites it to
the LCD screen. All data is passed in as a char.

**/

voi d WiteDataXLCD(char data)
{

int i;

whi | e(BusyXLCIX)) ;
_H12DDRG = OxFF;
_H12DDRH = OxFF;
_H12PORTH = dat a;
_H12PORTG = 0x10;
for(i=0;i<100;i ++);
_H12PORTG=0x30;
for(i=0;i<100;i ++);
_H12PORTG=0x00;
_H12DDRH= 0x00;
return;

/1 check if the LCD is busy

/] Wite the data

/1l delay for ~12.5 us
/1l clock the data in
/1l delay for ~12.5 us

LCDtest12.c

/* basic test programfor the H tachi HD 44780
This will test all basic functions of the LCD screen to ensure it
is functioning properly. */

#i ncl ude <hc812a4. h> /'l register declarations
#include <introl.h> /1 Introl functions

#i ncl ude <l cd12. h> /1 LCD functions

#i ncl ude <dbugl2. h> /1 D-Bugl2 functions

void _ _main()

int i, j;
char buffer[]="hell0o";

OpenXLCD(0x3F) ; /[l initialize the screen
WiteCmdXLCD(0x80); // set address to O

Wit eDat aXLCD(0x47) ; /[l wite "Good Morning Dave"
Wi t eDat aXLCD(Ox6F) ;
Wi t eDat aXLCD(Ox6F) ;
Wit eDat aXLCD(0x64) ;
Wi t eDat aXLCD(0x20) ;
W i t eDat aXLCD(0x4D) ;
Wi t eDat aXLCD(Ox6F) ;
Wit eDat aXLCD(0x72);
Wi t eDat aXLCD(Ox6E) ;
Wit eDat aXLCD(0x69) ;
Wi t eDat aXLCD(Ox6E) ;
Wit eDat aXLCD(0x67) ;
Wit eCnmdXLCD(0xQ0) ;
W i t eDat aXLCD(0x44) ;
Wit eDat aXLCD(0x61) ;
Wit eDat aXLCD(0x76) ;
Wi t eDat aXLCD(0x65) ;

WiteCnmdXLCD(0x08); // turn off display

for(i=0; 1<10; i++) /1 del ay
for(j=0; j<40000; j++);

WiteCnmdXLCD(0x0C); // turn on display and cursor

for(i=0; i<10; i++)
for(j=0; j<40000; j++);
Set DDRamAddr (OxCA); // set cursor address to 4F

WiteBuffer(&uffer); [/wite buffer to screen
for(i=0;i<10;i ++) /1 del ay
for(j=0;]j<40000;) ++);

Set DDRamAddr (0x90); // go to address 16
Wit eDat aXLCD(0x41) ; /1 wite ABCDE
Wit eDat aXLCD(0x42) ;
Wit eDat aXLCD(0x43) ;
Wit eDat aXLCD(0x44) ;
Wi t eDat aXLCD(0x45) ;

WiteCnmdXLCD(0x18); // shift display left 5 tines
WiteCndXLCD(0x18);
WiteCndXLCD(0x18);
WiteCndXLCD(0x18);
WiteCndXLCD(0x18);

for(i=0;i<10;i ++) /1 del ay
for(j=0;]j<40000;) ++);

WiteCrdXLCD(0x01); // clear display

Appendix D: LCD.asm

* 6811 assenbly code to interface wwth the H tachi HD44780
* LCD Screen Controller.

* This code contains all the necessary subroutines to wite
* to the screen.

* It also includes a sinple main programthat wll execute
* the instructions.

* The subroutines are designed to be transferred to ot her

* prograns and sinply dropped in.

*

* Inportant Note: This programrequires a significant anmount
* of space on the stack. Be sure to initialize the stack

* pbefore beginning to run these routines.

* Equat es

* puffal o operations

out a equ $ffb8 output the ASCII character in A

outstrg equ $ffca output string at x

outcrlf equ $ffcd output crlf

out!l hlf equ S$ffb2 output left nibble of a in ASC I

outrhlf equ $ffb5 output right nibble of a in ASCII
out 2bsp equ $ffcl output 2byte value at x in HEX

i nput equ $ffac a=input() ; a=0 if no char entered
i nchar equ $ffcd a=input() ; loop till user enters char
upcase equ $ffa0 a=upcase(a)

wchek equ $FFA3 z=1 if A={space, conmm, t ab}

dchek equ $FFA6 z=1 if A={space, commm,tab, CR}

* Port Decl arations

porta equ $1000

portc equ $1003

ddrc equ $1007

* This is the main programthat calls the subroutines.
org $c000
jnmp start

tenp rmb 1

* data to be displayed on the screen

testl fcc "point a"
fcb $04

test?2 fcc "point b"
fcb $04

start | ds #$DFFF s initialize the stack.

