ECSE-4730: Computer Communication Networks (CCN)

Chapter 5: The Data Link Layer

Shivkumar Kalyanaraman: shivkuma@ecse.rpi.edu Biplab Sikdar: sikdab@rpi.edu http://www.ecse.rpi.edu/Homepages/shivkuma

Understand principles behind data link layer services:

- error detection, correction
- sharing a broadcast channel: multiple access
- link layer addressing
- reliable data transfer, flow control: done!
- Instantiation and implementation of various link layer technologies

- link layer services
- error detection, correction
- multiple access protocols and LANs
- link layer addressing, ARP
- specific link layer technologies:
 - Ethernet
 - hibs, bridges, switches
 - IEEE 802.11 LANs
 - PPP
 - ATM

Link Layer: setting the context - 1

Link Layer: setting the context - 2

- two physically connected devices:
 - host-router, router-router, host-host
- unit of data: frame

Link Layer Services - 1

- Framing, link access:
 - encapsulate datagram into frame, adding header, trailer
 - implement channel access if shared medium,
 - 'physical addresses' used in frame headers to identify source, dest
 - different from IP address!

Link Layer Services - 2

- Reliable delivery between two physically connected devices:
 - we learned how to do this already (chapter 3)!
 - seldom used on low bit error link (fiber, some twisted pair)
 - wireless links: high error rates
 - Q: why both link-level and endend reliability?

Link Layer Services - 3

- Flow Control:
 - pacing between sender and receivers
- Error Detection:
 - errors caused by signal attenuation, noise.
 - receiver detects presence of errors:
 - signals sender for retransmission or drops frame
- Error Correction:
 - receiver identifies and corrects bit error(s) without resorting to retransmission

Link Layer: Implementation

- Implemented in "adapter"
 - e.g., PCMCIA card, Ethernet card
 - typically includes: RAM, DSP chips, host bus interface, and link interface

Error Detection - 1

EDC= Error Detection and Correction bits (redundancy)

D = Data protected by error checking, may include header fields

Error detection not 100% reliable!

- protocol may miss some errors, but rarely
- larger EDC field yields better detection and correction

Error Detection - 2

Parity Checking

Single Bit Parity:
Detect single bit
errors

Two Dimensional Bit Parity:

Detect and correct single bit errors

Internet checksum

Goal: detect "errors" (e.g., flipped bits) in transmitted segment (note: used at transport layer only)

Sender:

- treat segment contents as sequence of 16-bit integers
- checksum: addition (1's complement sum) of segment contents
- sender puts checksum value into UDP checksum field

Receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected. But maybe errors nonetheless?
 More later....

Checksumming: Cyclic Redundancy Check

- View data bits, D, as a binary number
- Choose r+1 bit pattern (generator), G
- Goal: choose r CRC bits, R, such that
 - <D,R> exactly divisible by G (modulo 2)
 - receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
 - can detect all burst errors less than r+1 bits
- Widely used in practice (ATM, HDCL)

CRC Example

Want:

 $D \cdot 2r XOR R = nG$

equivalently:

 $D \cdot 2r = nG XOR R$

equivalently:

if we divide D-2r by G, want reminder R

R = remainder
$$\left[\frac{D \cdot 2r}{G}\right]$$

Multiple Access Links and Protocols

Three types of "links":

- Point-to-point (single wire, e.g. PPP, SLIP)
- Broadcast (shared wire or medium; e.g, Ethernet, Wavelan, etc.)

Switched (e.g., switched Ethernet, ATM etc)

Multiple Access protocols - 1

- single shared communication channel
- two or more simultaneous transmissions by nodes: interference
 - only one node can send successfully at a time
- multiple access protocol:
 - distributed algorithm that determines how stations share channel, i.e., determine when station can transmit

Multiple Access protocols - 2

- multiple access protocol (cont.):
 - communication about channel sharing must use channel itself!
 - What to look for in multiple access protocols:
 - synchronous or asynchronous
 - information needed about other stations
 - robustness (e.g., to channel errors)
 - performance

