ECSE-4730: Computer Communication Networks (CCN) Network Layer Performance Modeling & Analysis

Shivkumar Kalyanaraman: shivkuma@ecse.rpi.edu
Biplab Sikdar: sikdab@rpi.edu
http://www.ecse.rpi.edu/Homepages/shivkuma

- Network Layer Performance Modeling & Analysis
 - Part I: Essentials of Probability
 - -Part II: Inside a Router
 - -Part III: Network Analysis

Network Layer Performance Modeling & Analysis: Part II Inside a Router

- Basic Single Queue Model
- Poisson Arrival Model
- The M/M/1 Queue
- Read any of the queuing theory references, e.g. Schwartz (Sections 2.1-3), Molloy, Kleinrock.

Queuing in the Network Layer at a Router

Basic Single Queue Model

 Classical queuing theory can be applied to an output link in a router.

Basic Single Queue Model

 For example, a 56 kbps transmission line can "serve" 1000-bit packets at a rate of

```
56,000 bits/sec = 56 packets/sec 1000 bits/packet
```

Applications of Queuing Analysis Outside of Networking

- Checkout line in a supermarket
- Waiting for a teller in a bank
- Batch jobs waiting to be processed by the CPU

Applications of Queuing Analysis Outside of Networking

 "That's the way the whole thing started,

Silly but it's true,

Thinking of a sweet romance

Beginning in a queue."

-G. Gouldman, "Bus Stop"
The Hollies

The Poisson Arrival Model

 A Poisson process is a sequence of events "randomly spaced in time"

The Poisson Arrival Model

- Examples
 - Customers arriving to a bank
 - Packets arriving to a buffer
- The <u>rate</u> λ of a Poisson process is the average number of events per unit time (over a long time).

Properties of a Poisson Process

For a length of time t the probability of n arrivals in t units of time is

$$P_n(t) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$

Properties of a Poisson Process

• For 2 disjoint (non-overlapping) intervals, (s_1, s_2) and (s_3, s_4) , (i.e. $s_1 < s_2 \le s_3 < s_4$), the number of arrivals in (s_1, s_2) is independent of the number of arrivals in (s_3, s_4)

Interarrival Times of a Poisson Process

- Pick an arbitrary starting point in time (call it 0).
- Let τ_1 = the time until the next arrival

$$P(\tau_1 > t) = P_0(t) = e^{-\lambda t}$$

Interarrival Times of a Poisson Process

· So

$$F_{\tau_1}(t) = P(\tau_1 \le t) = 1 - e^{-\lambda t}$$
 and $f_{\tau_1}(t) = \lambda e^{-\lambda t}$

τ₁ ,the time until the first arrival, Has an exponential distribution!

Interarrival Times of a Poisson Process

- Let τ_2 = the length of time between the first and second arrival.
- We can show that

$$P(\tau_2 > t | \tau_1 = s) = P(\tau_2 > t) = e^{-\lambda t}$$
 for any $s, t > 0$

i.e. τ_2 is exponential and independent of τ_1 !

Interarrival Times of a Poisson Process

- Similarly define τ_3 as the time between the second and third arrival; τ_4 as the time between the third and fourth arrival;...
- The random variables τ_1 , τ_2 , τ_3 , ... are called the interarrival times of the Poisson process

Interarrival Times of a Poisson Process

- The interarrival time random variables, τ_1 , τ_2 , τ_3 ...
 - Are (pair-wise) independent.
 - -Each has an exponential distribution with mean 1/λ.

The M/M/1 Queue

- An M/M/1 queue has
 - -Poisson arrivals (with rate λ)
 - –Exponential service times (with mean 1/μ, so μ is the "service rate").
 - One (1) server
 - An infinite length buffer
- The M/M/1 queue is the most basic and important queuing model.

Queuing Notation

"M/M/1" is a special case of more general (Kendall) notation: X/Y/m/k, where

- X is a symbol representing the interarrival process
 - M = Poisson (exponential interarrival times, τ)
 - D = Deterministic (constant τ).

Queuing Notation

 Y is a symbol representing the service distribution

M = exponential, D = deterministic

G = General (or arbitrary).

- m = number of servers
- k = number of buffer slots (omitted when $k = \infty$)

Aside: The D/D/1 Queue

- The D/D/1 queue has
 - Deterministic arrivals (periodic with period = $1/\lambda$).
 - Deterministic service times (each service takes exactly 1/μ).
 - As well as 1 server and an infinite length buffer.

Aside: The D/D/1 Queue

 If λ < μ then there is no waiting in a D/D/1 queue.

Randomness is a major cause of delay in a network node!

- Let *n* be the state of the system = the number of packets in the system (including the server).
- Let p_n be the steady state probability of finding n customers waiting in the system (including the server).

• How to find p_n ? The state diagram:

- If the system is stable (i.e. $\#_n$ 0 for each n), then in a steady state it will drift back and forth across the dotted line. So,
- the number of transitions from left to right = the number of transitions from right to left.

