ECSE-4730: Computer
Communication Networks (CCN)

Network Layer (Routing)

Shivkumar Kalyanaraman: shivkuma@ecse.rpi.edu
Biplab; Sikdar: sikdab@rpi.edu
http7/www.ecse. rpl.edu/Homepages/shivkuma

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 1

Network layer functions - 1

| data link |gpe network g
® e eTWork | data link | E———
transport Packet o O el
from sending to B L F
= .
receiving hosts '

* network layer

protocols In
A AR data link | lapplication|
host, router = Slea]

physical

network | data link
_ physical H"

network

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 2

Network layer functions - 2

three important functions:

« path determination: route taken by
packets from source to dest. Routing &
algorithms

« Switching (forwarding): move packets

from router’s input to appropriate router
output

« call setup: (optional) some network
architectures require router call setup
along path before data flows

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 3

Network service model

Q: What service model for
“channel” transporting |
packets from sender to | 7€ mostimportant

. abstraction provided
receiver? by network layer:

 guaranteed bandwidth? 0')

* preservation of inter-packet ®

timing (no jitter)? ‘)

1 r
loss-free delivery? ®

* in-order delivery?

« congestion feedback to
sender?

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 4

‘
Y

service abstraction
[}

Datagram networks: the Internet model - 1

* no call setup at network layer

 routers: no state about end-to-end
connections

— no network-level concept of
“connection”

* packets typically routed using destination
host ID

— packets between same source-dest pair
may take different paths

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 5

Datagram networks: the Internet model - 2

application ' .
transport application
transport

network

data link network
ohysical . data link

physical

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 6

Routing

. Routing protocol
Goal: determine “good” path
(sequence of routers) thru
network from source to dest.

 Graph abstraction for
routing algorithms:

« graph nodes are routers

“good” path:

° 9"ap|_1 edg_es are typically means
physical links minimum cost path
- link cost: delay, $ cost, or other def’s possible

congestion level

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 7

Routing Algorithm classification - 1

Global or decentralized information?
Global:

« all routers have complete topology, link cost info
* “link state” algorithms

Decentralized:

* router knows physically-connected neighbors,
link costs to neighbors

* iterative process of computation, exchange of
partial info with neighbors

« “distance vector” algorithms

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 8

Routing Algorithm classification - 2

Static or dynamic?

Static:
* routes change slowly over time

Dynamic:
* routes change more quickly
— periodic update
— in response to link cost changes

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 9

A Link-State Routing Algorithm - 1

Dijkstra’s algorithm

* net topology, link costs known to all nodes

— accomplished via “link state broadcast”
— all nodes have same info

« computes least cost paths from one node (‘source”)
to all other nodes
— gives routing table for that node

— iterative: after k iterations, know least cost path to
k dest.’s

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 10

A Link-State Routing Algorithm - 2

Notation:

* c(i,J): link cost from node i to j. cost infinite
if not direct neighbors

* D(v): current value of cost of path from
source to dest. V

* p(v): predecessor node (neighbor of v)
along path from source to v

* N: set of nodes whose least cost path
definitively known

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 11

Dijkstra’s algorithm: example

Step startN D(B),p(B) D(C),p(C) D(D),p(D) D(E),p(E) D(F),p(F)

0 A 2,A 5,A 1,A infinity infinity
1 AD 2,A 4,D 2,D infinity
2 ADE 2,A 3,E 4,E
3 ADEB 3,E 4,E
4 ADEBC 4,E
5 ADEBCF

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 12

Dijsktra’s Algorithm

1 Initialization:

2
3

4
5
6

7
8
(78

14
\./15

N = {A}
for all nodes v
if v adjacent to A
then D(v) = c(A,v)
else D(v) = infty

Loop
find w not in N such that D(w) is a minimum
add w to N
update D(v) for all v adjacent to w and not in N:
D(v) = min(D(v), D(w) + c(w,Vv))
I* new cost to v is either old cost to v or known
shortest path cost to w plus cost from w to v */
until all nodes in N

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 13

Dijkstra’s algorithm: discussion

Algorithm complexity: n nodes

« each iteration: need to check all nodes, w,
not in N

* n*(n+1)/2 comparisons: O(n**2)

 more efficient implementations possible:
O(nlogn)

Oscillations possible:
* e.g., link cost = amount of carried traffic

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 14

Distance Vector Routing Algorithm - 1

iterative:
« continues until no nodes exchange info.
» self-terminating: no “signal” to stop

asynchronous:

* nodes need not exchange info/iterate in lock
step!

distributed:

* each node communicates only with directly-
attached neighbors

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 15

Distance Vector Routing Algorithm - 2

Distance Table data structure
e each node has its own
* row for each possible destination

« column for each directly-attached neighbor to
node

« example: in node X, for dest. Y via neighbor Z:

_ distance from X to
DX(Y,Z) ~ Y, via Z as next hop

= c(X,2) + mjp 4D (Y.w))

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 16

Distance table: example

cost to destination via

D() A B D

A 1 14 5
. s B 7 8 '5
D(C,D) = c(ED)+min {0’ (Cw)} &
= 242 =4 "§ C 6 9 4
D(AD) = c(ED)+min {Aw}
- 243 =5 w D 4 11 2
E
D (A,B) = c(E,B) + mir\IN{DB (A,w)}
= 8+6 =14

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 17

Distance table gives routing table

Ecost to destination via Outgoing link
D() A B D to use, cost
A 1 14 5 A A1
§B 7 8 (5 s B D5
g g
2 C 6 9 4 Z C D4
S t
D 4 11 (2 D D4
Distance table Routing table

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 18

Distance Vector Routing: overview - 1

Iterative, asynchronous: each local
iteration caused by:

* local link cost change

 message from neighbor: its least cost path
change from neighbor

Distributed:

» each node notifies neighbors only when its
least cost path to any destination changes

— neighbors then notify their neighbors if
necessary

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 19

Distance Vector Routing: overview - 2

Each node:

wait for (change in local
link cost of msg from
neighbor)

recompute distance table

if least cost path to any
dest has changed, notify
neighbors

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 20

Distance Vector Algorithm - 1

At all nodes, X:

1 Initialization:

2 for all adjacent nodes v:

3 DX(*,v) = infty [* the * operator means "for all rows" */
4 D(v,v)=c(Xv)

5 for all destinations, y

6 send min‘D (y,w) to each neighbor /* w over all X's neighbors */
w

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 21

Distance Vector Algorithm - 2

—» 8 loop
9 wait (until | see a link cost change to neighbor V
10 or until | receive update from neighbor V)
11

12 if (c(X,V) changes by d)

13 I* change cost to all dest's via neighbor v by d */
14 /* note: d could be positive or neg%ive *

15 for all destinations y: DX(y,V) = D’\(y,V) + d

16

17 else if (update received from V wrt destination Y)
18 /* shortest path from V to some Y has changed */

19 /*V has sent a new value for its min DV(Y,w) */
20 /* call this received new value js "néwval" */

21 for the single destination y: DX(Y,V) = c¢(X,V) + newval
22

23 if we have a new min,, Ij<(Y w)for any destination Y
24 send new value of mi|\1N DX(Y,W) to all neighbors
25

26 forever

i
Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar

22

Distance Vector Algorithm: example - 1
@ s
() 7

Y Z

cost via Dx cost via
Y
Z

cost via D'(¥.2) = c(X,2) + min, {0 (Y,w)}

D= = 741=8

o 5(zY) = c0LY) + mig (D' (Zw)}
= 241=3

cost via

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar

Distance Vector: link cost changes - 1

Link cost changes:

node detects local link cost change
updates distance table (line 15) 1
if cost change in least cost path, notify

neighbors (lines 23,24) 50

algorithm
terminates

via
Y DY

D X Z X

ugood X ‘I @ 6 X ‘@
X

50

z DY DY
6 X
Y\ X Y/
50 50
0@ 00
I

news e '
travels] x v o
fast” x| 50 @

c(X,Y)

®

Distance Vector: link cost changes - 2

Link cost changes:

good news travels fast
bad news travels slow - “count 1
to infinity” problem!

50

via Y
D X Z D X Z D X Z algorithm

X Z
(@ s 60@ x| 60(6®) x|e0(® x GO.Contlnues
I

Fl x DZ|xY\DZ|xY/DZ|xY\DZ|xY/

x!50@ x!so@ x!50@ x!50® x!so@

c(XY)
change

time

Distance Vector: poisoned reverse

If Z routes through Y to get to X :

Ztells Y its (Z’s) distance to X is infinite Y 4
(so Y won'’t route to X via Z) ?_ >E
will this completely solve count to infinity 50
problem?

algorithm

D| X Z D| X Z D| X Z D| X Z terminates

xl.m Xl.c::: x|so@ xleo@

Comparison of
LS and DV algorithms - 1

Message complexity

 LS: with n nodes, E links, O(nE) msgs sent
each

 DV: exchange between neighbors only
— convergence time varies

Speed of Convergence

« LS: O(n**2) algorithm requires O(nE) msgs
— may have oscillations

 DV: convergence time varies
— may be routing loops
— count-to-infinity problem

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar

oy

Comparison of
LS and DV algorithms - 1

Robustness: what happens if router
malfunctions?

