Instructor’s Manual

MOTOROLA PowerPC

Excimer Laboratory Manual

Jose I. Quiñones, Noel Serrano, Walter Guiot, Luis Narváez, Eisen Montalvo

Department of Electrical and Computer Engineering

University of Puerto Rico-Mayagüez

Chuck Corley

PowerPC Applications Engineering

Motorola

Editor: José L. Cruz Rivera

Department of Electrical and Computer Engineering

University of Puerto Rico-Mayagüez

Version 0.7

March 27, 2000

VOLUME I

DISCLAIMERS

PREFACE

The PowerPC name, the PowerPC logotype, and PowerPC 603e are trademarks of International Business Machines Corporation used by Motorola under license from International Business Machines Corporation.

Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express or implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Motorola Literature Distribution Centers:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 5405; Denver, Colorado 80217; Tel.: 1-800-441-2447 or 1-303-675-2140;

World Wide Web Address: http://ldc.nmd.com/

JAPAN: Nippon Motorola Ltd SPD, Strategic Planning Office 4-32-1, Nishi-Gotanda Shinagawa-ku, Tokyo 141, Japan Tel.: 81-3-5487-8488

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd Silicon Harbour Centre 2, Dai King Street Tai Po Industrial Estate Tai Po, New Territories, Hong Kong

Mfax™: RMFAX0@email.sps.mot.com; TOUCHTONE 1-602-244-6609; US & Canada ONLY (800) 774-1848;

World Wide Web Address: http://sps.motorola.com/mfax

INTERNET: http://motorola.com/sps

Technical Information: Motorola Inc. SPS Customer Support Center 1-800-521-6274; electronic mail address: crc@wmkmail.sps.mot.com.

Document Comments: FAX (512) 895-2638, Attn: RISC Applications Engineering.

World Wide Web Addresses: http://www.motorola.com/PowerPC

http://www.motorola.com/netcomm

http://www.motorola.com/HPESD

INTRODUCTION

The manual contains 13 lab experiments for the PowerPC Excimer Board presented in order of increasing complexity. The experiments range from memory-mapping problems and system benchmarking to integer-to-floating-point number representation conversion. It is assumed that the student has a basic understanding of C and assembly languages. There is a natural progression in the lab experiments leading up to the Dhrystone and Linpack benchmarking of the PowerPC 603e that forms the basis of the Excimer board. Specifically, the experiments guide the student through the following topics: compiling code, downloading code, DINK functions (resident monitor program), keyboard input, assembly language programming, and linking assembly language to C code. There are also experiments on memory mapping and Flash ROM programming.

Each lab experiment is structured as follows:

· Problem statement—Provides a brief indication as to the tasks that will be performed.

· Objectives—Presents the specific educational objectives that will be met upon successful completion of the lab experiment.

· Background—Presents a brief description of the theory behind the devices, instructions, functional units, and/or methods to be followed in the conduction of the experiment.

· Procedure—Presents a step-by-step guide to the experiment.

· Questions—Guides the student through a meaningful analysis of what has been performed as part of the experiment.

· References—Presents additional references with material that is useful for the experiment at hand.

In addition to these sections, the Instructor’s Manual contains a Results and a Troubleshooting section.

This laboratory manual contains experiments designed to familiarize students with the PowerPC architecture via the Excimer Laboratory Board. The manual is not meant to serve as a stand-alone textbook on the PowerPC instruction set architecture (ISA), but rather is designed as a companion to any PowerPC book or technical reference. Each experiment is designed so that students end up with a significant number of useful subroutines that can be used in other more complex programming problems. Additional references to the PowerPC architecture and the Excimer board may be found at http://www.motorola.com/SPS/PowerPC/teksupport.

These exercises are written for the MetaWare High C/C++ Compiler found on the evaluation CDROM in the Excimer kit because this development tool is useable for programs of this scale immediately without additional licensing. The exercises have also been successfully compiled, linked, and executed in each of the other software development evaluation environments provided in the Excimer kit. Often this example software is valuable for overcoming "start-up" problems in using these compiler/debugger tools. The code, much of it reviewed by the compiler/debugger vendors themselves, is available from Motorola.

CONTENTS

CONTENTS

Experiment #1: Metaware Tutorial
Write and compile a simple C program.
7

Experiment #2: DINK Tutorial
Download the program to Excimer and use some utilities.
11

Experiment #3: Useful DINK Functions
Develop a C function for taking character input from the terminal emulator’s keyboard attached to Excimer through the serial port and converting number characters to decimal values used in other programs.
15

Experiment #4: Excimer Memory Map

Compile, download, and execute a C program which blinks the on-board LEDs
19

Experiment #5: LED Control from PC Keyboard

Write and debug a C program to turn the on-board LEDs on and off for varying integer counts.
25

Experiment #6: Introduction to Assembly Language Programming
Write a simple assembly > language program.
35

Experiment #7: Linking Assembly Language and C code
Link previous code fragments.
45

Experiment #8: Converting Integers to Floating Point

Develop an assembly language subroutine to convert the 64 bit integer value read from the PowerPC time base facility to a 64 bit (double) floating point number representing seconds. (Contributed by Chuck Corley, Motorola)
57

Experiment #9: Dhrystone Benchmarking

Write and debug a C program to measure the time required to execute the Dhrystone benchmark.
69

Experiment #10: Linpack Benchmarking

Write and debug a C program to time in microseconds (floating point) the execution of the Linpack benchmark.
79

Experiment #11: Cache Impact on Benchmark Metrics

Write a single program to time the performance of Dhrystone and Linpack with the caches enabled and disabled.
85

Experiment #12: Flash ROM

Write a program that copies itself into Flash ROM and begins executing from there.
89

Experiment

1

Metaware Tutorial

Problem Statement:

· In this experiment the student will develop and compile a C program that will calculate the first 12 Fibonacci numbers using the Metaware PowerPC compiler. (Contributed by Noel Serrano).

Objectives:

Upon completion of this laboratory experience, students will be able to do the following:

· Write and compile a C program using the Metaware compiler.

· Write a recursive function to generate the first 12 Fibonacci numbers

Background Information:

This experiment is designed to take you through the major steps required to implement a simple algorithm for the generation of the first 12 Fibonacci numbers using the Metaware compilers for the Excimer board. The Metaware compiler facilitates code writing, debugging, and optimization. More information on the compiler may be obtained from www.metaware.com.

The Fibonacci sequence represents a series that has as its first two elements, 0 and 1. The remaining elements are obtained by simply adding the last two numbers to get the next. For example, the first 12 Fibonacci are as follows:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89

The Fibonacci numbers arose from the solution to the following problem posed in the year 1225: Suppose one pair of rabbits can produce another pair of productive offspring when they reach the age of 1 month and that each successive pair of offspring can do the same. Furthermore, assume the rabbits never die. How many rabbits are there after n months? The solution is as follows: If after n months there are kn pairs of rabbits, the number of pairs in month n+ 1 will be kn plus the number of new pairs born. However, because new pairs are only born to pairs at least 1 month old, there will be kn-1 new pairs, that is kn+1 = kn + kn-1, which is simply the rule for generating the Fibonacci numbers. More information on the fascinating world of Fibonacci numbers and their applications can be found in http://pass.maths.org.uk/issue3/fibonacci/index.html.

Procedure:

1. Write a C language program that will calculate the first 12 Fibonacci numbers.

Hint: Use a recursive function.
2. To print the numbers in the DINK32 interface (this will be discussed in more detail in future experiments) you will need to add the following code to your program to use the printf function provided by DINK. Also the printf function should contain only one variable.
#include "dinkusr.h"

#define printf dink_printf

First line of main() should be:

set_up_transfer_base();
3. Type your program to a text file using notepad or edit and save it in the directory you have chosen to contain your code.

4. Compile the C code with the hcppc command included with the Metaware C compiler using the following command on the DOS command prompt:
<Tools directory>/hcppc -DDINKR12 -I<DINK source directory> file.c -o file.o
Note: “file.c” stands for the C code file. You may name your C code file as you wish, but remember to use the chosen name in the "hcppc" command. The -I option specifies where to look for include files. The result from this command will be “file.o”, which is the object file. For more information about the options of the compiler, type "hcppc -h".

5. To use the DINK user functions such as "printf", an additional file must also be assembled and linked (this will be discussed in more detail in future experiments). Use the Metaware Assembler using the following command on the DOS command prompt:

<Tools directory>/asppc <DINK source directory>/dinkusr.s -o dinkusr.o
6. Link the object files using "ldppc" command to invoke the linker program included with the Metaware C compiler using the following on the DOS command prompt:
<Tools directory>/ldppc -e main -Bbase=0x90000 -xm -xo=file.src file.o dinkusr.o

The ".o" files are the object files generated in the previous steps. The object file will be named exactly as you named the C code file. This step generates the file, “file.src”, which will be later downloaded to the Excimer board. The "–Bbase=0x90000" option specifies where your code is to be placed in the memory of the Excimer Board. For more information about the linker type, type "ldppc -h".

References:

· Metaware High C/C++ Compiler – http://www.metaware.com
Suggested Code:

/* file: fib.c*/

#include "dinkusr.h"

#define printf dink_printf

int fibonacci(int x);

main()

{

 set_up_transfer_base();

 int fib_no = 0, index = 0;

 while (index < 12)

 {

 fib_no = fibonacci(index);

 printf("Fibonacci number for index %d is", index);

 printf(" %d\n", fib_no);

 index++;

 }

 return 0;

}

int fibonacci(int number)

{

 switch(number)

 {

 case 0 : return 1;

 case 1 : return 1;

 default :

 return (fibonacci(number-1) + fibonacci(number-2));

 }

}
Troubleshooting:

If the student is not able to compile:

· Check the path of the linker, assembler, and linker

If the student is not able to access the DINK printf:

· The user has not called set_up_transfer_base().

· "dinkusr.h" was not included in their code.

· "dinkusr.o" was not linked into the executable code.

· The DINK32 version does not support dynamic functions. DINK32 V11.0.2 was the last version that DID NOT support this feature. Ensure that you are using DINK32 V12.0 or greater.

Experiment

2

DINK Tutorial

Problem Statement:

· This experiment is designed to introduce the student to the DINK interface. A tutorial on how to download code to the Excimer board and some useful DINK debugging utilities are also presented. (Contributed by Noel Serrano).

Objectives:

Upon completion of this laboratory experience, students will be able to do the following:

· Download their programs to the Excimer board using the DINK interface

· Debug the programs using the DINK built-in debugging tools

Background Information:

The Excimer board contains a ROM monitor called DINK32, which enables you to connect to the evaluation board through a serial cable using a terminal program. A developer can use DINK to have continuous communication with the evaluation board, allowing insight into the board’s state at all time. The terminal screen of your program should look like the following:

DDD III N N K K 333 222

D D I NN N K K 3 3 2 2

D D I N N N KK 33 22

D D I N NN K K 3 3 22

DDD III N N K K 333 22222 for MPC603ev

Metaware Build

Version XX, Revision XX

Written by : Motorola's RISC Applications, Austin, TX

 Released : Interim Release: Built on Feb 23 2000 21:47:00

 System : Welcome to Excimer. A Minimum System PowerPC Design!

