Routing: Overview and Key Protocols

Shivkumar Kalyanaraman
Rensselaer Polytechnic Institute
shivkuma@ecse.rpi.edu

Based in part upon slides of Prof. Raj Jain (OSU), S. Keshav (Cornell), J. Kurose (U Mass), Noel Chiappa (MIT), Tim Griffin (AT&T), Ion Stoica (UCB),

Shivkumar Kalyanaraman
Overview

- Routing vs Forwarding vs Bridging
- Distance vector vs Link state routing
- Addressing and Routing: Scalability
- OSPF, RIP protocols
- Inter-domain Routing Issues
- BGP protocol
Routing vs. Forwarding

- **Forwarding**: select an output port based on destination address and routing table
 - Data-plane function
 - Often implemented in hardware

- **Routing**: process by which routing table is *built*.
 - ... so that the series of local forwarding decisions takes the packet to the destination with high probability, and ...(reachability condition)
 - ... the path chosen/resources consumed by the packet is *efficient* in some sense... (optimality and filtering condition)

- Control-plane function
- Implemented in software

Shivkumar Kalyanaraman
Forwarding Table

- Can display forwarding table using `“netstat -rn”`
- Sometimes called “routing table”

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Flags</th>
<th>Ref</th>
<th>Use</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>127.0.0.1</td>
<td>UH</td>
<td>0</td>
<td>26492</td>
<td>lo0</td>
</tr>
<tr>
<td>192.168.2.</td>
<td>192.168.2.5</td>
<td>U</td>
<td>2</td>
<td>13</td>
<td>fa0</td>
</tr>
<tr>
<td>193.55.114.</td>
<td>193.55.114.6</td>
<td>U</td>
<td>3</td>
<td>58503</td>
<td>le0</td>
</tr>
<tr>
<td>192.168.3.</td>
<td>192.168.3.5</td>
<td>U</td>
<td>2</td>
<td>25</td>
<td>qaa0</td>
</tr>
<tr>
<td>224.0.0.0</td>
<td>193.55.114.6</td>
<td>U</td>
<td>3</td>
<td>0</td>
<td>le0</td>
</tr>
<tr>
<td>default</td>
<td>193.55.114.129</td>
<td>UG</td>
<td>0</td>
<td>143454</td>
<td></td>
</tr>
</tbody>
</table>
Interconnection Devices

LAN = **Collision Domain**

![Diagram](image)

Extended LAN = **Broadcast domain**

- **Router**
- **Gateway**
- **Bridge/Switch**
- **Repeater/Hub**

- **Application**
- **Transport**
- **Network**
- **Datalink**
- **Physical**
Routing problem

- Collect, process, and condense global state into local forwarding information
- Global state
 - inherently large
 - dynamic
 - hard to collect
- **Hard issues:**
 - consistency, completeness, scalability
 - Impact of resource needs of sessions

Shivkumar Kalyanaraman
Consistency

- Defn: A series of independent local forwarding decisions must lead to connectivity between any desired (source, destination) pair in the network.

- If the states are inconsistent, the network is said not to have “converged” to steady state (i.e. is in a transient state)
 - Inconsistency leads to loops, wandering packets etc
 - In general a part of the routing information may be consistent while the rest may be inconsistent.
 - Large networks => inconsistency is a scalability issue.

- Consistency can be achieved in two ways:
 - Fully distributed approach: a consistency criterion or invariant across the states of adjacent nodes
 - Signaled approach: the signaling protocol sets up local forwarding information along the path
Completeness

- **Defn:** The network as a whole and every node has sufficient information to be able to compute *all* paths.
 - In general, with more information available locally, routing algorithms tend to converge faster, because the chances of inconsistency reduce.
 - But this means that more distributed state must be collected at each node and processed.
 - The demand for completeness also limits the scalability of the algorithm.

