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SECTION 1

 

S

 

ine-wave generators are used in communications
and control applications (1,2). With the introduction of
high-speed high-precision digital signal processors,
stable and low distortion sine waves of any frequency
can be produced digitally using some form of table
look-up with interpolation to reduce distortion (3,4,5).
This document describes three table look-up methods
for sine-wave generation and provides the Total Har-
monic Distortion (THD) performance and Maximum
Synthesizable Frequency (MSF) for each case.

A routine for synthesizing sine waves having frequen-
cies limited to integer multiples of the Fundamental
Table Frequency (FTF) is described in 

 

Section 3.1

 

.
The MSF is highest using this approach. In 

 

Section
3.2

 

 a routine using only direct table look-up for syn-
thesizing sine waves having frequencies which are
fractional multiples of the FTF is described. This ap-
proach can be used to synthesize sine waves with
frequencies which are not integer multiples of the FTF
but they have substantially higher THD. A routine for
synthesizing sine waves using table look-up with in-
terpolation is described in 

 

Section 4

 

. Sine waves with
frequencies which are not limited to multiples of the
FTF and yet have low THD are possibly using this
synthesis approach.

 

■

 

Introduction

 

“This document
describes three

table look-up
methods for

sine-wave
generation . . .”
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T

 

he values used for approximating a sine wave are
stored in a table in memory as follows:

 

where:
N = the table length 

i = the index into the table; 0 

 

≤

 

 i 

 

≤

 

 N - 1

sin[i•360/N] = the value stored at the jth location
in the table. i • 360/N is the angle,
in degrees, for which the sine func-
tion is calculated. Throughout the
remainder of this document, the
abbreviation S[i] will be used to rep-
resent this function.

Table 2-1 Sine-Wave Table Values

i=N-1 sin[(N-1) • 360/N]

•

•

i→ sin[(i) • 360/N]

•

•

sin[(2) • 360/N]

sin[(1) • 360/N]

BASE ADDRESS (I=0) sin[(0) • 360/N]

 

“The maximum
value delta can
assume is N/2
since at least

two samples per
cycle are

required to
synthesize a

sine wave
without

aliasing.”

 

SECTION 2

 

Background
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Note that the length of the table can be traded off
against software in that, except for the sign, only
one quarter of the table values are unique. The fre-
quency of the digital sine wave generated depends
upon the time interval and the phase angle incre-
ment (delta, 

 

∆

 

) between successive table accesses.

If delta is unity (i.e., the entries are read sequential-
ly) and the table is accessed every T seconds (T is
referred to as the sampling interval), the FTF of the
sine wave synthesized will be:

 

FTF = 1/NT Hz Eqn. 2-1

 

On the other hand, if delta is greater than unity, e.g.,
every second (

 

∆

 

 = 2) or third (

 

∆

 

 = 3) entry is read,
(see Figure 3-2) and the table is still accessed every
T seconds, then the frequency of the sine wave syn-
thesized will be:

 

          f =

 

 ∆

 

 • FTF Hz;  

 

∆

 

 

 

≤

 

 N/2 Eqn. 2-2

 

If delta is an integer value, only multiples of the FTF
can be generated; whereas, if delta is allowed to be
fractional, any frequency up to the MSF can be
generated. The maximum value delta can assume
is N/2 since at least two samples per cycle are re-
quired to synthesize a sine wave without aliasing.

The value of the sample output, x(n), will depend on
the initial phase angle, phi (

 

φ

 

), and the time or sam-
ple index, n, as follows:

 

 x(n) = sin[

 

φ

 

 + n •

 

 ∆

 

 • 360/N];  n = 0, 1, 2, . . . Eqn. 2-3

 

The THD of the synthesized sine wave depends
upon the length of the table, N, the accuracy (num-
ber of bits of precision) of the data stored in the
table and the value of delta.

 

■



 

MOTOROLA 3-1

 

3.1  Integer Delta 
Implementation

 

T

 

his implementation is a direct table look-up method
with delta being a positive integer number. Because
delta is limited to being an integer all the required
samples are contained within the table; no approxi-
mations are necessary. Figure 3-1 illustrates this
method using 

 

N

 

 = 8 and 

 

∆

 

 = 2.

The assembler listing for the SlNe-Wave Generation
Integer Delta (“SINWGID”) routine is presented in Fig-
ure 3-2. The corresponding memory map is shown in
Figure 3-3.

Although no assembler options are indicated in this list-
ing, a number of options are available. Refer to the
Macro Assembler Reference Manual for information (6).

The memory locations can also be changed to suit the
user's needs. In this routine the sine table (N=256) is
in internal Y ROM starting at address HEX 100 to min-
imize external accesses and preserve RAM for data
variables. The actual 256 sine table values stored are
given in 

 

Appendix B

 

. The output location is chosen to
be an address in external l/O space, Y:$FFE0.

 

Direct Table Look-Up

 

SECTION 3

 

“When fractional
values of delta

are used,
samples of

points between
table entries

must be
estimated using

the table
values.”
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The part of the routine that generates the sine sam-
ples is given in the form of a subroutine to facilitate
calculation of the MSF. Only a MOVEP and a JMP
instruction must be executed to output a sample
point. This MOVEP instruction utilizes the modulo
addressing capability of the DSP56001/2. Three
address arithmetic unit registers are used in this
routine; the address register, R1, contains the index
into the sine table, the offset register, N1, contains
the value of delta, and the modifier register, M1,
contains the value N-1 to set up the modulo buffer.

