Internetworking: addressing, forwarding, resolution, fragmentation

Shivkumar Kalyanaraman
Rensselaer Polytechnic Institute
shivkuma@ecse.rpi.edu
http://www.ecse.rpi.edu/Homepages/shivkuma

Based in part upon the slides of Prof. Raj Jain (OSU), S. Keshav (Cornell), L. Peterson (Arizona)

Overview

- Internetworking: heterogeneity & scale
- IP solution:
 - Provide new packet format and overlay it on subnets.
 - Implications: Hierarchical address, address resolution, fragmentation/re-assembly, packet format design, forwarding algorithm etc
The Internetworking Problem

- Two nodes communicating across a “network of networks”… How to transport packets through this heterogeneous mass?

- Problems: heterogeneity and scaling
- Solution: Overlay model: New IP protocol, best-effort forwarding, address hierarchy, address resolution, fragmentation
 - Alternative: translation (eg: bridges) or hybrid protocol (eg: MPLS used instead IP/ATM overlays)

How does IP forwarding work?

- A) Source & Destination in same network
 - Recognize that destination IP address is on same network. [1]
 - Find the destination LAN address. [2]
 - Send IP packet encapsulated in LAN frame directly to the destination LAN address.
 - Encapsulation => source/destination IP addresses don’t change
IP forwarding (contd)

- B) Source & Destination in different networks
 - Recognize that destination IP address is not on the same network. [1]
 - Look up destination IP address in a (routing) table to find a match, called the next hop router IP address.
 - Send packet encapsulated in a LAN frame to the LAN address corresponding to the IP address of the next-hop router. [2]

Addressing & Resolution

- [1] How to find if destination is in the same network?
 - IP address = network ID + host ID. Source and destination network IDs match => same network
 - Splitting address into multiple parts is called hierarchical addressing

- [2]: How to find the LAN address corresponding to an IP address?
 - Address Resolution Problem.
 - Solution: ARP, RARP
IP Address Formats

- **Class A**:
 - Network: 0
 - Host: 7
 - 24 bits

- **Class B**:
 - Network: 10
 - Host: 14
 - 16 bits

- **Class C**:
 - Network: 110
 - Host: 21
 - 8 bits

- **Class D**:
 - Network: 1110
 - 28 bits
 - Multicast Group addresses

- **Class E**: Reserved.

Subnet Addressing

- Classful addressing inefficient: Everyone wants class B addresses
- Can we split class A, B addresses spaces and accommodate more networks?
 - Need another level of hierarchy. Defined by “subnet mask”, which is general specifies the sets of bits belonging to the network address and host address respectively
 - External routers send to “network” specified by the “network ID” and have smaller routing tables

Boundary is flexible, and defined by subnet mask
Subnet Addressing (Contd)

- Internal routers & hosts use subnet mask to identify “subnet ID” and route packets between “subnets” within the “network”.
- Eg: Mask: 255.255.255.0 => subnet ID = 8 bits with up to 62 hosts/subnet
- Route table lookup:
 - IF ((Mask[i] & Destination Addr) == Destination[i])
 - Forward to NextHop[i]

Addressing and Forwarding Summary

- Addressing:
 - Unique IP address per interface
 - Classful (A,B,C) => address allocation not efficient
 - Hierarchical => smaller routing tables
 - Provision for broadcast, multicast, loopback addresses
 - Subnet masks allow “subnets” within a “network” => improved address allocation efficiency
 - Problem: Host moves between networks => IP address changes.
Addressing/Forwarding Summary (contd)

- Forwarding:
 - Simple “next-hop” forwarding.
 - Last hop forwards directly to destination
 - Best-effort delivery: No error reporting. Delay, out-of-order, corruption, and loss possible => problem of higher layers!
 - Forwarding vs routing: Routing tables setup by separate algorithm(s)

IP Features

- Connectionless service
- Addressing
- Data forwarding
- Fragmentation and reassembly
- Supports variable size datagrams
- Best-effort delivery: Delay, out-of-order, corruption, and loss possible. Higher layers should handle these.
- Provides only “Send” and “Delivery” services Error and control messages generated by Internet Control Message Protocol (ICMP)
What IP does NOT provide

- End-to-end data reliability & flow control (done by TCP or application layer protocols)
- Sequencing of packets (like TCP)
- Error detection in payload (TCP, UDP or other transport layers)
- Error reporting (ICMP)
- Setting up route tables (RIP, OSPF, BGP etc)
- Connection setup (it is connectionless)
- Address/Name resolution (ARP, RARP, DNS)
- Configuration (BOOTP, DHCP)
- Multicast (IGMP, MBONE)

IP Datagram Format

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vers</td>
<td>H Len</td>
<td>TOS</td>
<td>Total Length</td>
<td></td>
</tr>
<tr>
<td>Identification</td>
<td>Flags</td>
<td>Fragment Offset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to live</td>
<td>Protocol</td>
<td>Header Checksum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source IP Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination IP Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Options (if any)</td>
<td>Padding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Maximum Transmission Unit

- Each subnet has a maximum frame size
 - Ethernet: 1518 bytes
 - FDDI: 4500 bytes
 - Token Ring: 2 to 4 kB
- Transmission Unit = IP datagram (data + header)
- Each subnet has a maximum IP datagram length (header + payload) = MTU

Fragmentation

- Datagrams larger than MTU are fragmented
- Original header is copied to each fragment and then modified (fragment flag, fragment offset, length,...)
- Some option fields are copied (see RFC 791)
Reassembly

- Reassembly only at the final destination
- Partial datagrams are discarded after a timeout
- Fragments can be further fragmented along the path. Subfragments have a format similar to fragments.
- Minimum MTU along a path \implies Path MTU

Further notes on Fragmentation

- Performance: single fragment lost \implies entire packet useless. Waste of resources all along the way. Ref: Kent & Mogul, 1987
- Don’t Fragment (DF) bit set \implies datagram discarded if need to fragment. ICMP message generated: may specify MTU (default = 0)
- Used to determine Path MTU (in TCP & UDP)
- The transport and application layer headers do not appear in all fragments. Problem if you need to peep into those headers.
Address Resolution

- Indirection through addressing/naming => requires resolution
- Problem usually is to map destination layer N address to its layer N-1 address to allow packet transmission in layer N-1.

1. Direct mapping: Make the physical addresses equal to the host ID part.
 - Mapping is easy.
 - Only possible if admin has power to choose both IP and physical address.
 - Ethernet addresses come pre-assigned (so do part of IP addresses!).
 - Ethernet addresses are 48 bits vs IP addresses which are 32-bits.

ARP techniques (contd)

2. Table Lookup:
 - Searching or indexing to get MAC addresses
 - Similar to lookup in /etc/hosts for names
 - Problem: change Ethernet card => change table

3. Dynamic Binding: ARP
 - The host broadcasts a request: “What is the MAC address of 127.123.115.08?”
 - The host whose IP address is 127.123.115.08 replies back: “The MAC address for 127.123.115.08 is 8A-5F-3C-23-45-56”
 - All three methods are allowed in TCP/IP networks.
Summary

- IP header: supports connectionless delivery, variable length pkts/headers/options, fragmentation, reassembly, path MTU discovery
- New forwarding algorithm, ARP for address resolution