- Since both consistency and completeness pose scalability problems, large networks have to be structured hierarchically and abstract entire networks as a single node.
Internet Routing Model

- 2 key features:
 - Dynamic routing
 - Intra- and Inter-AS routing, AS = locus of admin control

- Internet organized as “autonomous systems” (AS).
- AS is internally connected

- Interior Gateway Protocols (IGPs) within AS.
 - Eg: RIP, OSPF, HELLO

- Exterior Gateway Protocols (EGPs) for AS to AS routing.
 - Eg: EGP, BGP-4
Dynamic Routing Model

- transport (UDP)
 - network (IP)
 - routing tables
 - data link
 - physical

- transport (UDP)
 - network (IP)
 - routing tables
 - data link
 - physical
Intra-AS and Inter-AS routing

Gateways:
• perform inter-AS routing amongst themselves
• perform intra-AS routers with other routers in their AS

Inter-AS, intra-AS routing in gateway A.c

network layer
link layer
physical layer
Intra-AS and Inter-AS routing: Example

Intra-AS routing within AS A

Inter-AS routing between A and B

Intra-AS routing within AS B

Host h1

Host h2
Basic Dynamic Routing Methods

- **Source-based**: source gets a map of the network,
 - source finds route, and either
 - signals the route-setup (eg: ATM approach)
 - encodes the route into packets (inefficient)

- **Link state** routing: *per-link* information
 - Get *map* of network (in terms of *link states*) at all nodes and find next-hops locally.
 - Maps consistent => next-hops consistent

- **Distance vector**: *per-node* information
 - At every node, set up *distance signposts* to destination nodes (a vector)
 - Setup this by peeking at neighbors’ signposts.
The subset of a shortest path is also the shortest path between the two intermediate nodes.

Corollary:

If the shortest path from node i to node j, with distance \(D(i,j) \) passes through neighbor k, with link cost \(c(i,k) \), then:

\[
D(i,j) = c(i,k) + D(k,j)
\]
Distance Vector

$DV = \text{Set (vector) of Signposts, one for each destination}$

Figure 12.2 Sign points the way, gives distance

Shivkumar Kalyanaraman
Distance Vector (DV) Approach

Consistency Condition: \(D(i,j) = c(i,k) + D(k,j) \)

- The \textit{DV (Bellman-Ford) algorithm} evaluates this recursion iteratively.
- In the \textit{m}th \textit{iteration}, the consistency criterion holds, assuming that each node sees all nodes and links \(m \)-hops (or smaller) away from it (i.e. an \textit{m-hop view}).

Example network

A’s 1-hop view (After 1st iteration)

A’s 2-hop view (After 2nd Iteration)
Distance Vector (DV) Example

- A’s distance vector $D(A, *)$:
 - After Iteration 1 is: $[0, 7, \text{INFINITY, INFINITY, 1}]$
 - After Iteration 2 is: $[0, 7, 8, 3, 1]$
 - After Iteration 3 is: $[0, 7, 5, 3, 1]$
 - After Iteration 4 is: $[0, 6, 5, 3, 1]$

Example network

- A’s 1-hop view (After 1st iteration)
- A’s 2-hop view (After 2nd Iteration)

Shivkumar Kalyanaraman
Link State (LS) Approach

- The link state (Dijkstra) approach is iterative, but it pivots around destinations \(j \), and their predecessors \(k = p(j) \).
- Observe that an alternative version of the consistency condition holds for this case: \(D(i,j) = D(i,k) + c(k,j) \).
- Each node \(i \) collects all link states \(c(*,*) \) first and runs the complete Dijkstra algorithm locally.

Shivkumar Kalyanaraman
Dijkstra’s algorithm: example

<table>
<thead>
<tr>
<th>Step</th>
<th>set N</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>infinity</td>
<td>infinity</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>2,A</td>
<td>4,D</td>
<td></td>
<td>2,D</td>
<td>infinity</td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>2,A</td>
<td>3,E</td>
<td></td>
<td></td>
<td>4,E</td>
</tr>
<tr>
<td>3</td>
<td>ADEB</td>
<td></td>
<td>3,E</td>
<td></td>
<td></td>
<td>4,E</td>
</tr>
<tr>
<td>4</td>
<td>ADEBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,E</td>
</tr>
<tr>
<td>5</td>
<td>ADEBCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The shortest-paths spanning tree rooted at A is called an SPF-tree.