Figure 3-1 Integer Delta

1 2 3 5 6 7 8

1.00

0.80

0.60

0.40

0.20

0.00

-0.20

-0.40

-0.60

-0.80

-1.00

2,6
+

+ +

+

Actual Sine Curve

∆

N = 8
∆ = 2

denotes table points
denotes the nth output point

denotes the 2nd and 6th output point)

+
n

2,6(e.g.

4,8

3,71,5

 

NOTE:

 

In Figure 3-2, the numbers in the parentheses at the far right of the subrou-

tine portion of the listing indicate the number of instruction cycles required to

complete the specific instruction. These numbers have been manually in-

cluded as comments to ease the calculation of MSF in Eqn. 3-1.
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Motorola DSP56000 Macro Cross Assembler Version 1.10 06-18-87 13:03:01 sinwgid.asm 
Page 1

1 page 132,50,0,10
2 ;SINWGID is a direct table look-up routine for SINE Wave Generation 
3 ;using Integer Delta values. The sine table is in on-chip ROM starting
4 ;at address Y:$100 and contains 256 (N) entries which correspond to the 
5 ;sines of 256 equally spaced angles between 0 and 360 degrees.
6 ;Integer delta values between 1 and N/2 can be used to step through the 
7 ;table. Here Delta=2 and is saved in N1. The table size is saved in M1.
8 ;
9 00000060 start equ $60 ;starting address.
10 00000100 sinep equ $100 ;sine table starting address.
11 000000FF mask equ 255 ;set mask = table size - 1.
12 00000002 delta equ 2 ;set delta = 2 
13 0000FFE0 sinea equ $ffe0 ;address of output device.
14 P:0060 org p:start
15 P:0060 0506BA movec #6, omr ;enable on-chip ROM with sine table
16 P:0061 61F400 move #sinep,r1 ;initialize sine table pointer.
17 000100
18 P:0063 05FFA1 movec #mask,m1 ;set up modulo N addressing.
19 P:0064 390200 move #delta,n1 ;offset equals Delta.
20 P:0065 0BF080 jsr sineg ;jump to subroutine.
21    000066
22 P:0067 09C9E0 sineg movep y:(r1)+n1,y:sinea ;output sample. (2)
23 P:0068 00000C rts ;return from subroutine.(2)

end ;the end of listing.
0 Errors
0 Warnings

Figure 3-2 “SINWGID” Routine

External
Peripherals

Output 

Internal
Y ROM

Internal
Program
Memory

Device

Y Data Memory Program Memory

$ffff

$ffe0

$ffc0

$1ff

(R1)

sinep=$100
Start = $60

Figure 3-3 “SINWGID” Memory Map

N
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Resources required for the “SINWGID” routine:

 

Data ROM

 

  256 24-bit words for the 
sine table

 

Program Memory

 

6 24-bit words for the
initialization

2 24-bit words for the 
subroutine

The MSF for the given sine-wave subroutine would
be achieved by replacing the RTS instruction with
the JMP SINEG instruction. After performing the
above replacement, MSF is given by:

 

Eqn. 3-1

 

               

 

where: 

SIC = the total number of Subroutine 
Instruction Cycles in “sineg”. 
SIC can be obtained by adding the 

numbers in the brackets incorpo-
rated in the subroutine

Icyc = the instruction cycle execution time

 

For example, in Eqn. 3-1, if Icyc = 50 ns and SIC =
4 cycles:

 

MSF

 

 = 1 /(2 • 50 • 4) MHz

             = 2.5 MHz

The results above compare very favorably in terms of
both program memory requirements and execution
speed with those for other competitive products (7).

MSF 1
2 Icyc SIC••
-----------------------------------=
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3.2  Real Delta Implementation

 

This implementation is a direct table look-up method
with delta being a positive real number, that is, a
number consisting of an integer and a fractional part.
When fractional values of delta are used, samples of
points between table entries must be estimated us-
ing the table values. The most straightforward
estimation is to use the previous table entry. This
approach is described in this section and illustrated
in Figure 3-4 for N = 8 and 

 

∆

 

 = 2.5.

Figure 3-4 Real Data Without Interpolation
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The assembler listing for the SlNe-Wave Genera-
tion Real Delta (“SINWGRD”) routine is presented
in Figure 3-5. The memory map (see Figure 3-6) is
the same as that used for the SINWGID routine ex-
cept that R4 is used to point to the output device.
This saves one cycle since the previous sample can
be output while the accumulator is being updated
using the parallel move feature of the DSP56001/2.
The programmer's model for the Data ALU is pre-
sented in Figure 3-7.

Motorola DSP56000 Macro Cross Assembler Version 1.10 06-18-87 13:03:27 sinwgrd.asm Page 1

