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Overview

• Network Layer Performance 
Modeling & Analysis
– Part I: Essentials of Probability
– Part II: Inside a Router
– Part III: Network Analysis
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Network Layer Performance 
Modeling & Analysis: Part II

Inside a Router
• Basic Single Queue Model 
• Poisson Arrival Model
• The M/M/1 Queue
• Read any of the queuing theory 

references, e.g. Schwartz 
(Sections 2.1-3), Molloy, 
Kleinrock.
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Queuing in the Network Layer 
at a Router
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Basic Single Queue Model

• Classical queuing theory can be 
applied to an output link in a 
router.
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Basic Single Queue Model

• For example, a 56 kbps 
transmission line can “serve” 
1000-bit packets at a rate of 

56,000 56
1000

=
 bits/sec  packets/sec

 bits/packet
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Applications of Queuing Analysis
Outside of Networking

• Checkout line in a supermarket
• Waiting for a teller in a bank
• Batch jobs waiting to be 

processed by the CPU
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Applications of Queuing Analysis
Outside of Networking

• “That’s the way the whole thing 
started, 
Silly but it’s true,
Thinking of a sweet romance
Beginning in a queue.”

-G. Gouldman, “Bus Stop” 
The Hollies
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The Poisson Arrival Model

• A Poisson process is a sequence 
of events “randomly spaced in 
time”
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The Poisson Arrival Model

• Examples
– Customers arriving to a bank
– Packets arriving to a buffer

• The rate λ of a Poisson process 
is the average number of events 
per unit time (over a long time).



Rensselaer Polytechnic Institute          © Shivkumar Kalvanaraman    &     © Biplab Sikdar 11

Properties of a Poisson Process

• For a length of time t the 
probability of n arrivals in t units 
of time is 4τ

( )( )
!

n
t

n
tP t e

n
λλ −=
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Properties of a Poisson Process

• For 2 disjoint (non-overlapping) 
intervals, (s1, s2) and (s3, s4), (i.e. 
s1 < s2 s3 < s4), the number of 
arrivals in (s1, s2) is independent 
of the number of arrivals in (s3, 
s4)

≤
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Interarrival Times of a Poisson 
Process

• Pick an arbitrary starting point in 
time (call it 0).

• Let = the time until the next 
arrival

1τ

1 0( ) ( ) tP t P t e λτ −> = =
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Interarrival Times of a Poisson 
Process

• So

1 11( ) ( ) 1 ( )t tF t P t e f t eλ λ
τ ττ λ− −= ≤ = − =   and   

,the time until the first arrival,
Has an exponential distribution!

1τ
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Interarrival Times of a Poisson 
Process

• Let = the length of time 
between the first and second 
arrival.

• We can show that

i.e. is exponential and 
independent of      !

2 1 2( | ) ( ) , 0tP t s P t e s tλτ τ τ −> = = > = >   for any 

2τ

2τ

1τ
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Interarrival Times of a Poisson 
Process

• Similarly define       as the time 
between the second and third 
arrival; as the time between 
the third and fourth arrival;…

• The random variables ,    ,     ,
… are called the interarrival 

times of the Poisson process     

3τ

2τ 3τ1τ

4τ
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Interarrival Times of a Poisson 
Process

• The interarrival time random 
variables,    ,    ,    …
– Are (pair-wise) independent.
– Each has an exponential 

distribution with mean 1/λ.

1τ τ 2 τ3
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The M/M/1 Queue
• An M/M/1 queue has 

– Poisson arrivals (with rate λ)
– Exponential service times (with mean 

1/µ, so µ is the “service rate”).
– One (1) server
– An infinite length buffer

• The M/M/1 queue is the most basic 
and important queuing model.
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Queuing Notation
“M/M/1” is a special case of more 
general (Kendall) notation: X/Y/m/k, 

where
• X is a symbol representing the 

interarrival process
– M = Poisson (exponential interarrival 

times, )
– D = Deterministic (constant      ).

τ
τ
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Queuing Notation

• Y is a symbol representing the 
service distribution

M = exponential, D = deterministic
G = General (or arbitrary).

• m = number of servers
• k = number of buffer slots 

(omitted when k =   )

τ

∞
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Aside: The D/D/1 Queue

• The D/D/1 queue has
– Deterministic arrivals (periodic 

with period = 1/λ).
– Deterministic service times (each 

service takes exactly 1/µ).
– As well as 1 server and an infinite 

length buffer.
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Aside: The D/D/1 Queue

• If λ < µ then there is no waiting in 
a D/D/1 queue. 