 Processor : MPC603ev V12.1 @ 133 MHz, Memory @ 66 MHz

Copyright Motorola, Inc. 1993, 1994, 1995, 1996, 1997, 1998, 1999

Changes for each release, Errata for dink, Future Enhancements

and bug fixes are documented in the file history.c

DINK32_MPC603ev >>
Figure 2-1. DINK32 on Terminal Client

For more information on DINK, see www.mot.com/SPS/PowerPC/teksupport/teklibrary/index.html.

Procedure:

1. First make sure your evaluation board is connected using the serial cable provided to serial port 1 (COM1).

2. Open your terminal client and configure it to connect through COM1 using the following parameters.

Parameter
Value

Protocol
Serial

Port
COM1

Baud Rate
9600

Data Bits
8

Parity
N

Stop Bits
1

RTS/CTS
Enabled

3. Press Connect on your terminal client and apply power to the evaluation board. You should be able to see the initialization window with the DINK32_603e >> prompt as presented in the figure shown below (see step 7).

4. Compile the program you created in Experiment 1 using the Metaware compiler.

5. Now you are ready to download your program to the Excimer board for execution. Go to the terminal client running the DINK32 interface and type "dl –k". This command expects data from the keyboard serial port (COM1).

6. Send the file from the terminal client by selecting a command like "Send Text File" or "Send
ASCII" (this can vary from one terminal client to the other). Now browse for the "file.src" created in the directory where you compiled your program.

7. Run your program by typing "go 90000" in the DINK32 program. If your code is correct and if you successfully downloaded the code, you should get an output similar to the following.

[image: image1.png]DINK32_6@3e >>d1

—k

set to Keyboard Port
Dounload Complete.
70000

DINK32 603 >>g0
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fihonacci nunber
DINK32 6@3e >>

for
for
for
for
for
for
for
for
for
for
for
for

index
index
index
index
index
index
index
index
index
index
index
index

is 34
is 55

10'is 89
11 ic 144

RO NAGNRE

Hint: Table 2-1 presents some useful commands in case you need to debug your program, view memory or register contents, or set breakpoints for program tracing. For more information type "help <command>" in the DINK prompt.

Table 2-1. Command Summary

Command
Format
Description

Memory Display
md <addr>
Displays the memory area specified by the hex address

Registry Display
regdisp rx
Displays the register specified by rx

Disassemble
ds <addr>
Disassemble the code starting at the specified address location

Trace
tr <addr>
Begin tracing a program at the specified address. To continue tracing type tr +.

Breakpoint
br <addr>
Sets a breakpoint at the specified address

Assemble
as <addr>
Provides the option of changing part of the assembly from the DINK interface accessing it through the address of the code line.

References:

[1] Motorola, Designing a Minimal PowerPC System, PowerPC Application Note: AN1769/D, 1998.

Conclusions:

Students should be able to note the following:

· DINK functionality enables the user to modify the memory, registers, and assembly code.

· DINK provides breakpoint and trace capabilities for debugging.

Troubleshooting:

If the student is not able to communicate with DINK, do the following:

· Verify the connections to COM1 port and board

· Check for correct settings on terminal client

· Applying power should show the DINK32 banner. Hitting <return> should cause a new "DINK32_603e>" prompt.

Experiment

3

Useful DINK Functions

Problem Statement:

· In this experiment the student is introduced to a set of useful functions contained within the DINK 32 interface. The student will develop a C function scanf() for taking character input from the terminal emulator’s keyboard attached to Excimer through the serial port and convert number characters to decimal values used in other programs. (Contributed by Noel Serrano and Chuck Corley)

Objectives:

Upon completion of this laboratory experience, students will be able to do the following:

· Work with more advanced DINK functions for use on future exercises.

· Substitute functions in DINK for equivalent functions normally found in <stdio.h>
When writing a scanf() function, students will do the following:

· Recognize and echo ASCII character values with getchar() and putchar()
· Convert digit characters input through the keyboard into integers for use in other programs

· Use DINK’s printf() output function to display the resulting integer value.

Background Information:

The DINK 32 interface provides a set of functions that facilitate the development of programs for the Excimer board. Some DINK functions allow the keyboard data to be captured and printed to the screen. Others control parts of the Excimer board configuration, such as enabling the timer, cache, etc.

The first method for accessing functions is dynamic address reference, which are accessed by means of a reference table. Using these functions is implemented via the assembly language file, dinkusr.s, and the include file dinkusr.h. The user #includes dinkusr.h and links in dinkusr.s during compilation/link time. All of the functions in this table except set_up_ transfer_base(), transfer control to the DINK32 function while leaving the link register, lr, unchanged. This effectively transfers control to the DINK32 function and the DINK32 function on completion returns directly to the caller in the user’s code. The functions supplied in dinkusr.s are shown in the table below:

Table 3-1. Dynamic Address Function Summary

User Functions
Description

void set_up_transfer_base();
Capture the dink_transfer_table address from r21 and store it into a local memory cell for future use.

Unsigned long get_KEYBOARD();
Return address of keyboard com port

char get_char(unsigned long);
Get next character from the duart buffer. Requires the KEYBOARD com port as an argument.

char write_char(char);
DINK32 put character to the output buffer.

int dink_printf(const char*, ...);
DINK32 entry into printf

Unsigned int dink_loop();
DINK32 idle loop (Goto DINK prompt)

int is_char_in_duart();
function to determine if a character has been received

Unsigned int menu();
DINK32 display menu function

Unsigned int par_about();
DINK32 display about function

Unsigned int disassemble(long,long);
DINK32 disassemble instruction

These functions can be called in your C code by #including dinkusr.h. You may rename them to familiar function names with a #define statement. You must call set_up_transfer_ base() before using any of these functions, and it should be called immediately, such as the first statement in main(). The following section presents four DINK functions:

· get_char() enables the programmer to capture characters from the keyboard through the DINK interface. The input value should be the com port value returned by get_KEYBOARD();
· write_char() enables the programmer to display characters on the terminal screen that is connected to DINK.

· dink_printf() provides the option of displaying a string of characters on the DINK interface and include a run-time variable, either char or integer, on this string. The DINK printf function can only include one variable per statement unlike in C where it can contain any number of variables. It does accept a control string but it ignores floating-point and character formats. It will only print decimal numbers (%d), hexadecimal numbers (%x), and strings (%s)

Texts on programming describe how to get input for a program. For example, The Waite Group’s New C Primer Plus [2] says:

The C library contains several input functions, and scanf() is the most general of them, for it can read a variety of formats. Of course, input for the keyboard is text because the keys generate text characters: letters, digits, and punctuation. When you desire to enter, say, the integer 2002, you type the characters 2 0 0 and 2. If you want to store that as a numerical value rather than as a string, your program has to convert the string character-by-character to a numerical value. And that is what scanf() does! It converts a string input into various forms: integers floating-point numbers, characters, and C strings.

It is the inverse of printf(), which converts integers, floating-point numbers, characters, and C strings to text that is to be displayed on the screen. Like printf(), scanf() uses a control string followed by a list of arguments. The control string indicates into which formats the input is to be converted.

The DINK software on Excimer provides input and output functions that save the programmer from having to interact directly with the DUART that receives input and sends output to the terminal. However these functions are not at the level of a complex function like scanf(). Nevertheless, many of the C programs that we desire to run on Excimer call the scanf() function because of its widespread use.

In this experiment, you will write your own function, my_scanf(), and substitute it (by a #define directive) for any scanf() function that the compiler may encounter in programs intended for Excimer. Likewise you will define dink_printf() to substitute for printf() and link dink_printf() into your programs. Then you will have input and output functions for use in other programs.

To keep my_scanf() simple, we will assume that the only control string for converting inputs is the %d or decimal format. Your my_scanf() function should accept a control string as an argument but then ignore it and return a decimal value to the second (and last) argument in the functional call. Later experiments may require more sophisticated substitute functions for scanf(), but this simple decimal input routine will be widely applicable.

Procedure:

1. Write a C language program that asks the user to input a number through the keyboard and then outputs the number input as a positive decimal number.

2. In a separate file, write a C program, my_scanf(char, int), that reads characters from the keyboard, echoes those that are digits, and at the carriage return assigns a decimal value to the second argument of my_scanf().
Hint: While ignoring non-digit characters may be an acceptable simplification, you may want to check for backspace or delete characters and take the appropriate action if the user attempts to correct his numerical input.
3. Write a header file, which equates the function name scanf to my_scanf and equates printf to dink_printf. Include this header file in your test program.

Example:
/* File - support.h

 * Equates functions used in Excimer Exercise to equivalent

 * functions defined in DINK or in my_scanf.c

 */

#include "dinkusr.h"

#define printf dink_printf

#define scanf my_scanf

extern void my_scanf(char *, int *);

4. Link your input/output test program and my_scanf program.

5. Download the resulting S-record file to Excimer, execute it, confirm that it echoes only digit characters and returns the correct decimal value to your program at the carriage return.

References:

[1] Motorola, Designing a Minimal PowerPC System, PowerPC Application Note: AN1769/D, 1998.

[2] The Waite Group’s New C Primer Plus (1990: Howard W. Sams & Co, Carmel, IN)

Suggested Code:

/* file "testscanf.c"

 * A test harness for Excimer Experiment to prove out

 * my_scanf() function.

 * Modification History:

 * 990121 CJC Original

*/

#include "support.h"

void main(void)

{

 set_up_transfer_base();

int
decimal_no;

printf ("Enter a decimal number: ");

scanf("%d", &decimal_no);

printf ("\nDecimal number is: %d \n", decimal_no);

}

/* file "my_scanf.c"

 * Defines an alternative to the scanf function provided by

 * stdio.h for use when running the Dhrystone benchmarks on DINK.

 * Created: 990119 CJC

 * Modified:

*/

#include "dinkusr.h"

#define getchar get_char

#define getkb get_KEYBOARD

#define putchar write_char

void my_scanf(char *fmt, int *v)

{

char
ch;

int
no_runs = 0;

while ((ch = getchar(getkb())) != 0xd)
/* Carriage return? */

{

if ((ch == 0x7f) || (ch == 0x8)) /* Delete? */

{

putchar(0x8);

/* Backspace */

putchar(0x20);

/* Overprint a space. */

putchar(0x8);

/* Backspace */

/* Assume modulo arithmetic to subtract last digit added. */

no_runs = no_runs / 10;

} else

if ((ch >= '0') && (ch <= '9')) /* A digit? */

{

putchar(ch);

/* Echo it and */

/* Accumulate the value. */

no_runs = (no_runs * 10) + (ch - 48);

/* ASCII character - 48 equals the digit. */

}

}

*v = no_runs;

/* Assign second Arg the value. */

}

Conclusions:

Students should be able to note the following:

· Characters are received from the keyboard as bytes of ASCII-encoded information.

· Input/output functions that are normally available in standard C libraries for a given computer may not be available or may exist in different, simpler forms on a small, embedded evaluation system like Excimer

· Programmers can write their own input/output routines or link in routines that are provided in the embedded system.

Troubleshooting:

· If the student is not able to get started—Suggest that the student develop and debug the C program on the host computer by including <stdio.h> before substituting the DINK routines and downloading to Excimer. This should clarify the ASCII encoding of digits and conversion to a decimal number.