1 page    132,50,0,10 
2 ;SINWGRD is a direct table look-up routine for SINe Wave Generation using 
3 ;positive Real numbers for Delta. The sine table is in on-chip ROM starting at 
4 ;address r:$100 and contains 256 (N) entries corresponding to the sine values 
5 ;of 256 equally spaced angles between 0 and 360 degrees. N must be a power of 
6 ;two. Delta can be between 0.0 and N/2. Here delta = 2.5 and is saved in B1 and 
7 ;B0. The table size minus one, N-1, is saved in X1.
8 ;
9 00000060 start equ $60 ;program starting address.
10 00000100 sinep equ $100 ;sine table starting address.
11 000000FF mask equ $ff ;N - 1.
12 2.500000 delta equ 2.5 ;delta = 2.5
13 0000FFE0 sinea equ $ffe0 ;address of output device.
14 P:0060 org p:start
15 P:0060 0506BA movec #6,omr ;enable on-chip ROM with sine table
16 P:0061 64F400 move #sinea,r4 ;set up output pointer.
16 00FFE0 
17 P:0063 51F400 move #(delta-@cvi(delta)),b0;store fract. part in b0.
18 400000 
19 P:0065 61F43A asl b #sinep, r1 ;eliminate sign bit, init. r1.
20 000100 
21 P:0067 2D0200 move #acvi(delta),b1 ;integer part of delta in b1.
22 P:0068 390013 clr a #0,n1 ;initialize acc. a and n1.
23 P:0069 45F400 move #>mask, x1 ;set modulo mask.
24 0000FF 
25 P:006A 0BF080 jsr sineg ;jump to subroutine.
26        00006C
27 P:006C 4EE910sineg add b,a y:(r1+n1),y0;update a, get sine value. (2)
28 P:006D 4E6466 and x1, a y0,y:(r4) ;mask a, output sample. (1)
29 P:006E 219900 move a1,n1 ;update offset register nl. (1)
30 P:006F 00000C rts ;return from subroutine. (2)
31 end ;end of listing.
0 Errors
0 Warnings 

Figure 3-5 “SINWGRD” Routine
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Figure 3-6 “SINWGRD” Memory Map

External
Peripherals

Output 

Internal
Y ROM

Internal
Program
Memory

Device

Y Data Memory Program Memory

$ffff

(R4)=$ffe0

$ffc0

$1ff

(R1+N1)

sinep=$100
Start = $60

Figure 3-7 “SINWGRD” Data ALU Programmer’s Model
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Given delta is now a real number, the inherent mod-
ulo addressing mode in the DSP56001/2. cannot be
used and therefore a modulo addressing scheme
must be implemented in software. The following is
a description of one approach to implementing such
a scheme. This approach uses both accumulators.

In this routine the integer part of delta is stored in
the upper portion of an accumulator (B1 for the ex-
ample given), and the fractional part is stored in the
lower portion of the same accumulator (B0). Care
should be taken to ensure that the fractional part is
stored correctly. The number moved into B0 as a re-
sult of subtracting the integer portion from delta, i.e.

 

∆

 

 -@cvi(

 

∆

 

), is a signed, i.e. positive, fraction. This is
undesirable since the sign bit should be associated
with the integer portion. Therefore a shift to the left
must be performed to eliminate the sign bit leaving
the unsigned fraction in B0.

The separation of integer and fractional portions is
done by using the assembler “ConVert to Integer”
built-in function (@cvi). The CVI function converts
real numbers to integers by simply truncating the
fractional part of the number. Therefore:

 

• @cvi

 

(∆)

 

 returns the integer portion of delta 

• 

 

∆

 

-@cvi(

 

∆

 

) returns the signed fractional part of 
delta

 

This assumes that delta is not a runtime variable. If
delta is required to be a runtime variable, it can be
passed by separating it into a signed integer and
unsigned fraction which are loaded into B1 and B0
respectively.
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A second accumulator, A in this example, contains
the positive real number value used to load the off-
set register, N1, which is used to offset the pointer,
R1. R1 is used to address the correct location in the
sine table. Since the table index must be an integer,
only A1 is moved to N1. Incrementing by delta, how-
ever, is done on both the integer and fractional parts
of the A accumulator. It should be noted that the in-
crement of the register R1 is done by indexing the
register with the offset register N1, thus leaving the
original value of R1 (base address) unchanged.
Note that the binary point is at an imaginary point
between the two 24-bit parts of the accumulators.
Initially we have:

After the first addition we get:

To wrap the pointer, A1, around when it is increment-
ed past the length of the table, a masking operation
is performed on A. The mask, contained in X1, is the
table length minus one, N-1, where N is restricted to
be a power of two. This restriction is necessary to en-
sure that the mask consists of k least significant ones
where k is defined by 2k = N. Using the above mask-
ing operation, the value of A1 and consequently N1,
is restricted to be between 0 and N-1.

A1 A0

00ACC. A = •

A1 A0

Unsigned Fractional Delta0+Integer DeltaACC. A = •
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Resources required for the “SINWGRD” routine:

 

Data ROM

 

256 24-bit words for the 
sine table

 

Program Memory

 

11 24-bit words for the 
initialization

4 24-bit words for the 
subroutine memory 

 

MSF

 

1/(2 • 50 • 6) MHz 

= 1.667 MHz

 

3.3  Harmonic Distortion

 

Due to the fact that the sine wave generated is an
approximation, not all of the energy is at the funda-
mental frequency; a certain amount of the energy of
the generated samples falls into frequencies other
than the fundamental. Those frequencies are:

 

1. Harmonic frequencies, hf, i.e. integer multiplies
of the fundamental frequency, f

2. Subharmonic frequencies, sf, where s = h/d and
h, d are integers

 

The resulting noise is measured in terms of THD,
given by the following equation:

 

Eqn. 3-2

 

When using the table look-up algorithms, harmonic

spurious harmonic energy
total energy of the waveformTHD =
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distortion occurs from two distinct sources —

 

1. Quantization Error: Since the sine table values
stored in memory are of finite word length (24 bits
in this case) the sine values cannot be
represented exactly. Quantization error is directly
proportional to the word length. For example the
sine of 45 degrees in decimal will be:

0.7070707 using 24 bits 

0.7071 using 16 bits

2. Sampling Error: When points between table
entries are sampled, i.e., delta is not an integer,
then large errors are introduced because these
points must be estimated from the table values.
Since the sampling errors are derived from the
table values, sampling errors are always greater
than quantization errors.