 Thus we obtain the <u>balance</u> equations

$$p_n \lambda = p_{n+1} \mu$$
 for each $n \ge 0$

- Lets solve the balance equations: $p_n \lambda = p_{n+1} \mu$
- For n = 0 we get

• If we let $\rho = \lambda / \mu$, this becomes

$$p_1 = \rho p_0$$

Similarly

$$p_2 = \rho p_1 = \rho^2 p_0$$

And if general

$$p_n =$$

- We have $p_n = p^n p_0$ for n = 1,2,3,...
- We need to solve for p_o , so we need one more equation. Use

$$\sum_{n=0}^{\infty} p_n = 1$$

$$\sum_{n=0}^{\infty} p_n = 1$$
• We obtain
$$1 = \sum_{n=0}^{\infty} \rho^n p_0 = p_0 \sum_{n=0}^{\infty} \rho^n = \begin{cases} p_0 \left(\frac{1}{1-\rho}\right) & \text{for } \rho < 1 \\ \infty & \text{for } \rho \ge 1 \end{cases}$$

• So we must have $p_0 = 1 - \rho$

and

$$p_n = (1 - \rho)\rho^n$$
 for $n = 1, 2, 3, ...$

- Note that requiring ρ < 1 for stability (i.e. λ < μ) makes intuitive sense.
- Also $\rho = 1 \rho_0$
 - = probability that the queuing system is NOT empty
 - = probability the server is working

So ρ is sometimes called the "server utilization"

• Finally note that $p_n = (1 - \rho)p^n$, n = 0,1,2,3,... is a geometric distribution

- Infinite buffer assumption is unrealistic in practice.
- N = total number of buffer slots (including server).
- New state diagram:

• Get the same balance equations, $p_n \lambda = p_{n+1} \mu$ but now only for n = 0,1,2,...,N-1 with $N < \infty$. So

$$p_n = \rho p_{n-1} = \rho^n p_0$$
 for $n = 0, 1, 2, ..., N$ as before, but we get a

different p_0 .

• From $p_n = \rho^n p_0$ for n = 0,1,2,...,N $< \infty$ and $\sum_{n=0}^{N} p_n = 1$ we get

$$p_0 = 1 - \sum_{n=1}^{N} \rho^n p_0$$

• So
$$p_0 = \frac{1}{1 + \sum_{n=1}^{N} \rho^n} = \frac{1}{1 + \frac{\rho(1 - \rho^N)}{(1 - \rho)}} = \dots = \frac{1 - \rho}{1 - \rho^{N+1}}$$

• Note that this holds for any $\rho \ge 0$. No need to assume $\rho < 1$. We always have the stability in the finite buffer case.

Blocking Probability and the Right Size Buffer

So in the finite buffer case,

$$p_n = \frac{(1-\rho)\rho^n}{1-\rho^{N+1}}$$
 for $n = 0, 1, 2, ..., N$

• Note that P_N is the probability that the buffer is full at an arbitrary point in time.

Blocking Probability and the Right Size Buffer

- Since arrivals are independent of buffer state, we have $P_N = P_B =$ probability an arriving packet is turned away due to a full buffer.
- P_B is called blocking probability.

Blocking Probability and Buffer Size

- P_B is very important!
- We can use P_B to choose the correct buffer size.
- Example: For ρ = 0.5, ρ_N > 10⁻⁶ for N \leq 18, while ρ_N < 10⁻⁶ for N \geq 19.

Blocking Probability and Buffer Size

• Thus, if we desire a blocking probability less than 10⁻⁶, we need a buffer capable of holding 19 or more packets.

Throughput in the Finite Buffer Case

- The throughput γ of any queuing system is the rate at which customers successfully leave the system.
- For the M/M/1 infinite buffer case, $\gamma = \lambda$ if the system is stable. (Everything that arrives must eventually depart.)

Throughput in the Finite Buffer Case

• For the M/M/1/N finite buffer case, $\gamma = \lambda(1-P_B)$ (Everything that arrives <u>and is not blocked</u> must eventually depart.)

Throughput in the Finite Buffer Case

Alternate way to compute throughput of M/M/1/N:

Look at the output side.

- P (server is busy) = $1-p_0$
- When the server is busy, the output rate = μ
- when the sever is idle, the output rate = 0
- So the average rate = $\gamma = \mu(1-p_0)+0p_0$

Aside: Derivation of $P_N = P_B$ **Using Throughput**

 Equating our two formulas for γ we get

$$\mu(1-p_0) = \lambda(1-P_B)$$

• Solving for P_B we get

$$P_B = 1 - \frac{1 - p_0}{\rho} = \dots = \frac{(1 - \rho)\rho^N}{1 - \rho^{N+1}} = p_N$$

Isn't that neat?

Approximation of a Finite Buffer System by the Infinite Buffer Model

- For a infinite buffer, $p_n = (1-\rho)\rho^n$
- For a finite buffer, $p_n = (1-\rho)\rho^n/(1-\rho^{N+1})$
- For ρ = 0.8 and N = 16 packets, these probabilities differ by less than 2.3%
- For ρ = 0.8 and N = 32, the difference is only 0.06%

Approximation of a Finite Buffer System by the Infinite Buffer Model

The infinite buffer model is a very good approximation of a finite buffer system.