· If the student is not able to recognize the carriage-return character—Excimer will be in a continuous loop of accepting and echoing input. Additional printf() statements that output each character as it is read in will reveal the value that the DUART provides for the carriage-return character.
If the student is not able to access the DINK dynamic functions:

· The user has not called set_up_transfer_base().

· "dinkusr.h" was not included in their code.

· "dinkusr.o" was not linked into the executable code.

· R12 is getting trashed before set_up_transfer_base() is called.

· The DINK32 version does not support dynamic functions. DINK32 V11.0.2 was the last version that DID NOT support this feature. Ensure that you are using DINK32 V12.0 or greater.

Experiment

4

Excimer Memory Map

Problem Statement:

· This experiment requires the compilation, downloading, and execution of a C language program that blinks the Excimer Board’s STATUS and ERROR light-emitting diodes (LEDs). (Contributed by Noel Serrano, José I. Quiñones, Luis Narváez, Walter Guiot, and Gunther Costas).

Objectives:

Upon completion of this laboratory experience, students will be able to do the following:

· Write and compile a C program

· Download and execute PowerPC assembly object code

· Locate the LEDs within the Excimer’s memory map

· Apply the methodology needed to turn the LEDs on and off.

Background Information:

The PowerPC family of microprocessors is based on a memory-mapped input/output scheme. Using this scheme, an input port can be thought of as read-only memory location, while an output port can be treated like a write-only memory location. The microprocessor’s address bus is used to select the peripheral device (port location), the data bus is used to transmit or receive data to/from the device, and the Transfer Type (TT) signals are used to convey the directionality of the information transfer.

Figure 4-1 shows the memory map for the Excimer board. The memory map indicates that out of a total of 232 = 4-GB addressable locations, the Excimer Board allocates 230 = 1 GB each to static RAM, fast I/O devices, slow I/O devices and Flash ROM [1]. Of course, the Excimer board uses only a fraction of the memory locations allocated for each type of memory and devices. The Excimer board is configured with 1MB of SRAM, 4 MBs of Flash ROM, and some LED indicators. For example, there’s a STATUS LED at 0x4020_0000, and an ERROR LED is specified at 0x4060_0000.

STATIC RAM

0x0000_0000 (0x3FFF_FFFF

FAST I/O

0x4000_0000 (0x7FFF_FFFF
(STATUS LED: 0x4020_0000

(ERROR LED: 0x4060_0000

SLOW I/O

0x8000_0000 (0xBFFF_FFFF

FLASH ROM

0xC000_0000 (0xFFFF_FFFF

Figure 4-1. Excimer's Memory Map.
In this experiment you are required to write a C program that will blink (repeatedly turn on and off) the STATUS and ERROR LEDs alternatively. The LEDs are turned on/off by clearing/setting BIT 3 (fourth least significant bit) of these locations. The reason for this negative logic is that the LEDs are connected in a common anode configuration, as shown in Figure 4-2 for the case of a seven-segment LED display.

[image: image2.png]LED | LED
NN

LED
N

LED

Figure 4-2. Common-Anode LED Configuration

In Figure 4-2, LEDs turn ON when the cathode is at ground level (Excimer output asserted low).

To successfully blink an LED, you must carefully select the delay timing. Remember that the microprocessor may turn the LED on and off so quickly that you cannot see the blinking effect. Because your program will be written in C, a simple FOR loop instruction may do the job.

For (counter=0;counter <= parameter; counter++);

Note: counter must be declared as unsigned long in the program. The value parameter defines the delay time.

There are other ways to create a delay, for example using the PowerPC internal timer register. These techniques will be demonstrated in later experiments.

Procedure:

1. Write a simple C code that alternatively blinks the status and error LEDs ten times.

2. Compile and link the code similar to the previous experiments. Note: This exercise does not require the use of DINK functions so "dinkusr.s" does not need to be included.

3. Run the terminal client and power up. Download the "file.src" file, which resulted from the last step, by writing "dl –k" on the DINK monitor.

4. "Send text file" and find your file.src file and select it. The file will be downloaded to the Excimer board.

5. Execute the program by writing "go 90000" on the terminal.

6. Observe the behavior of the on-board LEDs. What happens if you change the value of parameter in your FOR loop statement?

References:

[1] Motorola, Designing a Minimal PowerPC System, PowerPC Application Note: AN1769/D, 1998.

Suggested Code:

/* This program will blink the status and Error LEDs alternatively ten times. After that, both LEDs will be shut off. 0xfffff will cause a visible delay in a 300MHz PowerPC*/

main()

{

 unsigned long count;

 int loop;

for(loop = 0; loop <= 10; loop++)

{

 *(char *) (0x40200000) = 0x00; //turn on status

 *(char *) (0x40600000) = 0x08; //turn off error

 for(count = 0; count <=0xfffff; count ++); // delay

 *(char *) (0x40200000) = 0x08; //turn off status

 *(char *) (0x40600000) = 0x00; //turn on error

 for(count = 0; count <=0xfffff; count ++); // delay

}

*(char *) (0x40600000) = 0x08; // turn off error

}

Conclusions:

Students should be able to note the following:

· The speed that drives the PowerPC microprocessor is very fast and thus a blinking effect might not be perceived.

· For different loop parameters, the LED will remain ON or OFF for a different time period.

· The LEDs are configured as common anode (positive terminal connected together).

Troubleshooting:

If the student is not able to turn ON or OFF the LED, check the following:

· The address being written to is either 0x4060_0000 or 0x4020_0000.

· A suitable value for the time delay loop has been defined.

· The student has compiled, linked, and downloaded the program correctly.

Experiment

5

LED Control from Keyboard

Problem Statement:

· This experiment requires the compilation, downloading, and execution of a C language program which blinks the Excimer Board’s ERROR Light Emitting Diode (LEDs) the number of times specified by the user input. (Contributed by Noel Serrano and José I. Quiñones).

Objectives:

Upon completion of this laboratory experience, students will be able to do the following:

· use the DINK functions presented in Experiment #3

· print to the DINK32 interface

· capture single characters from the keyboard and echo them to the DINK32 interface

Procedure:

1. Write a C program that will blink the on board LED’s based on user input. The program should ask the user which LED he wants to blink and how many times.

Hint: To create this program, modify the program you created in the previous experiment and the useful DINK functions described in Experiment 3.

References:

[1] Motorola, Designing a Minimal PowerPC System, PowerPC Application Note: AN1769/D, 1998.

Suggested Code:

#include "dinkusr.h"

#include "support.h"

#define getchar get_char

#define getkb get_KEYBOARD

#define putchar write_char

#define printf dink_printf

void blink_leds(int addr, int i);

main()

{

set_up_transfer_base();

int decimal_no;

char LED;

do

{

printf ("\nSelect the LED you want to blink:\n");

printf ("\tS - Press S for the Status LED\n");

printf ("\tE - Press E for the Error LED\n");

printf ("\tQ - Press Q to Quit\n");

LED = getchar(getkb()); /* Read typed Character */

if (LED == 'E' || LED == 'e')

{

printf ("\nEnter the number of times to blink the Error LED: ");

scanf("%d", &decimal_no);

blink_leds(0x40600000, decimal_no);

}

else if (LED == 'S' || LED == 's')

{

printf ("\nEnter the number of times to blink the Status LED: ");

scanf("%d", &decimal_no);

blink_leds(0x40200000, decimal_no);

}

} while (LED != 'Q' && LED != 'q');
/* X or x */

 return 0;

}

void blink_leds(int addr, int i)

{

unsigned long count;

int loop;

for (loop = 0 ; loop < i; loop++)

{

*(char *) (addr) = 0x00;
//turn on selected LED

for(count = 0; count <= 0xfff00; count ++){};

*(char *) (addr) = 0x08;
//turn off selected LED

for(count = 0; count <= 0xfff00; count ++){};

}

*(char *) (0x40600000) = 0x08;

}

Conclusions:

Students should be able to note the following:

· A PowerPC Excimer board program can obtain data from a user via the keyboard.

· The getchar function is not useful when more than one character is needed as input, so an implementation of a scanf function would be useful.

Troubleshooting:

If the student is not able to blink the LEDs, verify the memory mapping for each of the LEDs.

If the student is not able to access the DINK dynamic functions:

· The user has not called set_up_transfer_base().

· "dinkusr.h" was not included in their code.

· "dinkusr.o" was not linked into the executable code.

· R12 is getting trashed before set_up_transfer_base() is called.

· The DINK32 version does not support dynamic functions. DINK32 V11.0.2 was the last version that DID NOT support this feature. Ensure that you are using DINK32 V12.0 or greater.

Experiment

6

Introduction to Assembly Language Programming

Problem Statement:

· In this experiment the student is introduced to the PowerPC instruction set architecture through the development of an assembly language routine. (Contributed by Eisen Montalvo-Ruiz)

Objectives:

Upon completion of this laboratory experience, students will be able to do the following:

· Write and compile an assembly language subroutine

· Use Metaware assembler directives

· Understand the PowerPC instruction set and register set

Background Information:

· PowerPC Register Set

The PowerPC architecture has two levels of privileges, user mode and supervisor mode. In supervisor mode, all registers are available to the programmer, while in the user mode only a subset of the registers is available. We are going to focus on user mode for this laboratory.

In user mode, the available PowerPC registers include the 32 general-purpose registers (GPRs), 32 floating-point registers (FPRs), a condition register (CR), a floating-point status and control register (FPSCR), the XER register, the link register (LR), and the count register (CTR). In addition, there are two read-only registers, associated with the time-base facility (TBU and TBL).

The GPRs are used to manipulate integer data, and are 32-bits wide in 32-bit PowerPC implementations. They are used as source and destination registers in the integer instructions.

The FPRs are used with floating-point instructions. They are 64-bits wide and can manipulate single- and double floating-point data. Related to these registers is the FPSCR, which contains all floating-point exception signal bits, excluding summary bits, exception summary bits, exception enable bits, and rounding control bits.

The 32-bit CR is divided into eight 4-bit fields. It contains the results of certain arithmetic operations and provides a way for testing and branching. The XER register indicates overflows and carry conditions for integer operations. The LR supplies the branch target address for the Branch Conditional to Link Register instructions. The CTR holds a loop count that can be decremented during execution of appropriately coded branch instructions.

The time base facility consists of a 64-bit register that is divided in two 32-bit registers, time base upper (TBU) and time base lower (TBL). You will learn more about these registers in a future laboratory.

· PowerPC Instruction Set

The PowerPC instruction set is very powerful and extensive. It contains around 200 instructions, excluding suffixes. We don’t have the space to cover all of them. For now, we are going to work with the integer arithmetic, integer load and store, and flow control instructions. A general description of the format of the instructions will be given. More information can be obtained from the PowerPC programming references.

Integer Instruction Set

(a) Integer Arithmetic Instructions

You can add, subtract, multiply, and divide integer numbers. You can use immediate values and registers. Also, register-to-register instructions are available. A general description of the format of the instructions follows.

1. Immediate Values

opcode rD, rA, SIMM
rD is the destination register, rA is the source register and

SIMM is a signed immediate value.

2. Register to Register

opcode rD, rA, rB
rD is the destination register and rA and rB are the source

registers.

(b) Integer Compare Instructions

These instructions can be used with branch instructions to control program flow. They affect the CR, such that the branch instructions can choose their target address based on a comparison in an earlier instruction. Of course, they could be used only for comparing.