Shivkumar Kalyanaraman
Summary: Distributed Routing Techniques

Link State
- Topology information is flooded within the routing domain
- Best end-to-end paths are computed locally at each router.
- Best end-to-end paths determine next-hops.
- Based on minimizing some notion of distance
- Works only if policy is shared and uniform
- Examples: OSPF, IS-IS

Vectoring
- Each router knows little about network topology
- Only best next-hops are chosen by each router for each destination network.
- Best end-to-end paths result from composition of all next-hop choices
- Does not require any notion of distance
- Does not require uniform policies at all routers
- Examples: RIP, BGP

Shivkumar Kalyanaraman
RIP: Routing Information Protocol

- Uses hop count as metric (max: 16 is infinity)
- Tables (vectors) "advertised" to neighbors every 30 s.
 - Each advertisement: up to 25 entries
- No advertisement for 180 sec: neighbor/link declared dead
 - Routes via neighbor invalidated
- New advertisements sent to neighbors (Triggered updates)
 - Neighbors in turn send out new advertisements (if tables changed)
- Link failure info quickly propagates to entire net
- Poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)
RIPv1 Problems (Continued)

- Split horizon/poison reverse does not guarantee to solve count-to-infinity problem
 - 16 = infinity => RIP for small networks only!
- Slow convergence
- Broadcasts consume non-router resources
- RIPv1 does not support subnet masks (VLSMs)
 - No authentication
RIPv2

- Why? Installed base of RIP routers
- Provides:
 - VLSM support
 - Authentication
 - Multicasting
 - “Wire-sharing” by multiple routing domains,
 - Tags to support EGP/BGP routes.
- Uses reserved fields in RIPv1 header.
- First route entry replaced by authentication info.

Shivkumar Kalyanaraman
Link State Protocols

- Key: Create a network "map" at each node.

- 1. Node collects the state of its connected links and forms a "Link State Packet" (LSP)

- 2. Flood LSP => reaches every other node in the network and everyone now has a network map.

- 3. Given map, run Dijkstra’s shortest path algorithm (SPF) => get paths to all destinations

- 4. Routing table = next-hops of these paths.

- 5. Hierarchical routing: organization of areas, and filtered control plane information flooded.
Hello: Packet Format

Figure 4.4 Point-to-point network topology, with interface IF indexes and costs labeled.

Figure 4.6 An OSPF Hello packet.
Topology Dissemination

- A.k.a LSP distribution
- 1. *Flood* LSPs on links except incoming link
 - Require at most $2E$ transfers for n/w with E edges
- 2. *Sequence numbers* to detect duplicates
 - Why? Routers/links may go down/up
 - Issue: wrap-around, larger sequence number is not the most recent!
OSPF Router-LSA: Scenario

Figure 4.4 Point-to-point network topology, with interface IF indexes and costs labeled.
Router-LSA:

Figure 4.4 Point-to-point network topology, with interface Ifindexes and costs labeled.

Figure 4.5 Router 10.1.1.1's router-LSA.
Topography Dissemination (Continued)

- **Checksum field:**
 - Drop packet if in error, get retransmission from neighbor

- **Age field** (similar to TTL)
 - Number of seconds since LSA originated
 - Periodically incremented after acceptance
 - Originating router refreshes LSA after 30 min
 - Delete if Age = MaxAge
 - Low age field + large seq # => that LSA is flapping or frequently changing …
Recovering from a partition

- On partition, LSP databases can get out of synch

- Databases described by database descriptor records
- Routers on each side of a newly restored link talk to each other to update databases (determine missing and out-of-date LSPs) => selective synchronization
Inter-Domain Routing: Big Picture

Large number of diverse networks

Large ISP

Large ISP

Small ISP

Dial-Up ISP

Access Network

Stub

Stub

Stub

Stub
Requirements for Inter-AS Routing

- Should **scale** for the size of the global Internet.
 - Focus on **reachability**, not optimality
 - Use **address aggregation** techniques to minimize core routing table sizes and associated control traffic
 - At the same time, it should allow **flexibility in topological structure** (eg: don’t restrict to trees etc)

- Allow **policy-based routing** between autonomous systems
 - Policy refers to **arbitrary preference among a menu of available routes** (based upon routes’ **attributes**)
 - Fully distributed routing (as opposed to a signaled approach) is the only possibility.
 - **Extensible** to meet the demands for newer policies.
Who speaks Inter-AS routing?