 

The THD for different deltas and different table sizes
is shown in Table 3-1(a), Table 3-1(b), and Table 3-2.
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Table 3-1(a)   Total Harmonic Distortion — Integer Delta

N ∆ = 2 ∆ = 3

8 3.5527141 • 10-15 5.7949068 • 10-15 

16 5.7949068 • 10-15 3.6274700 • 10-15

32 3.6274700 • 10-15 2.8356370 • 10-15 

64 2.8356370 • 10-15 3.4157912 • 10-15 

128 3.4157912 • 10-15 2.8659804 • 10-15 

256 2.8659804 • 10-15 2.6423040 • 10-15 

512 2.6423040 • 10-15 2.6142553 • 10-15 

1024 2.6142553 • 10-15 2.4857831 • 10-15
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Table 3-1(b)   Total Harmonic Distortion — Integer Delta

∆ N = 64 N = 256

1 3.4157912 • 10-15 2.6423040 • 10-15

2  2.8356370 • 10-15 2.8659804 • 10-15

3  3.4157912 • 10-15 2.6423040 • 10-15

4  3.6274702 • 10-15 3.4157912 • 10-15

5  3.4157912 • 10-15 2.6423040 • 10-15

6  2.8356370 • 10-15 2.8659804 • 10-15

7  3.4157912 • 10-15 2.6423040 • 10-15

8  5.7949069 • 10-15 2.8356370 • 10-15

9  3.4157912 • 10-15 2.6423040 • 10-15

10  2.8356370 • 10-15 2.8659804 • 10-15

Table 3-2   Total Harmonic Distortion — Real Delta

∆ N = 64 N = 128 N = 256

2.00 2.8356370 • 10-15 3.4157912 • 10-15 2.8659804 • 10-15

2.25 7.5141324 • 10-04 1.8539830 • 10-04 4.7061084 • 10-05

2.50 6.0107522 • 10-04 1.4805426 • 10-04 3.7649080 • 10-05

2.75 7.5141324 • 10-04 1.8539830 • 10-04 4.7061084 • 10-05

3.00 3.4157912 • 10-15 2.8659804 • 10-15 2.6423040 • 10-15

8.25 7.5141324 • 10-04 1.8539830 • 10-04 4.7061084 • 10-05

11.625 7.9041085 • 10-04 1.9724369 • 10-04 4.9414069 • 10-05



3-14 MOTOROLA

The equations as well as the FORTRAN code used
for calculating the THD in the above tables are in-
cluded in Appendix A. With respect to Table 3-1(a),
Table 3-1(b), and Table 3-2 some important obser-
vations and conclusions can be drawn:

1. For integer delta the THD for N ≤ 1024 is of the
same order of magnitude. This can be seen in
Table 3-1(a) and Table 3-1(b). For integer deltas
the only errors which cause distortion are
quantization errors.

2. For integer delta and small N the THD is
nonuniform. This is evident for ∆ = 2 and N ≤ 128
or ∆ = 3 and N ≤ 64 in Table 3-1(a). For small N,
the quantization error distribution is not
uniformly distributed between ±1/2 Least
Significant Bit (LSB) thereby causing the THD
values to be nonmonotonic.

3. For integer delta and large N the THD decreases
monotonically with increasing N. This is evident
for ∆ = 2 and N ≤ 128 or ∆ = 3 and N ≤ 64 in Table
3-1(a). For large N, the quantization error
distribution will tend to be uniform between ± 1/2
LSB resulting in the monotonic behavior.

4. THD for odd deltas and any N is constant.
Similarly, THD for even deltas and any N is
constant with the exception of delta equal to a
power of two greater than 2 (see Table 3-1(b)).
The explanation rests with the observation that all
N points are used for generating sine waves
using odd deltas. The N/2 even points are used
twice for generating sine waves using even
deltas with the exception of delta being a power
of two greater than 2. For this exception, the
points used in generating the sine waves are
separated by delta and are used delta times. As
noted in Appendix A, for integer deltas the total
number of points used in the THD calculations
will be independent of delta and equal to N.
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5. THD depends on the fractional part of delta.
The THD for ∆ = 2.50 is less than either 2.25 or
2.75 (see Table 3-2), because the fractional
part generates an integer every other access
for ∆ = 2.50 and every other fourth access for
2.25 or 2.75. Therefore, every other sample is
free of sampling error for ∆ = 2.5 but only every
fourth sample is free of sampling error for the
other two cases. Observe that the THD for 2.25,
2.75, and 8.25 is the same. The THD for 11.625
is slightly higher because the fractional part
forms an integer only every eighth access.

6. The THD for non-integer deltas decreases with
increasing table length as seen in Table 3-2.
Consider the same delta entries for different N.
By increasing the table length, the difference
between table entries decreases, resulting in
better approximations to the non-integer
samples, hence reduced sampling errors. ■
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In order to synthesize a sine wave of any frequency
with low distortion, an interpolation method must be
used together with table look-up. By using interpola-
tion, sine values between table entries can be repre-
sented more accurately. The easiest interpolation
technique to implement is linear interpolation. For lin-
ear interpolation the sine value for a point between
successive table entries is assumed to lie on the
straight line between the two values. This is illus-
trated in Figure 4-1 where ∆ = 2.5 and N = 8. Con-
trast this figure with Figure 3-4.