1. Immediate Values

opcode rA, SIMM
rA is the register you want to compare to a signed

immediate value

2. Register to Register

opcode rA, rB

rA is the register you want to compare to register rB

Integer Load and Store Instruction Set

Integer load and store instructions allow data movement between memory and GPRs. They have three addressing modes. In any one of them, if you use r0, the address calculation uses zero instead of the value in rA.

(a) Register indirect with immediate index addressing

opcode rD, SIMM(rA)
For loads, rD is the destination register; it will contain the value stored in the memory address that is the sum of SIMM and the value in the rA. For stores, the memory address that is the sum of SIMM with the value in rA, will be updated with the value stored in rD.

(b) Register indirect with index addressing

opcode rD, rA, rB
For loads, rD is the destination register; it will contain the value stored in the memory address that is the sum of the values in rA and rB. For stores, the memory address that is the sum of the values in rA and rB will be updated with the value in rD.

(c) Register indirect addressing

opcode rD, rA
For loads, rD is the destination register; it will contain the value stored in the memory address that is the value in the rA. For stores, the memory address that is the value in rA will contain the value stored in rD.

Branch Instructions Set

These instructions are commonly used with compare instructions. You place the branch after the compare, using the result of the compare to make the decision.

opcode label
'label' is the address of the code where you want to branch to. The assembler translates the label to the address.

· Metaware Assembler Directives

The assembler directives are instructions to the assembler on how to configure data and where to put the code and data in memory. The most useful are as follows:

(a) .text – identifies where the code section starts.

(b) .data – mark the start of the data section

(c) .word <value>
Reserves space for a word in memory

(d) .global <label>
Makes this routine a public one

You can put comments in any line, but they must be in either C format, "/*comment*/" or //comment. In addition, you can use labels for branching. They must end with a semicolon and must be at the beginning of the line, with or without code in the same line.

· Metaware Assembly Compilation

For compiling your assembly code using Metaware, you must go through three steps:

1. First pre-process the code with the compiler, so you can use compiler directives and C comments in your code.

2. Second, assemble the code using asppc, which invokes the Metaware assembler.

3. And finally, use the linker on the object file.

<Tools directory>/hcppc -DDINKR12 -P -Hasmcpp matmult.s

<Tools directory>/asppc matmult.i -o matmult.o

<Tools directory>/ldppc -e matmult -Bbase=0x90000 -xm -xo=matmult.src matmult.o -o matmult

The -e option specifies an entry label for the program. The –xo option is the name of the output file. The –xm tells the program to generate a Motorola S3 record

Procedure:

1. Write an assembly language routine that multiplies two NxN matrices.

Remember:

[image: image3.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

´

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

ij

i

i

j

j

ij

i

i

j

j

ij

i

i

j

j

c

c

c

c

c

c

c

c

c

b

b

b

b

b

b

b

b

b

a

a

a

a

a

a

a

a

a

...

...

...

...

..

...

...

...

...

...

...

..

...

...

...

...

...

...

..

...

...

2

1

2

22

21

1

12

11

2

1

2

22

21

1

12

11

2

1

2

22

21

1

12

11

[image: image4.wmf]dimension.

matrix

 the

is

n

where

,

*

...

*

*

2

2

1

1

nj

in

j

i

j

i

ij

b

a

b

a

b

a

C

+

+

+

=

Hints:

Assume that r3 contains the N dimension of the matrix. Let r4-r6 be pointers to the beginings of matrices C, A, and B. As you increase the memory address offset, traverse across rows, then go back to the beginning of the next row. Also, make it flexible so you can change the size of the matrices without changing your code. These hints will save you some time on the next experiment.

2.
Compile and link your code.

3.
Download the .src file with the dl-k command.

4.
Decide on the size and locations of your matrices in memory. The memory size of each matrix is NxNx4 bytes. A relatively safe address range to point towards is anywhere between the top of this program (about 0x95000) and below 0xFFFFF.

5.
Set up the inputs for the matmult function using memod and regmod. For instance, if you chose to multiply 2x2 matrices, and wanted to put C at 0x99000, A at 0x99010, and B at 0x99020, enter the values of A and B by typing "mm 99010-9902c". Then enter the register values like this:

DINK32_MPC603ev >>rm r3-r6
 gpr03 = 0x00000000 : ? 2
 gpr04 = 0x00000000 : ? 99000
 gpr05 = 0x00000000 : ? 99010
 gpr06 = 0x00000000 : ? 99020
6.
Execute the matrix multiplication by typing "go 90000".

7.
View the result of the matrix multiply by displaying the memory at C by typing "md 99000".

References:

[1] Motorola, PowerPC Microprocessor Family: The Programming Environments for 32-Bit Microprocessors, MPCFPE32B/AD, Rev 1, 1/97.

Suggested Code:

/*file "matmult.s"

 Assembly Language program to multiply 2 3x3 matrices

 EMR 990407

 Parameters:

r3 = size

r4 = pointer to matrix c

r5 = pointer to matrix a

r6 = pointer to matrix b

 Register usage:

r14 = i

r15 = j

r16 = k

r17 = temp

r18 = offset to current value of cell in matrix a

r19 = offset to current value of cell in matrix b

r20 = offset to current value of cell in matrix c

r21 = temp Aik

r22 = temp Bkj

r23 = temp Cij (accumulator)

*/

/* CODE Section*/

.text

.align 2

.global matmult

matmult:

xor r14, r14, r14 //Clear R14

xor r23, r23, r23 //Clear R23

cmpw r14, r3 //If i>=size then ...

bge exit //goto exit, else ...

another_i:

xor r15, r15, r15 //Clear j

another_j:

xor r16, r16, r16 //Clear k

another_k:

mullw r18, r14, r3 //Offset to row of A using i

add r18, r18, r16 //Offset to col of A using k

slwi r18, r18, 2

 //Multiply by 4, we’re loading words, not bytes

lwzx r21, r5, r18 //Load Aik to R18

mullw r19, r16, r3 //Offset to row of B using k

add r19, r19, r15 //Offset to col of B using j

slwi r19, r19, 2

 //Multiply by 4, we’re loading words, not bytes

lwzx r22, r6, r19 //Load Bkj to R19

mullw r17, r21, r22 //Aik*Bkj

add r23, r23, r17 //Cij+=Aik*Bkj

incr_k:

addi r16, r16, 1 //Increment k

cmpw r16, r3 //If k<size then ...

blt another_k //goto another_k, else ...

save_val:

mullw r20, r14, r3 //Offset to row of C using i

add r20, r20, r15 //Offset to col of C using j

slwi r20, r20, 2

 //Multiply by 4, we’re using words, not bytes

stwx r23, r4, r20 //Store Cij

xor r23, r23, r23 //Clear Temp for another cell

incr_j:

addi r15, r15, 1 //Increment j

cmpw r15, r3 //If j<size then ...

blt another_j //goto another_j, else ...

incr_i:

addi r14, r14, 1 //Increment i

cmpw r14, r3 //If i<size then ...

blt another_i //goto another_i, else ...

exit:

blr //exit

Conclusions:

Students should be able to note that:

· Programming in assembly code is a bit complex. However, the increase in performance and the smaller size of the resulting code makes it worth the effort in some cases.

· This routine alone is not very useful, but the next laboratory shows a way to interface an assembly routine to a C/C++ program.

Troubleshooting:

If the student is not able to get started—Suggest that the student code the multiplication in a C program until they have proven their algorithm. If they are still having difficulty, the disassembly of the C program could provide insightful.

Experiment

7

Linking Assembly Language and C Code

Problem Statement:

· This experiment introduces the student to linking PowerPC assembly language and C code. (Contributed by Eisen Montalvo-Ruiz)

Objectives:

Upon completion of this laboratory experience, students will be able to do the following:

· Call an assembly routine from a C/C++ program

· Know the PowerPC function-calling sequence

Background Information:

The following information is excerpted directly from Chapters 10 and 11 of the “High C/C++ Programmer’s Guide for PowerPC”. This document can be obtained from Metaware through their website.

· Making an assembly routine callable from a C program

To be able to call an assembly language routine from a C program you must insert this piece of code before the assembly routine:

.text

.align 2

.global name

name:

You are going to use “name” to call the routine from a C program.

· Calling an assembly routine from C

For each assembly function you want to call, you have to declare it external. The following code should make it clearer:

extern foobar();

void main()

{

...

foobar();

...

}

· Function-Calling Sequence

One of the most difficult parts of assembly language programming is parameter passing in function calls. Fortunately, the PowerPC function-calling and parameter passing is among the easiest one in the realm of assembly programming. Here is a brief description of this process. If you want more information, read the books in the reference section.

Stack-Frame Layout

Figure 8-1 shows the memory stack frame organization for the PowerPC system. Every function needs to establish its own stack frame, but the stack frame is only necessary if the function is going to call another function.

[image: image5.wmf]Back-Chain Word

Floating-point register save area

General register save area

Conditional register save area

FPSCR save area

Local variable space (padding allowed here only)

Parameter list area

Link register save word

Back-Chain Word

High

Address

Low

Address

Stack grows

down

Stack

Pointer

Stack

frame

header

Stack frame

of the most

recently

called

function

Figure 8-1. Standard Stack Frame

The stack frame grows downward from high to low memory address and is 16-byte aligned. It doesn’t have a maximum size but it has a minimum. The minimum stack frame consists of the stack-frame header with padding to a 16-byte alignment. Any padding must occur within the local variable area. The stack pointer points to the back-chain word of the most recently called function. This forms a linked list of stack frames.

The stack frame can include the following areas as required by any function:

· Floating-point register save area–non-volatile floating-point registers modified

· General register save area–non-volatile general registers modified

· CR save area–condition register fields modified

· FPSCR save area–floating-point status and control register bits modified

· Local variable space–local variables of function not mapped to registers

· Parameter list area–allocated by the caller of function; must be large enough to contain the arguments that the caller stores in it

· LR save word–contents of the link register as they were at the time of entry to a function
· Back-chain word–pointer to the previous stack frame’s back-chain word
The parameter list area is not preserved across function calls and it must follow the stack frame header immediately.

Register usage

Table 8.1 contains the usage and status of the registers in the function-calling process. Non-volatile registers belong to the calling function. If the called function wants to use them, it must save their values before using the registers and restore them before returning.

Volatile registers are not preserved across function calls, and can be used without being saved. Also you can’t use the dedicated and reserved registers. You can corrupt the system if you use them.