- Two types of routers
 - Border router (Edge), Internal router (Core)
- Two border routers of different ASes will have a BGP session

Shivkumar Kalyanaraman
Customers and Providers

Customer pays provider for access to the Internet

Shivkumar Kalyanaraman
Nontransit vs. Transit ASes

Internet Service providers (ISPs) have transit networks.

Traffic NEVER flows from ISP 1 through NET A to ISP 2.

Nontransit AS might be a corporate or campus network. Could be a “content provider”.

Shivkumar Kalyanaraman
The Peering Relationship

Peers provide transit between their respective customers

Peers do not provide transit between peers

Peers (often) do not exchange $$$

Shivkumar Kalyanaraman
BGP-4

- BGP = Border Gateway Protocol
- Is a **Policy-Based** routing protocol
- Is the **de facto** EGP of today’s global Internet
- Relatively simple protocol, but configuration is complex and the entire world can see, and be impacted by, your mistakes.
 - 1989 : BGP-1 [RFC 1105]
 - Replacement for EGP (1984, RFC 904)
 - 1990 : BGP-2 [RFC 1163]
 - 1991 : BGP-3 [RFC 1267]
 - 1995 : BGP-4 [RFC 1771]
 - Support for Classless Interdomain Routing (CIDR)
BGP Operations (Simplified)

- Establish session on TCP port 179
- Exchange all active routes
- Exchange incremental updates

While connection is ALIVE exchange route UPDATE messages
Four Types of BGP Messages

- **Open**: Establish a peering session.
- **Keep Alive**: Handshake at regular intervals.
- **Notification**: Shuts down a peering session.
- **Update**: Announcing new routes or withdrawing previously announced routes.

announcement

= prefix + attributes values
Two Types of BGP Neighbor Relationships

- **External Neighbor (eBGP)** in a different Autonomous Systems
- **Internal Neighbor (iBGP)** in the same Autonomous System

iBGP is routed (using IGP!)
I-BGP and **E-BGP**

- **AS1**
- **AS2**
- **AS3**

- **R**: border router
- **R1**, **R3**, **R4**, **R5**: internal routers

E-BGP connection:
- Between **AS1** and **AS2**
- Between **AS2** and **AS3**

I-BGP connection:
- Between **R1** and **R2**
- Between **R2** and **R3**
- Between **R3** and **R4**
- Between **R4** and **R5**

A announces B.
IBGP vs EBGP

- I-BGP nodes: typically ABRs, or other nodes where default routes terminate
- I-BGP peering sessions between every pair of routers within an AS: full mesh.
Route Reflection

128.23.0.0/16

RR-C1
RR-C2
RR1
RR2
RR3
RR-C3
RR-C4

AS1

10.0.0.0/24

EBGP
IBGP

AS2

ER

Shivkumar Kalyanaraman
AS Confederations

- Divide and conquer: Divides a large AS into sub-ASs
Address Aggregation: CIDR

Inter-domain Routing Without CIDR

Service Provider

- 204.71.0.0
- 204.71.1.0
- 204.71.2.0
- ...
- 204.71.255.0

Global Internet Routing Mesh

Inter-domain Routing With CIDR

Service Provider

- 204.71.0.0
- 204.71.1.0
- 204.71.2.0
- ...
- 204.71.255.0

Global Internet Routing Mesh

CIDR: 204.71.0.0/16
RFC 1519: Classless Inter-Domain Routing (CIDR)

Pre-CIDR: Network ID ended on 8-, 16, 24- bit boundary
CIDR: Network ID can end at any bit boundary

IP Address : 12.4.0.0 IP Mask: 255.254.0.0

<table>
<thead>
<tr>
<th>Address</th>
<th>Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>00001100</td>
<td>11111111</td>
</tr>
<tr>
<td>00000100</td>
<td>11111110</td>
</tr>
<tr>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>00000000</td>
<td>00000000</td>
</tr>
</tbody>
</table>

Usually written as 12.4.0.0/15, a.k.a “supernetting”