Randomness is a major cause
of delay in a network node!
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State Analysis of an M/M/1 Queue

• Let n be the state of the system = 
the number of packets in the 
system (including the server).

• Let pn be the steady state 
probability of finding n
customers waiting in the system 
(including the server).
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State Analysis of an M/M/1 
Queue

• How to find pn? The state 
diagram:
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State Analysis of an M/M/1 Queue

• If the system is stable (i.e. pn 0 
for each n), then in a steady state 
it will drift back and forth across 
the dotted line. So,

• the number of transitions from 
left to right = the number of 
transitions from right to left.

≠
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State Analysis of an M/M/1 
Queue

• Thus we obtain the balance 
equations

1    for each   0n np p nλ µ+= ≥
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State Analysis of an M/M/1 
Queue

• Lets solve the balance 
equations:

• For n = 0 we get 

• If we let , this becomes 

1n np pλ µ+=

/ρ λ µ=

1 0p pρ=
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State Analysis of an M/M/1 
Queue

• Similarly

• And if general

2
2 1 0p p pρ ρ= =

np =



Rensselaer Polytechnic Institute          © Shivkumar Kalvanaraman    &     © Biplab Sikdar 29

State Analysis of an M/M/1 
Queue

• We have for n =1,2,3,...
• We need to solve for p0 , so we 

need one more equation. Use

• We obtain

{

0
n

np p p=

0
1nn

p
∞

=
Σ =

0
0 00 0

1    for 1
1    1

                  for 1

n n

n n

p
p p

ρ
ρ ρ ρ

ρ

∞ ∞

= =

 
< = Σ = Σ = − 

∞ ≥
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State Analysis of an M/M/1 
Queue

0 1p ρ= −• So we must have

 and

(1 )     for  1, 2,3,...n
np nρ ρ= − =
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State Analysis of an M/M/1 
Queue

• Note that requiring ρ < 1 for 
stability (i.e. λ <   ) makes intuitive 
sense.

• Also ρ=1-ρ0
 = probability that the queuing 

system is NOT empty
 = probability the server is working

µ
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State Analysis of an M/M/1 
Queue

So ρ is sometimes called the 
“server utilization”

• Finally note that pn = (1- ρ)pn, n = 
0,1,2,3,… is a geometric 
distribution
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The Finite Buffer Case: M/M/1/N
• Infinite buffer assumption is 

unrealistic in practice.
• N = total number of buffer slots 

(including server).
• New state diagram:
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The Finite Buffer Case: M/M/1/N

• Get the same balance equations,
but now only for n = 

0,1,2,…,N - 1 with N <      . So

 as before, but we get a    
different p0.

1n np pλ µ+=
∞

1 0    for 0,1, 2,...,n
n np p p n Nρ ρ−= = =
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The Finite Buffer Case: M/M/1/N

• From for n = 0,1,2,…, N 
< and = 1 we get 

• So

0
n

np pρ=
∞

0

N
nn
p

=∑

0 0
1

1
N

n

n
p pρ

=

= −∑

0 1

1

1 1 1...
(1 ) 11 1
(1 )

N N Nn
n

p ρ
ρ ρ ρρ

ρ

+

=

−
= = = =

− −+ +
−

∑
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The Finite Buffer Case: M/M/1/N

• Note that this holds for any . 
No need to assume ρ < 1.  We 
always have the stability in the 
finite buffer case.

0ρ ≥
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Blocking Probability and the 
Right Size Buffer

• So in the finite buffer case,

• Note that PN is the probability 
that the buffer is full at an 
arbitrary point in time.

1

(1 )    for  0,1, 2,...,
1

n

n Np n Nρ ρ
ρ +

−
= =

−
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Blocking Probability and the 
Right Size Buffer

• Since arrivals are independent of 
buffer state, we have PN = PB = 
probability an arriving packet is 
turned away due to a full buffer.

• PB is called blocking probability.
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Blocking Probability and 
Buffer Size

• PB is very important!
• We can use PB to choose the 

correct buffer size.
• Example: For ρ= 0.5, pN > 10-6 for 

N    18, while pN < 10-6 for N    19.≤ ≥
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Blocking Probability and 
Buffer Size

• Thus, if we desire a blocking 
probability less than 10-6, we 
need a buffer capable of holding 
19 or more packets.
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Throughput in the Finite Buffer 
Case

• The throughput of any queuing 
system is the rate at which 
customers successfully leave the 
system.

• For the M/M/1 infinite buffer case, 
if the system is stable. 

(Everything that arrives must 
eventually depart.)