Table 8.1. PowerPC Register Usage

Register Name
Status
Usage

r0
Volatile
Language-specific purposes

r1
Dedicated
Stack frame pointer, always valid

r2
Dedicated
Reserved for system use

r3-r4
Volatile
Parameter passing and return values

r5-r10
Volatile
Parameter passing

r11-r12
Volatile
Language-specific purposes

r13
Reserved
Small data area pointer

r14-r30
Non-Volatile
Local variables

r31
Non-Volatile
Local variables or “environment pointer”

f0
Volatile
Language-specific purposes

f1
Volatile
Parameter passing and return values

f2-f8
Volatile
Parameter passing

f9-f13
Volatile
Scratch

f14-f31
Non-Volatile
Local variables

CR0

CR1

CR2

CR3

CR4

CR5

CR6

CR7
Volatile

Volatile

Non-Volatile

Non-Volatile

Non-Volatile

Volatile

Volatile

Volatile
Condition Register fields, each four bits wide

(Bit 6: Floating-point invalid operation exception)

LR
Volatile
Link Register

CTR
Volatile
Count Register

XER
Volatile
Fixed-Point Exception Register

FPSCR0-23

FPSCR24-31
Volatile

Modifiable
Floating-Point Status and Control Register

(Exception-enable and rounding-control bits)

Parameter passing

A maximum of eight integer arguments can be passed in in GPR3–GPR10 and a maximum of eight floating-point arguments can be passed in FPR1–FPR8. If there are fewer parameters than the maximum, the unneeded registers contain undefined values. If there are more parameters than fit in those registers, the function must generate a stack frame by allocating the minimum space needed for the parameters that do not fit in the registers.

If the function wants to return a value, Table 8-2 shows how they can be passed, according to their type.
Table 8-2. PowerPC Function Return Values

Function Return Type
Return in Register
Comment

float
f1

double

int
r3
Returned as unsigned or signed integer (as appropriate), zero- or signed-extended to 32 bits if necessary

long

enum

short

char

pointer to any type

long long
r3 and r4
Returned with the lower-addressed word in r3 and the higher-addressed word in r4

unsigned long

struct(less than or equal to 8 bytes)
r3 and r4
It is returned as if the following steps had occurred:

1- The struct or union was first stored in an 8-byte aligned memory area.

2- The low-addressed word was loaded into r3

3- The high-addressed word was loaded into r4

union(less than or equal to 8 bytes)

long double
Storage Buffer
The address of this buffer is passed as a hidden argument in r3

struct(greater than 8 bytes)

· Metaware Compiling

When you are combining assembly and C, you can’t compile like you did in the last laboratory. This is an example of compiling C and assembly using hcppc, the Metaware C/C++ compiler. For compiling, additional -I options may be necessary to point to the correct .h include files.

<Tools directory>/hcppc -P -Hasmcpp ../lab6/matmult.s

<Tools directory>/asppc matmult.i -o matmult.o

<Tools directory>/asppc ../../../dinkusr.s -o dinkusr.o

<Tools directory>/hcppc -DDINKR12 ../lab3/my_scanf.c -o my_scanf.o

<Tools directory>/hcppc -DDINKR12 matrixmult.c -o matrixmult.o

<Tools directory>/ldppc -e main -Bbase=0x90000 -xm -xo=matrixmult.src matrixmult.o my_scanf.o matmult.o dinkusr.o -o matrixmult

Procedure:

1. Write an assembly language routine that multiplies two N x N matrices and a C language program that asks the user for the size of the matrices and their initial values and shows the resulting matrix. The C program should call the assembly routine.

Hint: You can use the assembly routine you made in the last laboratory. If you followed the hint in that laboratory, you shouldn’t need to make too many changes.

References:

[1] Motorola, PowerPC Microprocessor Family: The Programming Environments for 32-Bit Microprocessors, MPCFPE32B/AD, Rev 1, 1/97.

Suggested Code:

/*file MatrixMult.c

C program that calls an assembly routine. It asks the

user for the size and initial values for the matrices

and then shows the results of their multiplication.

*/

#include "dinkusr.h"

#include "support.h"

#define getkeyboard get_KEYBOARD

#define getchar get_char

#define putchar write_char

#define printf dink_printf

/* Assembly Routine */

extern matmult(int size, int *result, int *mata, int *matb);

int *malloc(unsigned int); /* Memory Allocation function proto*/

int *mata; /* First Matrix */

int *matb; /* Second Matrix */

int *matc; /* Resultant Matrix */

int size; /* Matrices Size */

void main()

{

 set_up_transfer_base();

int i, l;

int temp;

/* Ask the user for the size */

printf("Enter size of matrices > ");

scanf("%d",&size);

printf("\n");

/* Separate memory for the matrices */

mata = malloc(size*size);

matb = malloc(size*size);

matc = malloc(size*size);

/* Ask user for initial values */

for(int j=0; j<size; j++)

{

for(int m=0; m<size; m++)

{

printf("A%d",j+1);

printf("%d = ",m+1);

scanf("%d", &temp);

printf("\n");

mata[j*size+m]=temp;

printf("B%d",j+1);

printf("%d = ",m+1);

scanf("%d", &temp);

printf("\n");

matb[j*size+m]=temp;

/* Clear resultant matrix memory */

matc[j*size+m]=0;

}

}

/* Calling assembly routine */

matmult(size, matc, mata, matb);

/* Display results */

for(i=0; i<size; i++)

{

printf("| ");

for(l=0; l<size; l++)

printf("%d ",mata[i*size+l]);

printf("| ");

if((i+1)==(size/2))

{

printf("*");

}

else

{

printf(" ");

}

printf(" | ");

for(l=0; l<size; l++)

printf("%d ",matb[i*size+l]);

printf("| ");

if((i+1)==(size/2))

{

printf("=");

}

else

{

printf(" ");

}

printf(" | ");

for(l=0; l<size; l++)

printf("%d ",matc[i*size+l]);

printf("|");

printf("\n");

}

}

/* Memory Allocation Function */

int *malloc(unsigned int size)

{

 static int buffer[2048];

 static int *next = buffer;

 int *p = next;

 next += ((size + 7) & ~7);

 if (next >= &buffer[0] + sizeof(buffer))

 /* Terminate by executing a zero. */

 asm(".long 0"); /* This will not work on all compilers! */

 return p;

}
Troubleshooting:

· If the student is not able to get the parameters in the assembly function—Use the xref file to know where the assembly function and the parameters are in memory. Then look in the assembly code of the C program for the call to the assembly function. Before the call, you will see where the code is putting the parameters in the registers for the assembly function. This could help you understand the function-calling sequence.

Experiment

8

Converting Integers to Floating Point

Problem Statement:

· This experiment requires the development of an assembly language subroutine to convert the 64 bit integer value read from the PowerPC time base facility to a 64-bit (double-precision) floating-point number representing seconds. (Contributed by Chuck Corley, Motorola)

Objectives:

Upon completion of this laboratory experience, students will be able to do the following:

· Write and assemble an assembly language subroutine

· Call the assembly language subroutine from a C program and use the values returned

· Convert integer numbers to PowerPC floating point representation

· Convert time base count values to seconds of wall clock time

Background Information:

The PowerPC architecture requires each microprocessor implementation to provide a time base facility, a 64-bit structure that consists of two 32-bit registers–time base upper (TBU) and time base lower (TBL). User-level applications are permitted read-only access to the TB, which is useful for timing program execution or providing a time reference. The update frequency of the time base is system-dependent, so the algorithm for converting the current value in the time base to time of day is also system-dependent. The MPC603e microprocessor used on the Excimer board increments the TB at one-fourth the SYSCLK (bus) frequency.

Excimer does not have a real-time clock chip as would be found on most computers. TBU and TBL are cleared at each power-up (or they can be set to an initial value in supervisor mode). The TB facility then counts up at one-fourth of SYSCLK frequency from this initial value. Excimer cannot relate a TB value to real time without user assistance–like setting a watch.

SYSCLK is crystal controlled to 66.6666 MHz (see the oscillator on the board at U15), therefore TBL increments 16,666,667 times per second. When TBL exceeds 232, a carry-out bit increments TBU. Thus, TBU increments every 257.7 seconds and the total range of the TB is 1.1x1012 seconds or approximately 35,000 years. This number is better represented in application programs as a floating-point value.

The PowerPC architecture represents double-precision floating-point values in the 64-bit format shown in Figure 9-1.

Figure 9-1. Floating-Point Double-Precision Format

Where

· S (sign bit)

· EXP (exponent + bias)

· FRACTION (fraction)

For numeric values, the significand consists of a leading implied bit concatenated on the right with the FRACTION. For normalized numbers (it is unnecessary to deal with denormalized floating-point numbers in this exercise) the implied bit is a 1 and is the first bit to the left of the binary point. Normalized numbers are interpreted as follows:

NORM = (-1)S x 2(EXP - 1023) x (1.FRACTION)

The range covered by the magnitude (M) of a normalized double-precision floating-point number is approximately:

2.2x10-308  M  1.8 x 10308
Adding 1023 biases the double precision exponent so that positive and negative exponents can be represented without a sign bit. Example exponents are shown in Table 9-1.

Table 9-1. Biased Exponent Format

Biased Exponent

(Binary)
Unbiased Exponent

(Double-Precision)

111_1111_1111
Reserved for infinities and NaNs

111_1111_1110
+1023

111_1111_1101
+1022

.
.

100_0000_0000
1

011_1111_1111
0

111_1111_1110
-1

.
.

000_0000_0001
-1022

000_0000_0000
Reserved for zeros and denormalized numbers

Examples of TB integer values converted to double-precision floating-point representation are shown in Table 9-2. Because it would take 35,000 years to test a conversion program for the upper limits of the TB, this experiment should include a test program that supplies these example values to an integer-to-floating-point assembly-language conversion routine and verifies that the correct floating point value is returned. The last column of Table 9-2 shows the floating-point value of the TB converted to seconds given Excimer’s 66-MHz bus clock.

Table 9-2. Example TB to Floating-Point Conversions

TB count

(decimal)
TBU (hex)
TBL (hex)
S
EXP

biased

(dec)
FRACTION (hex)
DP Floating Pt Value (hex)
Seconds (dec)

0
0000_0000
0000_0000
0
0
0_0000_0000_0000
0000_0000_0000_0000
0.00

1
0000_0000
0000_0001
0
+1023
0_0000_0000_0000
3FF0_0000_0000_0000
6.00e-8

2
0000_0000
0000_0002
0
+1024
0_0000_0000_0000
4000_0000_0000_0000
1.20e-7

524,288
0000_0000
0008_0000
0
+1042
0_0000_0000_0000
4120_0000_0000_0000
3.15e-2

1.57e6
0000_0000
0018_0000
0
+1043
8_0000_0000_0000
4138_0000_0000_0000
9.44e-2

3.67e6
0000_0000
0038_0001
0
+1044
C_0000_8000_0000
414C_0000_8000_0000
2.20e-1

1.67e7
0000_0000
00FE_502B
0
+1046
F_CA05_6000_0000
416F_CA05_6000_0000
1.00

3.22e9
0000_0000
C000_0401
0
+1054
8_0000_8020_0000
41E8_0000_8020_0000
1.93e2

1.29e10
0000_0003
4000_5001
0
+1056
A_0002_8008_0000
4208_0002_8008_0000
7.73e2

1.58e16
0038_0001
4001_0005
0
+1076
C_0000_A000_8002
434C_0000_A000_8002
9.46e8

1.84e19
FEDC_BA98
7654_3210
0
+1086
F_DB97_530E_CA86
43EF_DB97_530E_CA86
1.10e12

Procedure:

1. Write an assembly language routine that accepts two unsigned integer arguments TBU and TBL and returns a double float value.