Even for moderate buffer sizes!

How Long is that Line?

- Lets look again at the M/M/1 queuing system.
- n = the number in the system (including the server)
- So the average number in the system is

$$E(n) = \sum_{n=0}^{\infty} np_n = (1-\rho) \sum_{n=0}^{\infty} np^n = (1-\rho) \frac{\rho}{(1-\rho)^2} = \frac{\rho}{1-\rho}$$

- Let T = time spent by a customer in a queuing system (waiting and being served).
- E(T) = the average <u>delay</u> for a customer.

• Little's Formula says

$$\left| \lambda E(T) = E(n) \right|$$

• where λ is the "arrival rate for customers eventually served" (which we called γ)

Little's Formula holds for very general queuing systems (not just M/M/1).

Even whole networks!

- Little's Formula is either deep of obvious. <u>Intuition:</u>
- Pick a "typical customer"
- When it arrives to the queuing system, it should find E(n) customers waiting.

- When it leaves the system, it has been in the system for E(T). Thus $\lambda E(T)$ customers should have arrived during its time in the system.
- In steady state, the average number of customers left behind on the departure should equal the average number found on the arrival, i.e.

$$\lambda E(T) = E(n)$$

Little's Formula and Queuing Delay Let's apply Little to the M/M/1 queue

$$E(T) = \frac{E(n)}{\lambda} = \frac{\rho}{\lambda(1-\rho)} = \frac{1}{\mu - \lambda}$$

• E(T) is measured in units of time. Sometimes it is more convenient to consider

$$\mu E(T) = \frac{\mu E(n)}{\lambda} = \frac{\rho}{\rho (1-\rho)} = \frac{1}{1-\rho}$$

which is unitless

 Sometimes we consider the <u>waiting time</u> W, i.e. the time spent waiting in the queue (not in service). So,

$$E(W) = E(T) - \frac{1}{\mu}$$

Single Link Example

- Poisson packet arrivals with rate $\lambda = 2000 \text{ p/s}$
- Fixed link capacity C = 1.544 Mb / s
 (T1 Carrier rate).

Single Link Example

- We approximate the packet <u>length</u> distribution by an exponential with mean L = 515 b/p
- Thus the service <u>time</u> is exponential with mean

$$\frac{1}{\mu} = \frac{L}{C} = \frac{515 \ b/p}{1.544 \ Mb/s} \approx 0.33 ms/p$$

i.e. packets are served at a rate of

$$\mu = 3000 \, p / s$$

Single Link Example

• Using our formulas for an M/M/1 queue λ

$$\rho = \frac{\lambda}{\mu} = 0.67$$

So

$$E(n) = \frac{\rho}{1-\rho} = 2.0 \text{ packets}$$

and

$$E(T) = \frac{E(n)}{\lambda} = 1.0 \text{ ms}$$

- There are many other important queuing models which are useful in networking.
- M/M/k for k>1. Multiple servers
 - Good model of a link which is made up of multiple channels, either physically of through multiplexing (e.g. a T1 carrier is typically time division multiplexed with k = 24).
 - Has worse performance at lower loads than M/M/1 with same total capacity.

- M/M/k/k for k ≥ 1. One or more servers, no buffers (except one in each server).
 - Important model in circuit switched networks.
 - Models a trunk line with k circuits available.

- Any customer (a call) which doesn't get a circuit is blocked (gets a busy signal).
- Blocking probability is given by the Erlang B (or Erlang Loss) Formula

$$P_B = \frac{\rho^k / k!}{\sum_{i=0}^k \rho^i / i!} \quad \rho \ge 0$$

- M/G/1. Arbitrary service (packet length) distribution.
 - Can still compute the mean number in the system via the Pollaczek-Khinchine (P-K) Formula

$$E(n) = \left(\frac{\rho}{1-\rho}\right) \left[1 - \frac{\rho}{2}(1 - \mu^2 \sigma^2)\right] \quad \rho < 1$$

$$E(n) = \left(\frac{\rho}{1-\rho}\right) \left[1 - \frac{\rho}{2}(1 - \mu^2 \sigma^2)\right] \quad \rho < 1$$

where σ^2 is the variance of the service time distribution. Again, variablility (randomness) causes delay.

Can apply Little's Formula to get the mean delay

- M/D/1. Deterministic service times (packet length).
 - Special case of M/G/1 with $\sigma^2 = 0$

$$E(n) = \left(\frac{\rho}{1-\rho}\right) \left(1-\frac{\rho}{2}\right) \quad \rho < 1$$

- Under heavy load ($\rho \approx 1$), M/D/1 has half the delay of an M/M/1
- This is one motivation for a fixedpacket-length system like ATM

- Can also model and analyze other queuing systems
 - —With priority
 - -With more general arrival process
 - -With "vacations"
 - Many others

- See Schwartz (Ch. 2), Kleinrock (Vol. I & II) or take ECSE-6820/DSES-6820, Queuing (sic) Systems & Applications
- Queuing theory is also used in analysis of Operating Systems, e.g. in CSCI-6140