Shivkumar Kalyanaraman
Longest Prefix Match (Classless) Forwarding

Destination = 12.5.9.16

payload

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Next Hop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0/0</td>
<td>10.14.11.33</td>
<td>ATM 5/0/9</td>
</tr>
<tr>
<td>12.0.0.0/8</td>
<td>10.14.22.19</td>
<td>ATM 5/0/8</td>
</tr>
<tr>
<td>12.4.0.0/15</td>
<td>10.1.3.77</td>
<td>Ethernet 0/1/3</td>
</tr>
<tr>
<td>12.5.8.0/23</td>
<td>attached</td>
<td>Serial 1/0/7</td>
</tr>
</tbody>
</table>

IP Forwarding Table
What is Routing Policy

- Policy refers to *arbitrary preference among a menu of available routes* (based upon routes’ *attributes*)
 - Public description of the relationship between external BGP peers
 - Can also describe internal BGP peer relationship
- Eg: Who are my BGP peers
- What routes are
 - Originated by a peer
 - Imported from each peer
 - Exported to each peer
 - Preferred when multiple routes exist
- What to do if no route exists?
BGP Route Processing

- Receive BGP Updates
 - Apply Policy = filter routes & tweak attributes

- Based on Attribute Values

- Best Routes
 - Apply Policy = filter routes & tweak attributes

- Transmit BGP Updates

- Apply Import Policies

- Best Route Selection

- Best Route Table

- Apply Export Policies

- Install forwarding Entries for best Routes.

- IP Forwarding Table
Policy Implementation Flow

- **Incoming**
 - Adj RIB In
 - IGPs
 - Main RIB/FIB

- **Main BGP RIB**

- **Outgoing**
 - Adj RIB Out
 - Static & HW Info

Shivkumar Kalyanaraman
Import and Export Policies

- For **inbound traffic**
 - Filter outbound routes
 - Tweak attributes on outbound routes in the hope of influencing your neighbor’s best route selection

- For **outbound traffic**
 - Filter inbound routes
 - Tweak attributes on inbound routes to influence best route selection

In general, an AS has more control over outbound traffic
BGP Policy Knob: Attributes

<table>
<thead>
<tr>
<th>Value</th>
<th>Code</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ORIGIN</td>
<td>[RFC1771]</td>
</tr>
<tr>
<td>2</td>
<td>AS_PATH</td>
<td>[RFC1771]</td>
</tr>
<tr>
<td>3</td>
<td>NEXT_HOP</td>
<td>[RFC1771]</td>
</tr>
<tr>
<td>4</td>
<td>MULTI_EXIT_DISC</td>
<td>[RFC1771]</td>
</tr>
<tr>
<td>5</td>
<td>LOCAL_PREF</td>
<td>[RFC1771]</td>
</tr>
<tr>
<td>6</td>
<td>ATOMIC_AGGREGATE</td>
<td>[RFC1771]</td>
</tr>
<tr>
<td>7</td>
<td>AGGREGATOR</td>
<td>[RFC1771]</td>
</tr>
<tr>
<td>8</td>
<td>COMMUNITY</td>
<td>[RFC1997]</td>
</tr>
<tr>
<td>9</td>
<td>ORIGINATOR_ID</td>
<td>[RFC2796]</td>
</tr>
<tr>
<td>10</td>
<td>CLUSTER_LIST</td>
<td>[RFC2796]</td>
</tr>
<tr>
<td>11</td>
<td>DPA</td>
<td>[Chen]</td>
</tr>
<tr>
<td>12</td>
<td>ADVERTISER</td>
<td>[RFC1863]</td>
</tr>
<tr>
<td>13</td>
<td>RCID_PATH / CLUSTER_ID</td>
<td>[RFC1863]</td>
</tr>
<tr>
<td>14</td>
<td>MP_REACH_NLRI</td>
<td>[RFC2283]</td>
</tr>
<tr>
<td>15</td>
<td>MP_UNREACH_NLRI</td>
<td>[RFC2283]</td>
</tr>
<tr>
<td>16</td>
<td>EXTENDED COMMUNITIES</td>
<td>[Rosen]</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>reserved for development</td>
<td></td>
</tr>
</tbody>
</table>

We will cover a subset of these attributes.