Multiple Access protocols - 3

- claim: humans use multiple access protocols all the time
- class can "guess" multiple access protocols
 - multiaccess protocol 1:
 - multiaccess protocol 2:
 - multiaccess protocol 3:
 - multiaccess protocol 4:

MAC Protocols: a taxonomy

Three broad classes:

- Channel Partitioning
 - divide channel into smaller "pieces" (time slots, frequency)
 - allocate piece to node for exclusive use
- Random Access
 - allow collisions
 - "recover" from collisions
- "Taking turns"
 - tightly coordinate shared access to avoid collisions

Goal: efficient, fair, simple, decentralized

Channel Partitioning MAC protocols: TDMA - 1

TDMA: time division multiple access

- Access to channel in "rounds"
- Each station gets fixed length slot (length = pkt trans time) in each round
- Unused slots go idle
- Example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle

Channel Partitioning MAC protocols: TDMA - 2

 TDM (Time Division Multiplexing): channel divided into N time slots, one per user; inefficient with low duty cycle users and at light load.

 FDM (Frequency Division Multiplexing): frequency subdivided.

Channel Partitioning MAC protocols: FDMA - 1

FDMA: frequency division multiple access

- Channel spectrum divided into frequency bands
- Each station assigned fixed frequency band
- Unused transmission time in frequency bands go idle

Channel Partitioning MAC protocols: FDMA - 2

 Example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

Channel Partitioning MAC protocols: FDMA - 3

 TDM (Time Division Multiplexing): channel divided into N time slots, one per user; inefficient with low duty cycle users and at light load.

 FDM (Frequency Division Multiplexing): frequency subdivided.

Channel Partitioning (CDMA) - 1

CDMA (Code Division Multiple Access)

- unique "code" assigned to each user; ie, code set partitioning
- used mostly in wireless broadcast channels (cellular, satellite, etc)
- all users share same frequency, but each user has own "chipping" sequence (ie, code) to encode data

Channel Partitioning (CDMA) - 2

 Encoded signal = (original data) X (chipping sequence)

 Decoding: inner-product of encoded signal and chipping sequence

 allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")

CDMA Encode/Decode

CDMA: two-sender interference

Performance of Fixed Assignment Protocols - 1

- Fixed assignment protocols are ideal for continuous streams such as video or audio
- What about for packet switched data?
- A "perfect" multiple access scheme would always use the channel when there are packets waiting (statistical multiplexing)
- The mean delay for statistical multiplexing is just like for the M / M / 1 queue: $E(T) = \frac{1}{\mu \lambda}$

where λ is the arrival rate and μ is the service rate

Performance of Fixed Assignment Protocols - 2

- OTOH fixed assignment protocols divide the channel into N separate independent, μ/N identical subchannels
- If each user has arrival rate λ/N, each user/subchannel pair can be modeled as a separate M / M / 1 queue
- And the mean delay for a packet is

• So, if we use $E(T) = \frac{1}{\mu/N - \lambda/N} = \frac{N}{\mu - \lambda}$ ols for packet switched data, mean delay goes up by a factor of N!!

Performance of Fixed Assignment Protocols - 3

- This analysis is only appropriate for TDMA de to the discrete-time (slotted) nature of TDMA but the rough factor of N still holds
- Fixed assignment protocols are not appropriate for multiple access in a packet switched network with a large number of users
- Packet arrivals are fairly random, so there will be many times when packets are waiting at one user while other users are idle
- The idle resources (time slots or bandwidth or both are wasted in this case)

Random Access Protocols - 1

- When node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- Two or more transmitting nodes -> "collision",
- Random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)

Random Access Protocols - 2

- Examples of random access MAC protocols:
 - ALOHA
 - slotted ALOHA
 - CSMA and CSMA/CD

Pure (unslotted) ALOHA - 1

- Unslotted Aloha: simpler, no synchronization
- pkt needs transmission:
 - send without awaiting for beginning of slot
- Collision probability increases:

pkt sent at t₀ collide with other pkts sent

in [t₀-1, t₀+1]

Pure (unslotted) ALOHA - 2

```
P(success by given node) = P(node transmits).
             P(no other node transmits in [p_0-1,p_0].
             P(no other node transmits in [p_0-1,p_0]
           = p \cdot (1-p)^{(N-1)} \cdot (1-p)^{(N-1)}
P(success by any of N nodes) = N p \cdot (1-p)(N-1).
                                      (1-p)(N-1)
        ... choosing optimum p as n -> infty ...
                                   = 1/(2e) = .18
```

Slotted Aloha

- time is divided into equal size slots (= pkt trans. time)
- node with new arriving pkt: transmit at beginning of next slot
- if collision: retransmit pkt in future slots with probability p, until successful.