The algorithm used for linear interpolation is based
on the equation of a straight line:

y = m • x+b

where: m = the slope of the line 
x = the x-coordinate value 
b = the initial y value 
y = the new y value

SECTION 4

Table Look-Up with 
Linear Interpolation

“. . . the THD
improves

dramatically for
non-integer

values of delta
when using

linear
interpolation.”
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For linear interpolation:

m = S[i + 1] - S[i]; i.e., it is the slope of the line 
segment between successive table 
entries i and i + 1

b = S[i], the value of the sine table at the 
base address plus the jth offset location

x = the fractional part of the pointer, 
0 < x < 1.0 

y = S[i + x], the approximated sample value

Therefore, we have:

S[i+x] = S[i]+x • {S[i+1]-S[i]}

Figure 4-1 Real Delta Interpolation
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The program flow diagram for the SlNe-Wave Gen-
eration Linear Interpolation (“SlNWGLl”) routine is
presented in Figure 4-2.

Figure 4-2 “SINWGLI” Flow Diagram

Initialize Sine Table
Pointer

SET UP m.x,b

Perform Linear
Interpolation

x(n) = m • x+b

Output Sample x(n)

Update
(Modulo Arithmetic)

Table Pointer

Initialize AAU
Registers

Separate Real Delta

Save Integer → Y1
Fraction → Y0

and
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The assembler listing is given in Figure 4-3; the
memory map is presented in Figure 4-4; and the
Data ALU programmer's model is presented in
Figure 4-5.

The sine table is stored in Y ROM starting at HEX
100. The address pointer, R1, points to the current
sine value while address pointer, R2, points to the
current plus one sine value, R2=R1+1. The slope
between successive points is determined by sub-
tracting the table entry pointed to by R2 from the
table entry pointed to by R1.

For the “SINWGLI” routine, the fractional part of
the linear approximation, x, is stored in the accu-
mulator, A0, and the integer portion is stored in A1.
A1 is “moved” into N1 which is used to index the
R1 register. The same value that is moved in N1 is
moved in N2 which is used to index R2. Note that
in contrast to the “SINWGRD” routine, the content
of A0 has to be right shifted so that it is in the cor-
rect positive signed fractional format prior to per-
forming the multiplication to generate the linear
approximation. Delta can be any positive real num-
ber between 0.0 and N/2. Accumulator B is first
used to separate delta into a signed integer and an
unsigned fraction (see “SINWGRD” routine), and
then it is used to calculate the interpolated sample
value. Note that an immediate long move (i.e.,
using the “>” sign) must be specified when saving
the integer part of delta in Y1 because (@CVI(∆))
would be interpreted as a signed fraction otherwise
(8). The part of the routine that generates the sine
samples is given in the form of a subroutine.
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Six address arithmetic unit registers are used in this
routine; besides R1, R2, R4, N1, and N2, the modi-
fier register M2 is used. The use of M2 is twofold.
First, M2 is used to store the mask value before it is
used in the AND masking operation. (This masking
operation constrains R1 + N1 within the desired
region in memory, i.e., implements modulo address-
ing.) Second, it is used to activate modulo arithmetic
updates of R2 + N2. This is necessary to take care
of the special case where R1 +N1 points to $1FF.
Since R2 + N2 equals R1 + N1 + 1, it would point to
$200 instead of $100 without modulo arithmetic.

External
Peripherals

Output 

Internal
Y ROM

Internal
Program
Memory

Device

Y Data Memory Program Memory

$ffff

(R4)=$ffe0

$ffc0

$1ff

(R2+N2)

sinep=$100
Start = $60

(R1+N1)

Figure 4-4 “SINWGLI” Memory Map
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Resources required for the “SINWGLI” routine:

Data ROM 256  24-bit words for the sine table

Program Memory 17  24-bit words for the initialization

12  24-bit words for the program memory

MSF 1/(2 • 50 • 16) MHz = 0.625 MHz

Signed Fractional Pointer

Integer Delta

Integer Pointer Unsigned Fractional Pointer

Unsigned Fractional Delta

ACCA =

ACCB = •

•

X1

Y1

A1 A0

B0

Output Value 0

Slope Value

X0

Y0

B1

Figure 4-5 “SINWGLI” Data ALU Programmer’s Model
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4.1   Harmonic Distortion
As expected the THD improves dramatically for
non-integer values of delta when using linear inter-
polation. This is of course because the intermedi-
ate points are better approximated. The
performance for integer deltas remains the same
as that for the direct table look-up methods already
discussed. The results for the THD using linear
interpolation are shown in Table 4-1 and these
results should be directly compared with the results
in Table 3-2.

Table 4-1    Total Harmonic Distortion — Real Delta

∆ N = 64 N = 128 N = 256

2.00 2.8356370 • 10-15 3.4157912 • 10-15 2.8659804 • 10-15

2.25 2.0443282 • 10-07 1.2762312 • 10-08 7.9741605 • 10-10

2.50 3.6316863 • 10-07 2.2683957 • 10-08 1.4175620 • 10-09

2.75 2.0443282 • 10-07 1.2762312 • 10-08 7 9741605 • 10-10

3.00 3.4157912 • 10-15 2.8659804 • 10-15 2.6423040 • 10-15

8.25 2.0443282 • 10-07 1.2762312 • 10-08 7.9741605 • 10-10

11.625 1.4913862 • 10-07 9.3069933 • 10-09 5.8146748 • 10-10
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With respect to Table 4-1 some important observa-

tions and conclusions can be drawn:

1. THD is reduced by 103 by using linear
interpolation with direct table look-up. This can be
verified by comparing Table 3-2 with Table 4-1.
This is because an extra correctional value is
added to the sine value obtained from the sine
table. This correctional value is the product of the
slope at the specific point and the fractional part
of the pointer (i.e., m-x).