Not all attributes need to be present in every announcement.

From IANA: http://www.iana.org/assignments/bgp-parameters
UPDATE message in BGP

- Primary message between two BGP speakers.
- Used to *advertise/withdraw* IP prefixes (NLRI)
- *Path attributes* field: unique to BGP
 - Apply to all prefixes specified in NLRI field
 - Optional vs *Well-known*; *Transitive* vs Non-transitive

2 octets

<table>
<thead>
<tr>
<th>Withdrawn Routes Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withdrawn Routes (variable length)</td>
</tr>
<tr>
<td>Total Path Attributes Length</td>
</tr>
<tr>
<td>Path Attributes (variable length)</td>
</tr>
<tr>
<td>Network Layer Reachability Info. (NLRI: variable length)</td>
</tr>
</tbody>
</table>
Path Attributes: ORIGIN

- ORIGIN:
 - Describes how a prefix came to BGP at the origin AS
 - Prefixes are learned from a source and “injected” into BGP:
 - Directly connected interfaces, manually configured static routes, dynamic IGP or EGP
 - Values:
 - IGP (EGP): Prefix learnt from IGP (EGP)
 - INCOMPLETE: Static routes
Path Attributes: AS-PATH

- List of **ASs** thru which the prefix announcement has passed. AS on path adds ASN to AS-PATH
- Eg: 138.39.0.0/16 originates at AS1 and is advertised to AS3 via AS2.
- Eg: AS-SEQUENCE: “100 200”
- Used for loop detection and path selection
Traffic Often Follows ASPATH

135.207.0.0/16

AS 1

AS 2

AS 3

AS 4

135.207.0.0/16

ASPATH = 3 2 1

IP Packet
Dest = 135.207.44.66

Shivkumar Kalyanaraman
... But It Might Not

AS 2 filters all subnets with masks longer than /24

From AS 4, it may look like this packet will take path 3 2 1, but it actually takes path 3 2 5
Shorter AS-PATH Doesn’t Mean Shorter # Hops

BGP says that path 4 1 is better than path 3 2 1

Duh!
Path Attributes: NEXT-HOP

- Next-hop: node to which packets must be sent for the IP prefixes. May not be same as peer.
- **UPDATE** for 180.20.0.0, NEXT-HOP= 170.10.20.3
Recursive Lookup

- If routes (prefix) are learnt thru iBGP, NEXT-HOP is the iBGP router which originated the route.
 - Note: iBGP peer might be several IP-level hops away as determined by the IGP
 - Hence BGP NEXT-HOP is not the same as IP next-hop
 - BGP therefore checks if the “NEXT-HOP” is reachable through its IGP.
 - If so, it installs the IGP next-hop for the prefix
 - This process is known as “recursive lookup” – the lookup is done in the control-plane (not data-plane) before populating the forwarding table.
- Example in next slide
Join EGP with IGP For Connectivity

Forwarding Table

<table>
<thead>
<tr>
<th>destination</th>
<th>next hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.2.0/30</td>
<td>10.10.10.10</td>
</tr>
</tbody>
</table>

EGP

<table>
<thead>
<tr>
<th>destination</th>
<th>next hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>135.207.0.0/16</td>
<td>192.0.2.1</td>
</tr>
</tbody>
</table>

+ Forwarding Table

<table>
<thead>
<tr>
<th>destination</th>
<th>next hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>135.207.0.0/16</td>
<td>10.10.10.10</td>
</tr>
<tr>
<td>192.0.2.0/30</td>
<td>10.10.10.10</td>
</tr>
</tbody>
</table>

Next Hop = 192.0.2.1
Load-Balancing Knobs in BGP

- **LOCAL-PREF**: outbound traffic, local preference (box-level knob)
- **MED**: Inbound traffic, typically from the same ISP (link-level knob)

AS1

Local Preference

MED

AS2

Shivkumar Kalyanaraman
Path Attribute: LOCAL-PREF

- Locally configured indication about which path is preferred to exit the AS in order to reach a certain network. Default value = 100. Higher is better.
Also called **METRIC** or **MED** Attribute. Lower is better