Suggestion: Assembly language routines are used primarily for speed (or access to hardware resources that are otherwise not available). To make this routine faster, try using static branch prediction. For example, a TB value of zero has to be tested as a special case to form EXP but is unlikely. Likewise, values over 252 are unlikely (why would there be a conditional branch for this value?)
Hint: You may find the assembly language instructions cntlzw and rlwnm very useful.
2. Write a C program that calls the assembly language routine with the example values of Table 9-2 and check that it returns the correct floating-point value.
Reminder: DINK provides a dink_printf routine that may be used to print results to the terminal. However, it will not format floating-point numbers; results will have to be displayed as two unsigned long int values. Is there a C construct that will permit viewing two 32-bit memory locations as both unsigned long int and double?

3. Write an assembly language routine that reads Excimer’s TB facility and, using Excimer’s bus clock speed of 66.6666 Mhz, returns seconds as a double-precision floating-point number.

Caution: TB must be read in two separate instructions. It is unlikely, but possible, that TBU could increment between reading these two registers. Consider the sequence TBU = 0x0000_0000, TBL = 0xFFFF_FFFF; TBU = 0x0000_0001, TBL = 0x0000_0000. What would be the error if your assembly language routine got the first value of TBU and the second value of TBL? Would reading the registers in reverse order avoid this problem?
Suggestions: This assembly language routine may be useful in other programs. Saving it in a standalone file “dtime.s” and then linking it with this or other C programs will make it more useful. A header file, e.g. “Excimer.h,” might be a convenient place to define constants like EXCIMER_BUS_SPEED that could change on other PowerPC systems.
4. Write a C program that outputs a 0–20 second count to the terminal emulator and time it with a stopwatch. (Using dink_printf to display seconds as integer decimal numbers is acceptable).

References:

[1] Motorola, PowerPC Microprocessor Family: The Programming Environments for 32-Bit Microprocessors, MPCFPE32B/AD, Rev 1, 1/97.

Suggested Code:

/* file "Excimer.h" */

/* Header file for Excimer-unique constants */

/* Excimer oscillator (U15 on PWB) runs at 66.6666MHz */

#define BUS_FREQUENCY 66666667

/* TB ticks/sec at Excimer bus clock. */

double
TICS_PER_SEC = BUS_FREQUENCY/4;

/* Bus frequency as an integer in MHz. */

int
IBUS_MHz = BUS_FREQUENCY/1000000;

/* file "Exercise.h"

 * Header file for common typedefs for Exercise 9 Chuck Corley 981218

*/

struct TB_View
{
unsigned long TBU_View;

unsigned long TBL_View;

};

union
DPFP_View
{
struct
TB_View
TB_FPasGPR_View;

double
TB_FP_View;

};

struct
Test_struct
{
struct TB_View TB_GPR_View;

union
DPFP_View
TB_FP_test;

};

//file "dtime.s"

// Assembly language routine to convert 64-bit PowerPC TB facility to

// Double-precision, floating-point number. (Plus additional routines for

// testing.) CJC 981216

//
Register usage:

//

r3 = FPU
(upper 32 bits of floating point value)

//

r4 = FPL
(lower 32 bits of floating point value)

//

r5 = TBU(time base upper - read from spr or loaded for test)

//

r6 = TBL(time base lower - read from spr or loaded for test)

//

r7 = leading zeroes in a register or shift count of +/-(zeroes - 11)

//

r8 = accumulator for final EXPonent value of DPFP number

//

r9 = shift count of 32 - n where n = +/-(zeroes -11)

//

r10 = constant register of 11

//

r11 = link register storage

#ifdef GCC_REGISTERS

#include "gcc_registers.h"

#endif /*GCC_REGISTERS */

.equ TBU,269

//Special purpose register numbers for TB

.equ TBL,268

.data

Local_storage:

.double 0

.global Bus_speed

Bus_speed:

.double 16666666.67

.text

.global dtime

.global conversion

.global get_HID1

// Routine reads the TBU and TBL. Returns seconds as double.

//For CodeWarrior:

//asm double dtime()

dtime:

mflr
r11

//Save the return address.

read_TB:

mfspr
r5,TBU

//Get TBU.

mfspr
r6,TBL

//Get TBL.

mfspr
r7,TBU

//Get TBU again.

subf.
r7,r5,r7
//Did it increment between reading TBU and TBL?

bgt-
read_TB

//If so, read them again. (Not likely)

//For CodeWarrior:

//asm double conversion(double TICS)

conversion:

cntlzw
r7,r5

//Find leading zeroes in TBU. Preserve in r7.

addi
r9,r0,32
//Will need a 32 in several places. Create one in r9.

addi
r10,r0,11
//Create a constant in r10 = 11.

subf.
r8,r7,r9
//r8 will hold EXP. Currently (32 - leading zeroes)

beq+
tbu_is_zero
//TBU never got incremented? (Zeroes=32?) (Most likely)

subf.
r7,r10,r7
//No. Is TB more than 2^^52? (Zeroes<11?) r7 = (Z-11)

add
r8,r8,r9
//Final exponent will be (64 - 1 - leading zeroes).

bge+
tbu_lt_8yrs
//If TB>2^^52, shift TBU bits right. (Not likely)

tbu_gt_8yrs:

//for Z<11: fpu = tbu>>n=(11-Z);

//fpl = tbu<<n=(32-(11- Z))|tbl>>n=(11-Z);

neg
r7,r7

//rlwnm shift count of (11-Z) = -(Z-11) = n = r7.

subf
r9,r7,r9
//rlwnm shift count of 32-n = 32 - (11-Z) = r9.

rlwnm
r3,r5,r9,12,31
//Shift TBU right n = (11 - Z). Mask off [0:11].

rlwnm
r4,r5,r9,0,10
//Shift remaining TBU bits left n = 32-(11-Z)

rlwnm
r6,r6,r9,0,31
//Shift TBL right n = (11 - Z)

or
r4,r6,r4
//Or rest of TBU shifted left with TBL shifted right.

b
form_exponent
//Go bias the exponent and or into FPU.

tbu_lt_8yrs:

//for Z>=11: fpu=tbu<<n=(Z-11)|tbl>>n=(32-(Z-11));

//fpl=tbl<<n=(Z- 11);

subf
r9,r7,r9
//Form a shift count of 32 - (11-Z) = r9.

rlwnm
r3,r5,r7,12,31
//Shift TBU left n = (Z-11). Mask off [0:11].

srw
r5,r6,r9
//Shift TBL bits right n = 32-(Z-11).

or
r3,r3,r5
//Or TBU shifted left with TBL shifted right.

rlwnm
r6,r6,r7,0,31
//Shift remainder of TBL left n = (Z-11).

xor
r4,r6,r5
//XORing with same value shifted right is like ANDing

b
form_exponent
//fpl with a mask of all zeroes in bits [32-(Z-11):31].

tbu_is_zero:

//Z= 32

cntlzw
r7,r6

//Find leading zeroes in TBL.

subf.
r8,r7,r9
//EXP = (32 - leading zeroes).

beq-
tbl_is_zero
//Entire TBL count exactly zero? (Not likely)

subf.
r7,r10,r7
//No. Is TB less than 2^^20? (zeroes < 11?)

bge-
tbl_lt_63ms
//If not, will have to shift bits right. (Most likely)

tbl_gt_63ms:

//for z<11: fpu = tbl>>n=(11-z); fpl = tbl<<n=(32-(11-z));

neg
r7,r7

//rlwnm shift count of (11-Z) = -(Z-11) = n = r7.

subf
r9,r7,r9
//rlwnm shift count of 32-n = 32 - (11-Z) = r9.

rlwnm
r3,r6,r9,12,31
//Shift TBL right n = (11 - z). Mask off [0:11].

rlwnm
r4,r6,r9,0,10
//Shift remaining TBL bits left n = 32 - (11 - Z).

b
form_exponent

tbl_lt_63ms:

//for z>=11: fpu = tbl<<(z-11); fpl = 0;

rlwnm
r3,r6,r7,12,31
//Shift TBL left n = (Z-11). Mask off bits 0-11.

xor
r4,r4,r4
//fpl = 0.

b
form_exponent

tbl_is_zero:

//for Z=32 && z=32: fpu = fpl = 0;

xor
r3,r3,r3
//Unlikely result that TB was zero. Prepare to

xor
r4,r4,r4
//return all zeroes for the floating point value.

b compute_seconds

form_exponent:

addi
r8,r8,1022
//Add DP bias (1023) -1 to the exponent

rlwinm r8,r8,20,1,12
//Biased DP EXP will be (63-(leading zeroes in TB)+1023).

or
r3,r3,r8

compute_seconds:

lis
r5, Local_storage@h

ori
r5, r5, Local_storage@l

stw
r3, 0(r5)

stw
r4, 4(r5)

lfd
f2, 0(r5)
//Load back in as 64bit float

lfd
f1, 8(r5)
//Get Bus_speed to divide with

fdiv
f1,f2,f1
//Divide by bus clock ticks per second

mtlr
r11

blr

//Return time in seconds as double in fp1

// Routine reads the HID1 (PLL_CFG) register. Returns in r3.

get_HID1:

mfspr r3,1009

//Get HID1 register.

blr

/* file "dtimeb.s" (For Metware High C/C++ Compiler/Assembler)*/

.text

.global conversion

.global conversion_test

.global float_test

// Routine passed sample values of TBU and TBL.

// Returns FPU and FPL as unsigned long.

//For CodeWarrior:

//asm struct TB_View * conversion_test(unsigned long Upper,

// unsigned long Lower, double TICS)

conversion_test:

or

r5,r3,r3
//Use test values of TBU and TBL passed in r3 and r4

or

r6,r4,r4
//as substitutes for values read from TB.

mflr
r11

//Save the return address.

bl

conversion
//Convert TBU and TBL into FPU and FPL

mtlr
r11

//Return in r3 and r4

//For CodeWarrior:

//
la r3,Local_pointer(SP)
//Return a pointer to the FPU storage location.

blr

// Routine passed sample values of TBU and TBL. Returns seconds as double.