| daa #$3F ; Load the screen type
jsr initlcd ; initialize the screen

| daa #$80 ; set address to O
| dab #3$00 ; set control pins
jsr witelcd

| daa #$47 ; wite a character
| dab #$10
jsr witelcd

| daa #$6F ; wite a character
| dab #$10
jsr witelcd

| daa #$6F ; wite a character
| dab #$10
jsr witelcd

| daa #$64 ; wite a character
| dab #$10
jsr witelcd

| daa #$20 ; wite a character
| dab #$10
jsr witelcd

| daa #$4d ; wite a character
| dab #$10
jsr witelcd

| daa #$6f ; wite a character
| dab #$10
jsr witelcd

| daa #$72 ; wite a character
| dab #$10
jsr witelcd

| daa #$6e ; wite a character
| dab #$10
jsr witelcd

| daa #$69 ; wite a character
| dab #$10
jsr witelcd

| daa #$6e ; wite a character

| dab #$10
jsr witelcd

| daa #$67 ; wite a character
| dab #$10
jsr witelcd

| daa #$c0 ; wite address
| dab #$00
jsr witelcd

| daa #%$44 ; wite a character
| dab #$10
jsr witelcd

| daa #$61 ; wite a character
| dab #$10
jsr witelcd

| daa #$76 ; wite a character
| dab #$10
jsr witelcd

| daa #$65 ; wite a character
| dab #$10
jsr witelcd

SW

R R R I bk S b Sk S b S b S S b S b b o b I S S S Rk kb S b b b S b S b S bk b S R R R I S

Initlcd

*
* This subroutine initializes the LCD screen. The LCD
* screen format is passed in by the Aregister and is
* stored on the stack.

*

R R I bk S b Sk S b b S S b S b b S b S b I Rk kb S b S S b S b Sk S kb b

initlcd psha ; save the | cdtype
| daa #$00 ; clear ports A and C
staa portc
staa porta
staa ddrc

| dx #$9c40 ; wait for ~15ns
| oop dex

cpx #$0000

bne | oop

| daa #$ff ; set port C for output

staa ddrc

| daa #$3f ; wite the function set command
staa portc

jsr delay ; delay function

| daa #$20 ; pul se the enable bit
staa porta
j sr del ay

| daa #$00 ; turn off enable
staa porta
staa portc

| dx #$2328 o owait ~4.1 s
| oop2 dex

cpx #$00

bne | oop2

| daa #$3f ; wite the function set command
staa portc
j sr del ay

| daa #$20 ; pul se the enable bit
staa porta
j sr del ay

| daa #$00 ; turn off enable

Staa porta
Staa portc

| dx #$1f4 ; wait ~100 us

| oop3 dex
cpx #$00
bne | oop3

| daa #$3f ; wite the function set command
staa portc
j sr del ay

| daa #$20 ; pul se the enable bit
staa porta
j sr del ay

| daa #$00 ; turn off enable
staa porta

pul a ; get the lcd type fromthe stack

| dab #$00

jsr witelcd ; wite the # of |ines and font
| daa #$0C ; clear screen

| dab #$00

jsr witelcd ; Wwite it to the screen

| daa #$01 : set cursor to address O.

| dab #$00
jsr witelcd

rts

R R Ik b b S bk S b I b b S b Sk b b S b I S R R Ik S bk b b S b S b e b i b b b S bk b b I

Witel cd

*

*

* This function checks the busy flag and then wites
* either data or instructions to the LCD screen.

* The data to be witten is stored in register A

* and the control pin settings are stored in register
* B. These are stored on the stack until they are

* needed.

*

R R I b b b Sk S b S b b S b b b b i b S b b I I R Ik S b Sk S b S b b S b Sk b b b

witelcd pshb ; store the rs and rw val ues
psha ; store the data
| daa #3$00

staa ddrc ; set port C for input

| oop4 | daa #$08 ; checking the busy flag
staa porta

j sr del ay

| daa #%$28 ; pul se the enable
staa porta
j sr del ay

| daa portc ; read port C
anda #$80 ; check the busy flag

cnpa #$80 ; if flag set |oop else
beq | oop4

| daa #3$00 ; clear the enable
staa porta

| daa #$ff ; set port C for output
staa ddrc

pul a ; Wwite data to port C
staa portc

pul b ; wite control pins to port A
stab porta

stab tenp

j sr del ay

| daa tenp
oraa #$20 ; set the enable and wite it to port A

staa porta
j sr del ay

| daa #3$00 ; clear control pins
staa porta

rts

R R I b b S b Sk S b S b b S bk b b S IR R bk S b S b S S b S b i b S b b b S bk b b S b I I R I

* del ay

*

* This function creates a delay to allow pins tinme to set up *
and stabilize.

R R I b b S b b S b S b b S b Sk b S R R I S b I b Sk S b b S b S S b S b S b b S I AR b b b b

del ay | dab #$1E ; wait 18 counts
wai tl oop decb

cnpb #300

bne wai t| oop

rts

	Interfacing a Hitachi HD44780 to a Motorola 68HC11 or Motorola 68HC12
	
	Page
	Memory	4
	Appendix A: Wire Connections	14
	Appendix B: LCD11.h and LCDtest11.c	15
	Appendix C: LCD12.h and LCDtest12.c	21
	Appendix D: LCD.asm	27

	Clear Display
	Return Home
	Entry Mode Set
	Display Control On/Off
	Function Set
	Set DDRAM Address
	Read Busy Flag
	Write Data to DDRAM
	Writelcd:
	Initlcd:
	LCD11.h