2. THD depends only on the fractional part of delta
when linear interpolation is used. It is a
maximum for the fractional part = 0.5 and
symmetrical about this midpoint. This is evident
in Table 4-1. This is because the linear
approximation is poorest at the midpoint. ■
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The equation for calculating THD (given in Eqn. 3-2)
can be rewritten as:

Eqn. A-1

where: ET = the total energy of the wave
EF = the energy of the fundamental 

frequency

For accurate and correct results, the above energy
terms must be calculated over a full cycle of the syn-
thesized sine wave. In the case of direct table look-
up, a full cycle may require several passes through
the sine table. The number of passes depends on the
value of delta used.

A full cycle will be synthesized for the smallest n for
which n • ∆ is evenly divisible by N. For example, if
the table length, N = 128, and the step size, ∆ = 2.5 =
5/2, then a complete cycle occurs for n = 256, since
256 • 2.5/128 = 5. Figure 3-4 illustrates an example
for N = 8 and ∆ = 2.5. The (2 • 8 =) 16 points required
for the THD calculation are shown on the figure.

THD ET EF–
ET

---------------------=

APPENDIX A

Computation of Total 
Harmonic Distortion 
(THD)

“To determine
the precision

needed to
calculate THD,

consider the
inherent

symmetry in the
DFT.”
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In general, if ∆ = A/B, where A and B are relatively
prime numbers, then the minimum number of sam-
ples, N', which must be output to synthesize a full
cycle is N' = B • N.

The total energy, ET, in a cycle of length BN (BN =
B • N) is given by:

Eqn. A-2

where: x(i) is the ith sample of the sine-wave 
sequence

The amount of energy in the fundamental frequen-
cy, EF, over the same period is given by:

   

for a real sequence

Eqn. A-3

where the X(k) are terms of the Discrete Fourier
Transform (DFT) defined by the following equation:

Eqn. A-4

The x(n) values used to calculate THD in Table 3-1(a),
Table 3-1(b), Table 3-2, and Table 4-1 are based on
actual values computed by the DSP56001/2 for the 3
sample sine-wave generator programs described in
this document. The THD computation was carried out
using VAX VMS FORTRAN and by using the formulas
given above with double precision floating point
arithmetic(9).

ET x i( ) x i( )⋅
i 0=

BN 1–

∑=

EF 1 BN ) X A( ) 2
X BN A–( ) 2

+(•⁄( )=

2 BN⁄( ) X A( ) 2( )•=

X(k) x n( )e j 2 π BN⁄•( )– n k••[ ]

n 0=

BN 1–

∑=
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The VAX VMS FORTRAN source code used for the
computation of THD is given in Figure A-1.

Some important details concerning the computa-
tion of the THD should be noted. ENERG3 and
(ENERG2-EFUND) ideally should have the same
value. However, a difference may occur because
ENERG2 is much greater than EFUND. The result
of the subtraction will be inaccurate due to numeri-
cal precision limitations. To determine the
precision needed to calculate THD, consider the in-
herent symmetry in the DFT. For a real sequence
x(n), the DFT sequence, X(k), exhibits the following
symmetries (10):

1. Re{X(k)} = Re{X(N - k)}

2. Im{X(k)} = - Im{X(N - k)}

3. Mag{X(k)} = Mag{X(N - k)}

4. Arg{X(k)} = Arg{X(N - k)}

where: N is the length of the DFT

Therefore, using symmetry 3 as a check for the cor-
rect results for N = 128, we should have:

Mag{X(1)} = Mag{X(127)}

         Mag{X(2)} = Mag{X(126)}

•
•
•

Mag{X(n)} = Mag{X(128 - n)}
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This, in turn, means that the following equalities
should hold: 

Eqn. A-5

where: n = 0,1,2, . . BN-1

k = 0,1,2, . . BN-1

If single precision accuracy is used in calculating the
THD, the above equalities do NOT hold. For example,

let k = 1
n = 128
ARG1 = 2 • π • n • 1/128
ARG2 = 2 • π • n • 127/128

Then, as shown in Table A-1, cos (ARG1) does not
equal cos (ARG2) when truncating to only 8 digits.
If, however, double precision is used, the equalities
of Eqn. A-5 are satisifed, as shown in Table A-2
even when truncating to 10 digits.

2 π k n N⁄•••( )cos 2 π N k–( ) n N⁄•••( )cos=

2 π k n N⁄•••( )sin 2 π N k–( ) n N⁄•••( )sin–=

Table A-1    Single Precision Accuracy

n cos(ARG1) cos(ARG2) sin(ARG1) -sin(ARG2)

125 0.9891766  0.9891724 0.1467302 -0.1467580

126 0.9951848 0.9951788 0.0980167 -0.0980776

127 0.9987954 0.9987938 0.0490676 -0.0491002

Table A-2    Double Precision Accuracy

n cos(ARG1) cos(ARG2) sin(ARG1) -sin(ARG2)

125 0.989176509 0.989176509 0.146730474 -0.146730474

126 0.995147266 0.995147266 0.098017140 -0.098017140

127 0.998795456 0.998795456 0.049067674 -0.049067674
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C Program THD.FOR Using double precision real arithmetic 
C Program to calculate THD for digital sine-wave generation without interpolation.