γ

γ λ=
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Throughput in the Finite Buffer 
Case

• For the M/M/1/N finite buffer 
case, 

(Everything that arrives and is 
not blocked must eventually 
depart.)

(1 )BPγ λ= −
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Throughput in the Finite Buffer 
Case

 Alternate way to compute throughput of 
M/M/1/N:

Look at the output side.
• P (server is busy) = 
• When the server is busy, the output rate =
• when the sever is idle, the output rate = 0

• So the average rate =

01 p−
µ

0 0(1 ) 0p pγ µ= − +
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Aside: Derivation of PN = PB
Using Throughput

• Equating our two formulas for 
we get 

• Solving for PB we get

• Isn’t that neat?

γ
0(1 ) (1 )Bp Pµ λ− = −

0
1

1 (1 )1 ...
1

N

B NN

pP pρ ρ
ρ ρ +

− −
= − = = =

−
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Approximation of a Finite 
Buffer System by the Infinite 

Buffer Model
• For a infinite buffer,
• For a finite buffer,
• For ρ = 0.8 and N = 16 packets, 

these probabilities differ by less 
than 2.3%

• For ρ = 0.8 and N = 32, the 
difference is only 0.06% 

(1 ) n
np ρ ρ= −

1(1 ) /(1 )n N
np ρ ρ ρ += − −
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Approximation of a Finite 
Buffer System by the Infinite 

Buffer Model

 The infinite buffer model is a 
very good approximation of a 
finite buffer system.

 Even for moderate buffer sizes!
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How Long is that Line?
• Lets look again at the M/M/1 

queuing system.
• n = the number in the system 

(including the server)
• So the average number in the 

system is

2
0 0

( ) (1 ) (1 )
(1 ) 1

n
n

n n

E n np np ρ ρ
ρ ρ

ρ ρ

∞ ∞

= =

= = − = − =
− −∑ ∑
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Little’s Formula and Queuing 
Delay

• Let T = time spent by a customer 
in a queuing system (waiting and 
being served).

• E(T) = the average delay for a 
customer.
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Little’s Formula and Queuing 
Delay

• Little’s Formula says

• where λ is the “arrival rate for 
customers eventually served” (which 
we called      )

Little’s Formula holds for very general 
queuing systems (not just M/M/1). 

Even whole networks!

( ) ( )E T E nλ =

γ
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Little’s Formula and Queuing 
Delay

• Little’s Formula is either deep of 
obvious. Intuition:

• Pick a “typical customer”
• When it arrives to the queuing 

system, it should find E(n)
customers waiting.
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Little’s Formula and Queuing 
Delay

• When it leaves the system, it has 
been in the system for E(T). Thus 
λE(T) customers should have arrived 
during its time in the system.

• In steady state, the average number 
of customers left behind on the 
departure should equal the average 
number found on the arrival, i.e. 
λE(T) = E(n)
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Little’s Formula and Queuing 
Delay

• Let’s apply Little to the M/M/1 queue

• E(T) is measured in units of time. 
Sometimes it is more convenient to 
consider

 which is unitless

( ) 1( )
(1 )

E nE T ρ
λ λ ρ µ λ

= = =
− −

( ) 1( )
(1 ) 1

E nE T µ ρ
µ

λ ρ ρ ρ
= = =

− −
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Little’s Formula and Queuing 
Delay

• Sometimes we consider the 
waiting time W, i.e. the time 
spent waiting in the queue (not 
in service). So, 

1( ) ( )E W E T
µ

= −
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Single Link Example

• Poisson packet arrivals with rate 
λ = 2000 p/s

• Fixed link capacity C = 1.544 Mb / s 
(T1 Carrier rate).
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Single Link Example
• We approximate the packet length

distribution by an exponential with 
mean L = 515 b/p

• Thus the service time is exponential 
with mean

i.e. packets are served at a rate of 

1 515 / 0.33 /
1.544 /

L b p ms p
C Mb sµ

= = ≈

3000 /p sµ =
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Single Link Example

• Using our formulas for an M/M/1 
queue

So

 and

0.67λ
ρ

µ
= =

( ) 2.0 packets
1

E n ρ
ρ

= =
−

( )( ) 1.0 msE nE T
λ

= =
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Other Queuing Models
• There are many other important 

queuing models which are useful in 
networking.

• M/M/k for k>1. Multiple servers
– Good model of a link which is made up 

of multiple channels, either physically 
of through multiplexing (e.g. a T1 carrier 
is typically time division multiplexed 
with k = 24).

