Introduction to Simulation

Refs: Chap1-3, Chap 24 of Raj Jain’s book

Shiv Kalyanaraman
Rensselaer Polytechnic Institute
shivkuma@ecse.rpi.edu
http://www.ecse.rpi.edu/Homepages/shivkuma

Why simulate?

1. E.g. real-system not available, is complex/costly or dangerous (e.g. space simulations, flight simulations)
2. Want to quickly evaluate (kick the tires!) and design alternatives (e.g. networking protocols)
 - Can get cool graphs, and leverage lots of existing protocol models
3. Want to evaluate complex functions for which closed forms not available (e.g. Monte Carlo simulations, Matlab)
4. Want to animate or graphically visualize complex behavior (E.g: protocol animations, performance graphs, Matlab plots)

Simulators

- Networking stuff: ns-2/nam, SSFnet, Opnet
- Math stuff: Mathematica, Matlab, Maple or Monte-Carlo methods
- For more on simulation: CS has a detailed class on parallel and distributed simulation (PADS)

Simulation vs Measurement/Implementation

1. Real system is more credible, but more complex – lot of auxiliary concerns & murphy’s law strikes often!
 - But simulation must be thought of as a first step to real implementation
 - (i.e. to get a stable design that must be validated by implementation and/or analysis)
2. Measurement of Internet traffic may not be the same as measurement tomorrow (real, but still random samples!)
 - Representative measurement traces can be used to drive simulation (i.e. trace-driven simulation)
3. New emulation platforms: Utah’s emulab (next slide)
 - Takes out the configuration complexity from small/medium sized real experiments!
4. Bottom line: mix and match both tools depending upon the problem at hand

Utah Emulab and Click: Emulation and Modular Implementation Platforms

- UT’s Emulab Testbed: control & interconnect the kernels of 100s of machines just by using ns-2 scripting!!!

Simulation Lingo

- "State": variables whose values define system state.
 - If a simulation is stopped & restarted – you need to "checkpoint" the state.
 - Hard problem in distributed simulations!
- "Event": Change in system state = event
- Discrete-event model/simulation: events are not continuous but take on discrete values
 - All network simulations are of this type!
Deterministic vs Probabilistic Results

- **Deterministic**: results the same if you repeat the simulations
 - Usually the case if there is no randomness in the input or in the simulation process/protocols etc

- **Probabilistic**: results vary with every run!
 - Eg: similar to your RTT estimation exercise
 - Random results => cannot make deterministic inferences EVER!
 - Multiple (truly random) simulation repetitions needed
 - Get averages, deviations, and to form a confidence interval around results.

Things to remember about Discrete Event Simulation

- The programming model revolves around events (e.g. packet arrivals)
 - Events trigger particular sub-routines
 - Huge "switch" statement to classify events and call appropriate subroutine
 - The subroutine may schedule new events! (cannot schedule events for past, i.e., events are causal)
 - Rarely you might introduce new event types
 - Events have associated with them:
 - 1. Event type, event data structures (e.g: packet)
 - 2. Simulation time when the event is scheduled
- Key event operations: Enqueue (i.e. schedule a event), Dequeue is handled by the simulation engine

Discrete Event Simulation: Scheduler

- Purpose: maintain a notion of simulation time, schedule events. A.k.a: "simulation engine"

- **Simulation time ≠ Real time**
 - A simulation for 5 sec of video transmission might take 1 hour!

- Events are sorted by simulation time (not by type): priority queue or heap data structure
 - After all subroutines for an event have been executed, control is transferred to the simulation engine
 - The simulation engine schedules the next event available at the same time (if any)
 - Once all the events for current time have been executed, simulation time is advanced and nearest future event is executed.
 - Simulation time = time of currently executing event