LS:
— node can advertise incorrect /ink cost
— each node computes only its own table
DV:
— DV node can advertise incorrect path cost
— each node’s table used by others

* error propagate thru network

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 28

Internet AS Hierarchy

Intra-AS border (exterior gateway) routers

Inter-AS interior (gateway) routers

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 29

Intra-AS Routing

* Also known as Interior Gateway
Protocols (IGP)

e Most common IGPs:

—RIP: Routing Information Protocol

— OSPF: Open Shortest Path First

—IGRP: Interior Gateway Routing
Protocol (Cisco propr.)

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 30

RIP

(Routing Information Protocol) - 1

Distance vector algorithm
Included in BSD-UNIX Distribution in 1982

Distance metric: # of hops (max =15
hops)

Distance vectors: exchanged every 30 sec
via Response Message (also called
advertisement)

Each advertisement: route to up to 25
destination nets

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 31

RIP

(Routing Information Protocol) - 2

Destination Network Next Router Num. of hops to dest.
A 2
B 2
=) 7
= 1

Routing table in D

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 32

RIP: Link Failure and Recovery

If no advertisement heard after 180 sec -->
neighbor/link declared dead

— routes via neighbor invalidated
— new advertisements sent to neighbors

— neighbors in turn send out new
advertisements (if tables changed)

— link failure info quickly propagates to
entire net

— poison reverse used to prevent ping-pong
loops (infinite distance = 16 hops)

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 33

RIP Table processing - 1

* RIP routing tables managed by
application-level process called route-d

(daemon)

- advertisements sent in UDP packets,
periodically repeated

routing ti
network (IP) |I network (IP)

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 34

RIP Table processing - 2

Router: giroflee.eurocom.fr

Fl ags Ref Use I nterface

) f a0
.55.114.6 | e0

.168. 3.5 gaa0
.55.114.6 | e0
def aul t .55.114. 129

Three attached class C networks (LANSs)

Router only knows routes to attached LANs
Default router used to “go up”

Route multicast address: 224.0.0.0
Loopback interface (for debugging)

Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar

OSPF (Open Shortest Path First)

« “open”: publicly available
* Uses Link State algorithm
— LS packet dissemination

— Topology map at each node

— Route computation using Dijkstra’s
algorithm

 OSPF advertisement carries one entry per
neighbor router

 Advertisements disseminated to entire AS
(via floodin

Rensselaer Polytechnic Institlg) © Shivkumar Kalvanaraman & © Biplab Sikdar

36

	ECSE-4730: Computer Communication Networks (CCN)
	Network layer functions - 1
	Network layer functions - 2
	Network service model
	Datagram networks: the Internet model - 1
	Datagram networks: the Internet model - 2
	Routing
	Routing Algorithm classification - 1
	Routing Algorithm classification - 2
	A Link-State Routing Algorithm - 1
	A Link-State Routing Algorithm - 2
	Dijkstra’s algorithm: example
	Dijsktra’s Algorithm
	Dijkstra’s algorithm: discussion
	Distance Vector Routing Algorithm - 1
	Distance Vector Routing Algorithm - 2
	Distance table: example
	Distance table gives routing table
	Distance Vector Routing: overview - 1
	Distance Vector Routing: overview - 2
	Distance Vector Algorithm - 1
	Distance Vector Algorithm - 2
	Distance Vector: link cost changes - 1
	Distance Vector: link cost changes - 2
	Distance Vector: poisoned reverse
	Comparison of LS and DV algorithms - 1
	Comparison of LS and DV algorithms - 1
	Internet AS Hierarchy
	Intra-AS Routing
	RIP (Routing Information Protocol) - 1
	RIP (Routing Information Protocol) - 2
	RIP: Link Failure and Recovery
	RIP Table processing - 1
	RIP Table processing - 2
	OSPF (Open Shortest Path First)