IMPLICIT COMPLEX*16(X) 
REAL*8 ENERGl,ENERG2,ENERG3,S(2048),TWOPI,ISS(2048) 
DIMENSION X(0:2048) 
INTEGER*4 IS(2048) 
TYPE *,' ENTER TABLE SIZE (UP TO 2048)' 
ACCEPT *,NN 
TYPE *,'ENTER INPUT HEX FILENAME' 

C the hex values are assumed to be 11 on each line, each consisting of 6 characters C
and having a blank space in between them. This is the format of the "LOD" file 
C that is generated by the assembler [5]. 

READ(1,110)(IS(I),I=l,NN) 
110 FORMAT(ll(Z6,X)) 

DO 120 I=l,NN

IF(BTTEST(IS(I),23)) THEN
         IS(I)=JIOR(IS(I),'FF000000'X)

ENDIF
120 CONTINUE

DO 100 I=2,NN
ISS(I)=IS(I)

100 CONTINUE
TYPE *,' ENTER DELTA, BN, A'
ACCEPT *,DELTA,BN,A
AINDEX=0.0
DO 200 IABC=l,BN
INDEX=INT(AINDEX)
S(IABC)=DBLE(ISS(INDEX+1))
AINDEX=AINDEX+DELTA
IF (AINDEX.GT.FLOAT(N)) AINDEX=AINDEX-FLOAT(N)

200 CONTINUE
TWOPI=8.0*DATAN(l.D0)
DO 400 IK=0,BN-l
XSUM=DCMPLX(0.D0,OD0)
DO 300 IN=0,BN-l
XARG=DCMPLX(0.D0,-TWOPI*DBLE(IN)*DBLE(IK)/DBLE(BN))

300 XSUM=XSUM+DCMPLX(S(IN+1),0.D0)*CDEXP(XARG))
X(IK)=XSUM

400 CONTINUE
DO 500 IK=0,BN-l

500 ENERGl=ENERGl+CDABS(X(IK))**2.D0)
ENERGl=ENERGl/DBLE(BN)
DO 505 IR=0,BN-l
IF((IK.EQ.(A)).OR.(IK.EQ.(BN-INT(A)))) GOTO 505
ENERG3=ENERG3+(CDABS(X(IK))**2.D0)

505 CONTINUE 
ENERG3=ENERG3/DBLE(BN) 
energ3 should be the same as EFUND 

C DO 600 I=l,BN
600 ENERG2=ENERG2+(S(I)*S(I))

TYPE *,' ENERGl=',ENERGl,' ENERG2=',ENERG2,'
$ENERG3=',ENERG3
EFUND=((CDABS(X(A))**2)+(CDABS(X(BN-A))**2))/DBLE(BN)
TYPE *,' THD=',ENERG3/ENERG2,'EFUND=',EFUND
END

Figure A-1 VAX VMS FORTRAN Source Code for THD Computation
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Table B-1 gives the sine entries for N = 256. The hexadecimal values are
given in the signed fractional format used for the DSP56001. "$" denotes a
hexadecimal value.

APPENDIX B

The Sine Table

ADDRESS VALUE

S_01 $03242B 

S_02 $0647D9 

S_03 $096A90

S_04 $0C8BD3 

S_05 $0FAB27 

S_06 $12C810 

S_07 $15E214 

S_08 $18F8B8 

S_09 $1C0B82 

S_0A $1F19F9 

S_0B $2223A5 

S_0C $25280C 

S_0D $2826B9 

S_0E $2B1F35 

S_0F $2E110A

S_10 $30FBC5 

S_11 $33DEF3 

S_12 $36BA20 

S_13 $398CDD 

S_14 $3C56BA 

S_15 $3F174A 

S_16 $41CE1E 

S_17 $447ACD 

S_18 $471CED 

S_19 $49B415 

S 1A $4C3FE0 

S_1B $4EBFE9 

S_1C $5133CD 

S_1D $539B2B 

S_1E $55F5A5 

S_1F $5842DD

S_20 $5A827A 

S_21 $5CB421 

S_22 $5ED77D 

ADDRESS VALUE

Table B-1    Sine Table
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S_23 $60EC38 

S_24 $62F202 

S_25 $64E889 

S_26 $66CF81 

S_27 $68A69F 

S_28 $6A6D99 

S_29 $6C2429 

S_2A $6DCA0D 

S_2B $6F5F03 

S_2C $70E2CC 

S_2D $72552D 

S_2E $73B5EC 

S_2F $7504D3

S_30 $7641AF 

S_31 $776C4F 

S_32 $788484 

S_33 $798A24 

S_34 $7A7D05 

S_35 $7B5D04 

S_36 $7C29FC 

S_37 $7CE3CF 

S_38 $7D8A5F 

S_39 $7E1D94 

S_3A $7E9D56 

S_3B $7F0992 

ADDRESS VALUE

S_3C $7F6237 

S_3D $7FA737 

S_3E $7FD888 

S_3F $7FF622

S_40 $7FFFFF

S_41 $7FF622

S_42 $7FD888

S_43 $7FA737

S_44 $7F6237

S_45 $7F0992

S_46 $7E9D56

S_47 $7E1D94

S_48 $7D8A5F

S_49 $7CE3CF

S_4A $7C29FC

S_4B $7B5D04

S_4C $7A7D05

S_4D $798A24

S_4E $788484

S_4F $776C4F

S_50 $7641AF

S_51 $7504D3

S_52 $73B5EC

S_53 $72552D

S_54 $70E2CC

ADDRESS VALUE

Table B-1    Sine Table (continued)
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S_55 $6F5F03