//For CodeWarrior:

//asm double float_test(unsigned long Upper, unsigned long Lower, double TICS)

float_test:

or
r5,r3,r3

//Use test values of TBU and TBL passed in r3 and r4

or
r6,r4,r4

//as substitutes for values read from TB.

mflr
r11

//Save the return address.

bl

conversion
//Convert TBU and TBL into FPU and FPL

mtlr
r11

//Return as double in fpr1

blr

/* file "test_program.c"

 *
Tests the operation of assy language routine to convert PowerPC TimeBase

 *
values from integer to DP floating point values. Chuck Corley 981214

 * Modified: 000327 MRR

*/

#include <stdlib.h>

#include "Excimer.h"
/* File of Excimer board-specific constants */

#include "Exercise.h"
/* File of common typedefs for this exercise */

#include "dinkusr.h"

#define printf dink_printf

struct TB_View conversion_test(int, int, double);
/* Given bus freq, returns time in seconds. */

void main(void)

{

set_up_transfer_base();

int i, MAX_EXAMPLES;

struct
Test_struct
Example[] =

{

/* Consider - Case1: Z<11; Case2: Z>=11; Case3: z<11; Case4: z>=11; Case5: Z=z=32; */

/* Case5: All leading zeroes. */

{
0x00000000, 0x00000000, 0x00000000, 0x00000000},

/* Case4: Single one to treat as implied bit. Move from TB[32+31] to DPFP[11]. */

{
0x00000000, 0x00000001, 0x3FF00000, 0x00000000},

/* Case4: Single one to treat as implied bit. Move from TB[32+30] to DPFP[11]. */

{
0x00000000, 0x00000002, 0x40000000, 0x00000000},

/* Case4: Single one to treat as implied bit. Move from TB[32+12] to DPFP[11]. */

{
0x00000000, 0x00080000, 0x41200000, 0x00000000},

/* Case4: FRACTION starting in TB[32+12]. Move to DPFP[12:31]. */

{
0x00000000, 0x00180000, 0x41380000, 0x00000000},

/* Case3: FRACTION starting in TB[32+11]. Move to DPFP[12:32]. Check DPFP[32]=1. */

{
0x00000000, 0x00380001, 0x414C0000, 0x80000000},

/* Case3: FRACTION (One sec) starts TB[32+9]. Move to DPFP[12:34]. DPFP[32:34]=6? */

{
0x00000000, 0x00FE502B, 0x416FCA05, 0x60000000},

/* Case3: FRACTION in TB[33:63]. FPU[12:31]=TBL[1:20]. FPL[0:10]=TBL[21:31]. */

{
0x00000000, 0xC0000401, 0x41E80000, 0x80200000},

/* Case2: FRACTION-TB[31:63]. FPU[12]=TBU[31]. FPU[13:31]=TBL[0:18]. FPL[0:12]=TBL[19:31].*/

{
0x00000003, 0x40005001, 0x420A0002, 0x80080000},

/* Case1: FRACTION-TB[11:63]. FPU[12:31]=TBU[11:30]. FPU[0]=TBU[31]. FPL[1:31]=TBL[0:30].*/

{
0x00380001, 0x40010005, 0x434C0000, 0xA0008002},

/* Case1: TB[1:63]. FPU[12:31]=TBU[1:20]. FPL[0:10]=TBU[21:31]. FPL[11:31]=TBL[0:20].*/

{
0xFEDCBA98, 0x76543210, 0x43EFDB97, 0x530ECA86},

};

struct Test_struct Result;

MAX_EXAMPLES = sizeof(Example) / sizeof(Example[0]);

for (i=0; i< MAX_EXAMPLES; i++)

{

/* These printf formats are for the restrictive dink_print routine. */

printf("TBU= %x ", Example[i].TB_GPR_View.TBU_View);

printf("TBL= %x ", Example[i].TB_GPR_View.TBL_View);

Result.TB_FP_test.TB_FPasGPR_View = conversion_test (Example[i].TB_GPR_View.TBU_View, \

Example[i].TB_GPR_View.TBL_View, TICS_PER_SEC);

if ((Result.TB_FP_test.TB_FPasGPR_View.TBU_View != \

Example[i].TB_FP_test.TB_FPasGPR_View.TBU_View) || \

(Result.TB_FP_test.TB_FPasGPR_View.TBL_View != \

Example[i].TB_FP_test.TB_FPasGPR_View.TBL_View))
\

printf(" ERROR!\n");

printf("FPU= %x ", Result.TB_FP_test.TB_FPasGPR_View.TBU_View);

printf("FPL= %x\n", Result.TB_FP_test.TB_FPasGPR_View.TBL_View);

/* This is not useful on Excimer because we can't print the floating point result. It is a useful check in CodeWarrior on the Mac. CJC*/

/*

Result.TB_FP_test.TB_FP_View = float_test(Example[i].TB_GPR_View.TBU_View,

Example[i].TB_GPR_View.TBL_View, TICS_PER_SEC);

printf("FPR = %4.2e \n", Result.TB_FP_test.TB_FP_View);

*/

};

return;

}

/* file "watch.c"

 *
Reads the PowerPC Time Base Facility on Excimer and prints out a twenty

 *
second count to the terminal emulator. Chuck Corley 981214

 */

#include <stdlib.h>

#include "Excimer.h"
/* File of Excimer board-specific constants */

#include "Exercise.h"
/* File of common typedefs */

#define printf dink_printf /* Enables Dynamic Fuct. So you can print to dink */

double dtime();

/* Given bus freq, returns time in seconds. */

unsigned long get_HID1(); /* Returns HID1 register. */

int main()

{

double begin_time, current_time, delta_time = 0.0, seconds = 0.0;

int int_seconds;

unsigned long HID1_Reg;

set_up_transfer_base(); /* Capture the dink transfer table address

 enabling the ability to printf */

printf("PowerPC Timer Test.\n");

printf("Beginning a twenty second count assuming bus speed of 66.67MHz.\n");

printf("Please time me.\n");

printf("If your stopwatch time differs significantly from 20 seconds, \n");

printf("we can compute the actual bus speed.\n");

begin_time = dtime();

for (int_seconds = -1; int_seconds <= 20; int_seconds++) /*Countup to start.*/

{

while (delta_time < 1.0)

{

current_time = dtime();

delta_time = current_time - (int_seconds) - begin_time;

}

delta_time = 0.0;

switch (int_seconds)

{

case -1 :

break;

/* Delay to get stopwatch ready. */

case 0 :

printf("Start now!\n"); /* Begin timing at zero seconds. */

break;

case 1:

printf("%d second\n", int_seconds);

break;

default:

printf("%d seconds\n", int_seconds);

}
/* End of int_seconds switch */

};

printf("If your time was not 20 seconds,\n");

printf("bus speed is (20 / your_time) * 66.67MHz.\n");

/* Bonus Exercise. Given the bus speed, calculate the processor (core) speed.*/

HID1_Reg = get_HID1() >> 28; /* Move HID1[0:3] to [28:31] */

printf("HID1 indicates PLL_CFG=%x.\n", HID1_Reg);

printf("If bus=%dMHz, ", IBUS_MHz);

switch (HID1_Reg)

{

case 0x4: /* PLL_CFG = 0b0100 */

printf("Core Freq(2x)=%dMHz & ", 2*IBUS_MHz);

printf("VCO Freq(2x)=%dMHz\n", 2*IBUS_MHz);

break;

case 0x5: /* PLL_CFG = 0b0101 */

printf("Core Freq(2x)=%dMHz & ", 2*IBUS_MHz);

printf("VCO Freq(4x)=%dMHz\n", 4*IBUS_MHz);

break;

case 0x6: /* PLL_CFG = 0b0110 */

printf("Core Freq(2.5x)=%dMHz & ", (int)(2.5*(float)IBUS_MHz));

printf("VCO Freq(2x)=%dMHz\n", 5*IBUS_MHz);

break;

case 0x8: /* PLL_CFG = 0b1000 */

printf("Core Freq(3x)=%dMHz & ", 3*IBUS_MHz);

printf("VCO Freq(2x)=%dMHz\n", 6*IBUS_MHz);

break;

case 0xe: /* PLL_CFG = 0b1110 */

printf("Core Freq(3.5x)=%dMHz & ",(int)(3.5*(float)IBUS_MHz));

printf("VCO Freq(2x)=%dMHz\n", 7*IBUS_MHz);

break;

case 0xa: /* PLL_CFG = 0b1010 */

printf("Core Freq(4x)=%dMHz & ", 4*IBUS_MHz);

printf("VCO Freq(2x)=%dMHz\n", 8*IBUS_MHz);

break;

case 0x7: /* PLL_CFG = 0b0111 */

printf("Core Freq(4.5x)=%dMHz & ",(int)(4.5*(float)IBUS_MHz));

printf("VCO Freq(2x)=%dMHz\n", 9*IBUS_MHz);

break;

case 0xb: /* PLL_CFG = 0b1011 */

printf("Core Freq(5x)=%dMHz & ", 5*IBUS_MHz);

printf("VCO Freq(2x)=%dMHz\n", 10*IBUS_MHz);

break;

case 0x9: /* PLL_CFG = 0b1001 */

printf("Core Freq(5.5x)=%dMHz & ",(int)(5.5*(float)IBUS_MHz));

printf("VCO Freq(2x)=%dMHz\n", 11*IBUS_MHz);

break;

case 0xd: /* PLL_CFG = 0b1101 */

printf("Core Freq(6x)=%dMHz & ", 6*IBUS_MHz);

printf("VCO Freq(2x)=%dMHz\n", 12*IBUS_MHz);

break;

case 0x3: /* PLL_CFG = 0b0011 */

printf("PLL in bypass!\n");

break;

case 0xf: /* PLL_CFG = 0b0011 */

printf("CLOCK OFF! How can this be???\n");

break;

default:

printf("ERROR - INVALID PLL_CFG!");

}
/* End of HID1 switch */

return 0;

}
Conclusions:

Students should be able to note the following:

· A 64-bit rotate instruction would be very useful but has to be synthesized in the 32-bit PowerPC architecture.

· The PowerPC Embedded Application Binary Interface (EABI) specifies how arguments are passed to an assembly language routine and how values are returned from it.

· The syntax for assembly language programs varies widely among compiler/assembler vendors.

· The only way to pass data between the GPRs and the FPRs on PowerPC is by writing and reading to memory.

· With wise use of the register set, the memory access to pass information from the GPRs to the FPRs is the only memory access the assembly language routine needs—thus improving performance.

Troubleshooting:

If the student is not able to get started—Suggest that the student code the conversion in a C program until they have proven their algorithm. If they are still having difficulty, the disassembly of the C program could provide insight. If the student is not able to get the desired returned values from function calls, then this is a good opportunity to use breakpoints and examine the registers to determine how the expected value is being returned.

Experiment

9

Dhrystone Benchmarking

Problem Statement:

· In this experiment the student will adapt the popular Dhrystone benchmark to execute on the Excimer board.

Objectives:

Upon completion of this laboratory experience, students will be able to do the following:

· Verify a popular industry metric of processor performance in embedded applications, Dhrystone Version 2.1 Vax MIPs, for the PowerPC 603e microprocessor on the Excimer board.

· Compare processor performance, as measured by Dhrystone, to published values for other processors.

· Compare code generation, instruction scheduling, and resulting performance for several competing compilers on the Dhrystone benchmark.

· Substitute more highly optimized routines for the built-in or library functions provided by compiler vendors to improve performance.

· Use the dtime function of Experiment 9 to measure elapsed time for a benchmark’s execution.

Background Information:

Comparative performance of computers is a popular topic for computer scientists, computer architects, and computer salesmen. Many performance measurements, or benchmarks, have been used over the last several decades to compare various aspects of computer performance. Some benchmarks involve running real applications (for example, compiling the compiler or calculating a spreadsheet) which depend heavily on the resources of a particular operating system. Others are small synthetic benchmarks designed to be representative of the workload of a class of larger applications but which do no meaningful work and are easier to run across various operating systems and architectures.

The Dhrystone benchmark is a synthetic benchmark developed by Reinhold P. Weicker of Siemens-Nixdorf in the early eighties. It was first published in "Communications of the ACM" vol. 27., no. 10 (Oct. 1984), pp. 1013–1030. It is easily ported to many different operating environments and results for many computers are widely published. For embedded processors, where operating system and system resources may be limited, it has been the most often quoted performance measure. It is popular because it provides one number—Vax MIPS—that can be compared quickly with other computers. (Vax MIPS are calculated by dividing the number of times that the Dhrystone benchmark completes in a second by the number of Dhrystones per second performed by the now-ancient Vax 11/780 from Digital Equipment Corporation.) On the other hand, it is widely disparaged because it is so small that it fits entirely within the first-level cache of most modern microprocessors and compiler vendors soon made a game out of optimizing it to get ever-higher Vax MIPs numbers.