– Has worse performance at lower loads 
than M/M/1 with same total capacity.
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Other Queuing Models

• M/M/k/k for k     1. One or more 
servers, no buffers (except one 
in each server).
– Important model in circuit switched 

networks.
– Models a trunk line with k circuits 

available.

≥
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Other Queuing Models
– Any customer (a call) which 

doesn’t get a circuit is blocked 
(gets a busy signal).

– Blocking probability is given by the 
Erlang B (or Erlang Loss) Formula

0

/ !     0
/ !

k

B k i
i

kP
i

ρ
ρ

ρ
=

= ≥
∑
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Other Queuing Models

• M/G/1. Arbitrary service (packet 
length) distribution.
– Can still compute the mean 

number in the system via the 
Pollaczek-Khinchine (P-K) Formula 

2 2( ) 1 (1 )     <1
1 2

E n ρ ρ
µ σ ρ

ρ
   = − −   −   
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Other Queuing Models

where is the variance of the 
service time distribution. Again, 
variablility (randomness) causes 
delay.

• Can apply Little’s Formula to get the 
mean delay

2 2( ) 1 (1 )     <1
1 2

E n ρ ρ
µ σ ρ

ρ
   = − −   −   

2σ
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Other Queuing Models
• M/D/1. Deterministic service 

times (packet length). 
– Special case of M/G/1 with   

– Under heavy load ( ), M/D/1 has half 
the delay of an M/M/1

– This is one motivation for a fixed-
packet-length system like ATM

( ) 1     1
1 2

E n ρ ρ
ρ

ρ
  = − <  −   

1ρ ≈

2 0σ =
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Other Queuing Models

• Can also model and analyze 
other queuing systems
– With priority
– With more general arrival process
– With “vacations”
– Many others
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Other Queuing Models

• See Schwartz (Ch. 2), Kleinrock 
(Vol. I & II) or take ECSE-
6820/DSES-6820, Queuing (sic) 
Systems & Applications

• Queuing theory is also used in 
analysis of Operating Systems, 
e.g. in CSCI-6140


	ECSE-4730: Computer Communication Networks (CCN)
	Overview
	Network Layer Performance Modeling & Analysis: Part IIInside a Router
	Queuing in the Network Layer at a Router
	Basic Single Queue Model
	Basic Single Queue Model
	Applications of Queuing AnalysisOutside of Networking
	Applications of Queuing AnalysisOutside of Networking
	The Poisson Arrival Model
	The Poisson Arrival Model
	Properties of a Poisson Process
	Properties of a Poisson Process
	Interarrival Times of a Poisson Process
	Interarrival Times of a Poisson Process
	Interarrival Times of a Poisson Process
	Interarrival Times of a Poisson Process
	Interarrival Times of a Poisson Process
	The M/M/1 Queue
	Queuing Notation
	Queuing Notation
	Aside: The D/D/1 Queue
	Aside: The D/D/1 Queue
	State Analysis of an M/M/1 Queue
	State Analysis of an M/M/1 Queue
	State Analysis of an M/M/1 Queue
	State Analysis of an M/M/1 Queue
	State Analysis of an M/M/1 Queue
	State Analysis of an M/M/1 Queue
	State Analysis of an M/M/1 Queue
	State Analysis of an M/M/1 Queue
	State Analysis of an M/M/1 Queue
	State Analysis of an M/M/1 Queue
	The Finite Buffer Case: M/M/1/N
	The Finite Buffer Case: M/M/1/N
	The Finite Buffer Case: M/M/1/N
	The Finite Buffer Case: M/M/1/N
	Blocking Probability and the Right Size Buffer
	Blocking Probability and the Right Size Buffer
	Blocking Probability and Buffer Size
	Blocking Probability and Buffer Size
	Throughput in the Finite Buffer Case
	Throughput in the Finite Buffer Case
	Throughput in the Finite Buffer Case
	Aside: Derivation of PN = PB Using Throughput
	Approximation of a Finite Buffer System by the Infinite Buffer Model
	Approximation of a Finite Buffer System by the Infinite Buffer Model
	How Long is that Line?
	Little’s Formula and Queuing Delay
	Little’s Formula and Queuing Delay
	Little’s Formula and Queuing Delay
	Little’s Formula and Queuing Delay
	Little’s Formula and Queuing Delay
	Little’s Formula and Queuing Delay
	Single Link Example
	Single Link Example
	Single Link Example
	Other Queuing Models
	Other Queuing Models
	Other Queuing Models
	Other Queuing Models
	Other Queuing Models
	Other Queuing Models
	Other Queuing Models
	Other Queuing Models