S_56 $6DCA0D

S_57 $6C2429

S_58 $6A6D99

S_59 $68A69F

S_5A $66CF81

S_5B $64E889

S_5C $62F202

S_5D $60EC38

S_5E $5ED77D

S_5F $5CB421

S_60 $5A827A

S_61 $5842DD

S_62 $55F5A5

S_63 $539B2B

S_64 $5133CD

S_65 $4EBFE9

S_66 $4C3FE0

S_67 $49B415

S_68 $471CED

S_69 $447ACD

S_6A $41CE1E

S_6B $3F174A 

S_6C $3C56BA

S_6D $398CDD

ADDRESS VALUE

S_6E $36BA20

S_6F $33DEF3

S_70 $30FBC5 

S_71 $2E110A

S_72 $2B1F35

S_73 $2826B9

S_74 $25280C

S_75 $2223A5

S_76 $1F19F9

S_77 $1C0B82

S_78 $18F8B8

S_79 $15E214

S_7A $12C810

S_7B $0FABD

S_7C $0C8BD3

S_7D $096A90

S_7E $0647D9

S_7F $03242B

S_80 $000000

S_81 $FCDBD5

S_82 $F9B827

S_83 $F69570

S_84 $F3742D

S_85 $F054D9

S_86 $ED37F0

ADDRESS VALUE

Table B-1    Sine Table (continued)
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S_87 $EA1DEC

S_88 $E70748

S_89 $E3F47E

S_8A $E0E607

S_8B $DDDC5B

S_8C $DAD7F4

S_8D $D7D947

S_8E $D4E0CB

S_8F $D1EEF6

S_90 $CF043B

S_91 $CC210D

S_92 $C945E0

S_93 $C67323

S_94 $C3A946

S_95 $C0E8B6

S_96 $BE31E2

S_97 $BB8533

S_98 $B8E313

S_99 $B64BEB

S_9A $B3C020

S_9B $B14017

S_9C $AECC33

S_9D $AC64D5

S_9E $AA0A5B

S_9F $A7BD23

ADDRESS VALUE

S_A0 $A57D86

S_A1 $A34BDF

S_A2 $A12883

S_A3 $9F13C8

S_A4 $9D0DFE

S_A5 $9B1777

S_A6 $99307F

S_A7 $975961

S_A8 $959267

S_A9 $93DBD7

S_AA $9235F3

S_AB $90A0FD

S_AC $8F1D34

S_AD $8DAAD3

S_AE $8C4A14

S_AF $8AFB2D

S_B0 $89BE51

S_B1 $8893B1

S_B2 $877B7C

S_B3 $8675DC

S_B4 $8582FB

S_B5 $84A2FC

S_B6 $83D604

S_B7 $831C31

S_B8 $8275A1

ADDRESS VALUE

Table B-1    Sine Table (continued)
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S_B9 $81E26C

S_BA $8162AA

S_BB $80F66E

S_BC $809DC9

S_BD $8058C9

S_BE $802778

S_BF $8009DE

S_C0 $800000

S_C1 $8009DE

S_C2 $802778

S_C3 $8058C9

S_C4 $809DC9

S_C5 $80F66E

S_C6 $8162AA

S_C7 $81E26C

S_C8 $8275A1

S_C9 $831C31

S_CA $83D604

S_CB $84A2FC

S_CC $8582FB

S_CD $8675DC

S_CE $877B7C

S_CF $8893B1

S_D0 $89BE51

S_D1 $8AFB2D

ADDRESS VALUE

S_D2 $8C4A14

S_D3 $8DAAD3

S_D4 $8F1D34

S_D5 $90A0FD

S_D6 $9235F3

S_D7 $93DBD7

S_D8 $959267

S_D9 $975961

S_DA $99307F

S_DB $9B1777

S_DC $9D0DFE

S_DD $9F13C8

S_DE $A12883

S_DF $A34BDF

S_E0 $A57D86

S_E1 $A7BD23

S_E2 $AA0A5B

S_E3 $AC64D5

S_E4 $AECC33

S_E5 $B14017

S_E6 $B3C020 

S_E7 $B64BEB 

S_E8 $B8E313

S_E9 $BB8533 

S_EA $BE31E2

ADDRESS VALUE

Table B-1    Sine Table (continued)
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S_EB $C0E8B6

S_EC $C3A946

S_ED $C67323

S_EE $C945E0

S_EF $CC210D

S_F0 $CF043B

S_F1 $D1EEF6

S_F2 $D4E0CB

S_F3 $D7D947

S_F4 $DAD7F4 

S_F5 $DDDC5B

S_F6 $E0E607 

S_F7 $E3F47E

S_F8 $E70748 

S_F9 $EA1DEC

S_FA $ED37F0

S_FB $F054D9

S_FC $F3742D

S_FD $F69570

S_FE $F9B827

S_FF $FCDBD5

ADDRESS VALUE

Table B-1    Sine Table (continued)
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