Motorola publishes Dhrystone 2.1 Vax MIPs numbers for the PowerPC 603e processor on the Excimer board because the number is often requested. After the first loop through the benchmark, it resides entirely in the L1 cache of any PowerPC microprocessor. At that point the performance varies linearly with frequency and the results reflect the efficiency of the micro-architecture and the effectiveness of the compiler in generating code to capitalize on it. Motorola’s published numbers are 1.41 Vax MIPs per MHz. For an Excimer board running at 133 MHz (to keep it comfortably cool in a still-air environment), that equates to 188 Vax MIPs.

The Dhrystone benchmark (and numerous others) is available in its official source code via anonymous ftp to 'ftp.nosc.mil' in directory 'pub/aburto'. The IP address is: 128.49.192.51. Instructions for executing the benchmark and rules for execution are available there as well. Comparative results for many computers are available from the same site or from various news groups including 'comp.benchmarks'.

Procedure:

1. Download the Dhrystone Version 2.1 benchmark from the ftp site. Read the associated instructions for compilation and execution. You will find that the benchmark calls the C library functions strcpy and strcmp inside the measurement loop and printf and scanf outside the measurement loop. You will also find that the benchmark calls a timer function dtime() that returns a count of seconds as a double-precision floating-point number. You will need to assemble and link the assembly language code from Experiment 9, which reads the PowerPC time base facility and converts the 64-bit integer value to time in seconds based on Excimer’s 66-MHz bus.

Reminder: Function calls, such as printf, will have to be equated to dink_printf routine to print results to the terminal. Dhrystone also queries the user via the scanf function for the number of times to run the benchmark. A scanf function using DINK’s getchar and writechar will have to be written and substituted or the number of times through the benchmark will have to be hard-coded. If you hard-code the number of runs, be certain to use a variable instead of a constant, as a constant would change the benchmark inside the measurement loop. Motorola makes no changes to the benchmark, which would unfairly change the result when compared to other results.

2. Compile the Dhrystone source code files, link in the dtime() function, and execute the benchmark on the Excimer board. Compare your results to Motorola’s published numbers.

Hint: Maximum performance will be obtained only when running entirely out of cache. If the SRAM access LED on Excimer is not out during execution, the program is not running entirely from the internal cache. DINK’s regmod command may be needed to enable the instruction and data cache (regmod HID0 to new value of 0x8000_C000 and change the dbat1L to 12.)

3. Examine the disassembled code. The strcmp library function offers one opportunity for performance enhancement. Many C libraries compare strings one byte at a time. Motorola provides a library of highly optimized functions including strcmp on their website at http://www.mot.com/PowerPC/teksupport. The assembly language for strcmp from this library is shown below. Notice that when possible, this function compares strings four bytes–a word–at a time, thus reducing memory accesses (in this case, cache accesses) by 75%. Assemble and link this strcmp function in place of the stdlib function. Did performance improve?

#--

Copyright, Motorola, Inc. All Rights Reserved. This

software contains proprietary and confidential information of

Motorola, Inc. Use, disclosure or reproduction is prohibited

without the prior express written consent of Motorola, Inc.

#--

#--

int strcmp(const unsigned char* source1,

const unsigned char* source2);

Returns:

value < 0 if source1 < source2

value = 0 if source1 = source2

value > 0 if source1 > source2

#--

.set
_eq,2

.set
_cr0,0

.set
_cr1,1

#aix#
.toc

#aix#T..strcmp:

#aix#
.tc
..strcmp[tc], strcmp[ds]

#aix#
.align
2

#aix#
.globl
strcmp[ds]

#aix#
.csect
strcmp[ds]

#aix#
.long
.strcmp[pr],TOC[tc0],0

#aix#
.globl
.strcmp[pr]

#aix#
.csect
.strcmp[pr]

#aix#.strcmp:

.sect
.text

.align
2

.extern
strcmp

strcmp:

#nt#
.reldata

#nt#
.globl
strcmp

#nt#strcmp:

#nt#
.long
..strcmp,.toc

#nt#
.text

#nt#
.globl
..strcmp

#nt#..strcmp:

r0 = temporary

r3 = source1 pointer, result, mask for first words

r4 = source2 pointer

r5 = 0x80808080

r6 = 0x01010101

r7 = source2 word

r8 = source1 word

r9 = temporary

r10 = source1 pointer

r11 = temporary

r12 = index

See if the two pointers are both word aligned.

xor
r0,r3,r4

rlwinm.
r0,r0,0,30,31

addis
r6,r0,0x0101

mr
r10,r3

bne
Byte_By_Byte

Generate an initial index so the word containing the first byte

will be loaded. Compute a mask to set all bits in the bytes

prior to the first in the words that are loaded.

rlwinm
r11,r3,3,27,28

li
r3,-1

rlwinm
r12,r10,0,30,31

subfic
r11,r11,32

neg
r12,r12

slw
r3,r3,r11

Complete the setup for the word aligned loop.

ori
r6,r6,0x0101

lwzx
r8,r12,r10

#le#
lwbrx
r8,r12,r10

or
r8,r8,r3
Mask off unused bytes.

slwi
r5,r6,7

subfc
r0,r6,r8

andc
r9,r5,r8

lwzx
r7,r12,r4

#le#
lwbrx
r7,r12,r4

and.
r11,r0,r9

addi
r4,r4,-4

addi
r12,r12,4

or
r7,r7,r3
Mask off unused bytes.

bne
Source1_Has_Null

Word_Loop:

subfc.
r3,r8,r7

bne
Words_Differ

lwzx
r8,r12,r10

#le#
lwbrx
r8,r12,r10

subfc
r0,r6,r8

andc
r9,r5,r8

and.
r11,r0,r9

addi
r12,r12,4

lwzx
r7,r12,r4

#le#
lwbrx
r7,r12,r4

beq
Word_Loop

Source1_Has_Null:

We terminated the loop because r8 has a null byte.

Shift both words right so the null byte is the LSB.

Can't do this with cntlzw because of a borrow if the byte

preceeding the null has the value one.

rlwinm.
r10,r8,0,0,7

li
r9,24

beq
shift

rlwinm.
r10,r8,0,8,15

li
r9,16

beq
shift

rlwinm.
r10,r8,0,16,23

li
r9,8

beq
shift

li
r9,0

shift:

srw
r7,r7,r9

srw
r8,r8,r9

subfc
r3,r7,r8

blr

Words_Differ:

We terminated the loop because the words differ but

r8 does not have a null byte. Return 1 or -1 based

on the unsigned comparison.

subfe r3,r3,r3

nand r3,r3,r3

ori r3,r3,1

blr

Byte_By_Byte:

Do strcmp a byte at a time.

lbz
r9,0(r3)

lbz
r0,0(r4)

subfc.
r3,r0,r9

bnelr

Byte_Loop:

cmpi
_cr1,0,r9,0

beq
_cr1,Null_Byte

lbzu
r9,1(r10)

lbzu
r0,1(r4)

subfc.
r3,r0,r9

beq
Byte_Loop

blr

Null_Byte:

mr
r3,r0

blr
References:

[1] "Communications of the ACM" vol. 27., no. 10 (Oct. 1984), pp. 1013 - 1030.
Suggested Code:

/* File - dry1.h

 * Equates functions used in Excimer Exercise to equivalent

 * functions defined in DINK

 *

 * Modification history:

 * 19Jan99,CJC Original

 * 27Mar00,MRR

 */

#include "dinkusr.h"

#define getchar local_get_char

#define putchar write_char

#define printf dink_printf

/* Memory Allocation function proto*/

extern void *malloc ();

extern void my_scanf(char *, int *);

#define scanf my_scanf

/*file : support.c

 */

#include "dinkusr.h"

#include <stdarg.h>

/* Set the number for a fixed number of dhrystone loops here. */

#define NUMBER_OF_RUNS 10000000

int local_get_char()

{

 /* get the keyboard parameter (which port are we using) then

 * call get_char with the keyboard value

 */

long keyboard = get_KEYBOARD();

return get_char(keyboard);

}

/* Dummy out the calls to exit, fopen, fprintf, and fclose. */

void my_exit() {}

int my_fopen() { return 1; }

int my_fprintf() {}

int my_fclose() {}

#if FOR_GCC || FOR_MECC

char *strcpy(s1,s2)

char *s1, *s2;

/* this is so that we can return the proper

value to the caller when we exit */

char *retvalue;

/* it just so happens that s1 is the proper

return value */

retvalue = s1;
/* now lets loop on s2 until *s2 is equal to

'\0' and in this loop we need to copy the

value from s2 into s1 and increment both

pointers. */

while(*s2 != '\0')

{

*s1=*s2;

s1 ++; s2 ++;

}

/* since we terminated the loop on detecting

the NULL char without copying the character

we need to place '\0' on s1 so that we have

a proper C-string in s1 */

*s1 = '\0';
/* now lets return to the caller what he/she

needs */

return retvalue;

}

#endif

Conclusions:

Students should be able to note the following:

· “There are lies, damn lies, and benchmarks, in that order”.

· The Dhrystone benchmark is small enough so the programmer can understand it, see opportunities for optimization, and easily port it to various computer environments.

· The Dhrystone benchmark is string-intensive, and the resulting performance metric may be meaningless in applications involving other workloads, such as, extensive mathematical calculations or bit manipulation.

· Not all compilers are created equal. The sample compilers shipped in the Excimer kit may generate vastly different code, instruction scheduling, and results on this benchmark. However, the biggest impact probably comes from the Motorola hand-coded stcmp function. Like most vendors, Motorola strives to provide the best benchmark results possible for marketing reasons..

Troubleshooting:

If the student is not able to get a time function—The suggested code for Experiment 9 provides a double dtime(double TICS_PER_SECOND) function that can be easily modified to provide timing information for this benchmark.

If the student is not able to link with the DINK supplied printf or other functions—Check the addresses for the respective functions in DINK using the symtab command.

If the student is not able to get the results to print from the dhry21a.c program—dink_printf will not accept floating-point formats. The results will have to be typecast as unsigned long or int to print. The loss of accuracy is insignificant.

 S EXP FRACTION

 0 1 11 12 63

Introduction

Excimer Laboratory Manual, Rev. 0.5

3

Excimer Laboratory Manual, Version 0.7

_984217193.unknown

_1014021936.doc
[image: image1.png]DINK32_6@3e >>d1

—k

set to Keyboard Port
Dounload Complete.
70000

DINK32 603 >>g0
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fibonacci nunber
Fihonacci nunber
DINK32 6@3e >>

for
for
for
for
for
for
for
for
for
for
for
for

index
index
index
index
index
index
index
index
index
index
index
index

is 34
is 55

10'is 89
11 ic 144

RO NAGNRE

_985356548.vsd
Back-Chain Word�

Floating-point register save area�

General register save area�

Conditional register save area�

FPSCR save area�

Local variable space (padding allowed here only)�

Parameter list area�

Link register save word�

Back-Chain Word�

High Address�

Low Address�

Stack grows down�

Stack Pointer�

Stack frame header�

Stack frame of the most recently called function�

_984216156.unknown