Success (S), Collision (C), Empty (E) slots

Slotted Aloha Efficiency

- **Q:** What is max fraction slots successful?
- A: Suppose N stations have packets to send
 - each transmits in slot with probability p
 - prob. successful transmission S is:

by single node: $S = p (1-p)^{(N-1)}$

by any of N nodes

S = Prob (only one transmits)

= N p
$$(1-p)^{(N-1)}$$

... choosing optimum p as n -> infty ...

= 1/e = .37 as N -> infty

At best: channel use for useful transmissions 37% of time!

Performance Comparison

protocol constrains
effective channel
throughput!

Carrier Sense Multiple Access (CSMA) - 1

- In some shorter distance networks, it is possible to listen to the channel before transmitting
- In radio networks, this is called "sensing the carrier"
- The CSMA protocol works just like Aloha except: If the channel is sensed busy, then the user waits to transmit its packet, and a collision is avoided
- This really improves the performance in short distance networks!

Carrier Sense Multiple Access (CSMA) - 2

- How long does a blocked user wait before trying again to transmit its packet? Three basic variants:
- 1-persistent: Blocked user continuously senses channel until its idle, then transmits
- 0-persistent: Blocked user waits a randomly chosen amount of time before sensing channel again

Carrier Sense Multiple Access (CSMA) - 3

- P-persistent: Let τ = end-to-end propagation delay
 - If channel is idle then transmit packet
 - If channel busy then toss coin [with P(heads) = P]
 - Heads: Transmit at first idle
 - Tails: wait until first idle plus T, sense, repeat
- Human analogy: Don't interrupt others

CSMA collisions

collisions can occur: propagation delay means two nodes may not year hear each other's transmission

collision: entire packet transmission time wasted

note: role of distance and propagation delay in determining

spatial layout of nodes along ethernet

CSMA/CD (Collision Detection)

- CSMA improves performance, but still it wastes the channel during collisions
- In some very short distance networks (e.g. coax LANs), it is possible to listen while transmitting (in addition to listening before transmitting)
- If we detect a collision while transmitting, we can abort the transmission and free up the channel sooner
- This idea was proposed by R. Metcalfe and Boggs at Xerox PARC in the mid 1970s under the name Ethernet.
- Human analogy: the polite conversationalist

CSMA/CD collision detection

Historical Aside on CSMA / CD

 While Metcalfe and Boggs are generally given credit for inventing Ethernet, some feel that the concept was first described by P. Townshend in 1968 under the name Magic Bus:

Everyday I get in the queue,
(too much, Magic Bus)

To get on the bus that takes me to you
(too much, Magic Bus)

"Taking Turns" MAC protocols - 1

Channel partitioning MAC protocols:

- share channel efficiently at high load
- inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

Random access MAC protocols

- efficient at low load: single node can fully utilize channel
- high load: collision overhead

"Taking turns" protocols
look for best of both worlds!

"Taking Turns" MAC protocols - 2

Polling:

- Master node "invites" slave nodes to transmit in turn
- Request to Send, Clear to Send messages
- Concerns:
 - polling overhead
 - latency
 - single point of failure (master)

Token passing:

- Control token passed from one node to next sequentially.
- Token message
- Concerns:
 - token overhead
 - latency
 - single point of failure

(token)

Reservation-based protocols - 1

Distributed Polling:

- Time divided into slots
- Begins with N short reservation slots
 - reservation slot time equal to channel end-end propagation delay
 - station with message to send posts reservation
 - reservation seen by all stations

Reservation-based protocols - 2

 After reservation slots, message transmissions ordered by known priority