- **AS1**: multihomed customer.
- **AS2** (provider) includes MED to AS1
- **AS1** chooses which link (NEXTHOP) to use
- **Eg**: traffic to AS3 can go thru Link1, and AS2 thru Link2

Shivkumar Kalyanaraman
MEDs Can Export Internal Instability

Shivkumar Kalyanaraman
ASPATH Padding: Shed inbound traffic

Padding will (usually) force inbound traffic from AS 1 to take primary link.
If AS 1 does not announce the more specific prefix, then most traffic to AS 2 will go through AS 3 because it is a longer match.

AS 2 is “punching a hole” in the CIDR block of AS 1 => subverts CIDR
CIDR at Work, No load balancing

Table at ISP3

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Next Hop</th>
<th>ORIGIN AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.32/11</td>
<td>ISP1</td>
<td>ISP1</td>
</tr>
<tr>
<td>140.64/10</td>
<td>ISP2</td>
<td>ISP2</td>
</tr>
</tbody>
</table>

AS1
128.40/16
140.127/16

ISP1
128.32/11
ISP2
140.64/10
ISP3

CIDR Subverted for Load Balancing

Table at ISP3

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Next Hop</th>
<th>ORIGIN AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.32/11</td>
<td>ISP1</td>
<td>ISP1</td>
</tr>
<tr>
<td>140.64/10</td>
<td>ISP2</td>
<td>ISP2</td>
</tr>
<tr>
<td>140.255.20/24</td>
<td>ISP1</td>
<td>AS1</td>
</tr>
<tr>
<td>128.42.10/24</td>
<td>ISP2</td>
<td>AS1</td>
</tr>
</tbody>
</table>

Diagram:
- AS1: 128.40/16, 140.127/16
- Link A: 140.255.20/24, 128.40/16
- ISP1: 128.32/11
- ISP2: 140.64/10
- ISP3: 128.42.10/24, 140.127/16

Next Hop:
- 140.255.20/24, 128.40/16
- 128.42.10/24, 140.127/16
How Can Routes be Colored?
BGP Communities

A community value is 32 bits

- Used within and between ASes
- The set of ASes must agree on how to interpret the community value
- Very powerful BECAUSE it has no (predefined) meaning

Community Attribute = a list of community values.
(So one route can belong to multiple communities)

By convention, first 16 bits is ASN indicating who is giving it an interpretation

community number

Two reserved communities
- no_export = 0xFFFFFF01: don’t export out of AS
- no_advertise = 0xFFFFE002: don’t pass to BGP neighbors

RFC 1997 (August 1996)
Communities Example

- 1:100
 - Customer routes
- 1:200
 - Peer routes
- 1:300
 - Provider Routes

Import

Export

- To Customers
 - 1:100, 1:200, 1:300
- To Peers
 - 1:100
- To Providers
 - 1:100

AS 1
BGP Route Selection Process

Series of tie-breaker decisions...

- If NEXTHOP is inaccessible do not consider the route.
- Prefer largest LOCAL-PREF
- If same LOCAL-PREF prefer the shortest AS-PATH.
- If all paths are external prefer the lowest ORIGIN code (IGP<EGP<INCOMPLETE).
- If ORIGIN codes are the same prefer the lowest MED.
- If MED is same, prefer min-cost NEXT-HOP
- If routes learned from EBGP or IBGP, prefer paths learnt from EBGP
- Final tie-break: Prefer the route with I-BGP ID (IP address)
Route Selection Summary

- **Highest Local Preference**: Enforce relationships
- **Shortest AS PATH**
- **Lowest MED**
- **i-BGP < e-BGP**
- **Lowest IGP cost to BGP egress**
- **Lowest router ID**: Throw up hands and break ties

Shivkumar Kalyanaraman
BGP Table Growth

Large BGP Tables Considered Harmful

- Routing tables must store best routes and alternate routes
- Burden can be large for routers with many alternate routes (route reflectors for example)
- Routers have been known to die
- Increases CPU load, especially during session reset
Summary

- Routing Concepts
- DV and LS algorithms
- RIP, OSPF, BGP