IP Next Generation (IPv6)

Shivkumar Kalyanaraman
Rensselaer Polytechnic Institute
shivkuma@ecse.rpi.edu
http://www.ecse.rpi.edu/Homepages/shivkuma

Overview

- Limitations of current Internet Protocol (IP)
- How many addresses do we need?
- IPv6 Addressing
- IPv6 header format
- IPv6 features: routing flexibility, plug-n-play, multicast support, flows
IP Addresses

- **Example**: 164.107.134.5
 - 1010 0100 : 0110 1011 : 1000 0110 : 0000 0101
 - A4:6B:86:05 (32 bits)
- Maximum number of address = \(2^{32} = 4\) Billion
- Class A Networks: 15 Million nodes
- Class B Networks: 64,000 nodes or less
- Class C Networks: 250 nodes or less

IP Address Format

- Three all-zero network numbers are reserved
- 127 Class A + 16,381 Class B + 2,097,151 Class C networks = 2,113,659 networks total
- Class B is most popular.
- 20% of Class B were assigned by 7/90 and doubling every 14 months ⇒ Will exhaust by 3/94
- Question: Estimate how big will you become?
 - Answer: More than 256!
 - Class C is too small. Class B is just right.
How Many Addresses?

- 10 Billion people by 2020
- Each person has more than one computer
- Assuming 100 computers per person $\Rightarrow 10^{12}$ computers
- More addresses may be required since
 - Multiple interfaces per node
 - Multiple addresses per interface
- Some believe 2^6 to 2^8 addresses per host
- Safety margin $\Rightarrow 10^{15}$ addresses
- IPng Requirements $\Rightarrow 10^{12}$ end systems and 10^9 networks. Desirable 10^{12} to 10^{15} networks

Address Size

- H Ratio = $\log_{10}(\# \text{ of objects})/$available bits
- 2^n objects with n bits: H-Ratio = $\log_{10}2 = 0.30103$
- French telephone moved from 8 to 9 digits at 10^7 households $\Rightarrow H = 0.26 \text{ (~3.3 bits/digit)}$
- US telephone expanded area codes with 10^8 subscribers $\Rightarrow H = 0.24$
- Physics/space science net stopped at 15000 nodes using 16-bit addresses $\Rightarrow H = 0.26$
- 3 Million Internet hosts currently using 32-bit addresses $\Rightarrow H = 0.20 \Rightarrow$ A few more years to go
IPv6 Addresses

- 128-bit long. Fixed size
- \(2^{128} = 3.4 \times 10^{38}\) addresses
 \(\Rightarrow 665 \times 10^{21}\) addresses per sq. m of earth surface
- If assigned at the rate of \(10^6/\mu s\), it would take 20 years
- Expected to support \(8 \times 10^{17}\) to \(2 \times 10^{33}\) addresses
 \(8 \times 10^{17} \Rightarrow 1,564\) address per sq. m
- Allows multiple interfaces per host.
- Allows multiple addresses per interface
- Allows unicast, multicast, anycast
- Allows provider based, site-local, link-local
- 85% of the space is unassigned

Colon-Hex Notation

- **Dot-Decimal:** 127.23.45.88
- **Colon-Hex:**
 FEDC:0000:0000:0000:3243:0000:0000:ABCD
 - Can skip leading zeros of each word
 - Can skip one sequence of zero words, e.g.,
 FEDC::3243:0000:0000:ABCD or
 ::3243:0000:0000:ABCD
 - Can leave the last 32 bits in dot-decimal, e.g.,
 ::127.23.45.88
 - Can specify a prefix by /length, e.g.,
 2345:BA23:7::/40
IPv6 vs IPv4

- IPv6 only twice the size of IPv4 header
- Only version number has the same position and meaning as in IPv4
- **Removed:**
 - Header length, fragmentation fields (identification, flags, fragment offset), header checksum
- **Replaced:**
 - Datagram length by payload length
 - Protocol type by next header
 - Time to live by hop limit
 - Type of service by “class” octet
- **Added:** flow label
- All fixed size fields.
IPv6 vs IPv4

- No optional fields. Replaced by extension headers.
 - Idea: avoid unnecessary processing by intermediate routers while not sacrificing the flexibility possible due to options
 - Next Header = 6 (TCP), 17 (UDP), etc

Extension Headers

- Most extension headers are examined only at destination
- Routing: Loose or tight source routing
- Fragmentation: All IPv6 routers can carry 536 Byte payload
- Authentication
- Hop-by-Hop Options
- Destination Options:
Extension Header (Cont)

- Only Base Header:
 - Base Header
 - Next = TCP
 - Segment

- Only Base Header and One Extension Header:
 - Base Header
 - Next = TCP
 - Route Header
 - Next = TCP
 - TCP
 - Segment

- Only Base Header and Two Extension Headers:
 - Base Header
 - Next = TCP
 - Route Header
 - Next = TCP
 - Auth Header
 - Next = TCP
 - TCP
 - Segment

Routing Header

- Next Header | Hdr Ext Len | Routing Type | Sgmts left
- Reserved
- Address 1
- Address 2
- Address n

- Type = 0 ⇒ Current source routing
- Router will look at RH if its address is in the destination field
- New Functionality: Provider selection, Host mobility, Auto-readdressing (route to new address)
Provider Selection

- Possible using routing extension header
- Source specified intermediate systems
- No preference: H1, H2
- P1 Preferred: H1, P1, H2
- H1 becomes Mobile: H1, PR, P1, H2

Fragmentation

- Routers cannot fragment. Only source hosts can.
 ⇒ Need path MTU discovery or tunneling
- Fragmentation requires an extension header
- Payload is divided into pieces
- A new base header is created for each fragment
IPv6 addressing and routing

- Aggregatable Global Unicast Addresses
- Link-local and Site-local addresses
- Multicast and Anycast support
- Provider-based inter-domain routing & IDRP

Initial IPv6 Prefix Allocation

<table>
<thead>
<tr>
<th>Allocation</th>
<th>Prefix</th>
<th>Allocation</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved</td>
<td>0000 0000</td>
<td>Unassigned</td>
<td>101</td>
</tr>
<tr>
<td>Unassigned</td>
<td>0000 0001</td>
<td>Unassigned</td>
<td>110</td>
</tr>
<tr>
<td>NSAP</td>
<td>0000 001</td>
<td>Unassigned</td>
<td>1110</td>
</tr>
<tr>
<td>IPX</td>
<td>0000 010</td>
<td>Unassigned</td>
<td>1111 0</td>
</tr>
<tr>
<td>Unassigned</td>
<td>0000 011</td>
<td>Unassigned</td>
<td>1111 10</td>
</tr>
<tr>
<td>Unassigned</td>
<td>0001 1</td>
<td>Unassigned</td>
<td>1111 110</td>
</tr>
<tr>
<td>Unassigned</td>
<td>0001</td>
<td>Unassigned</td>
<td>1111 1110</td>
</tr>
<tr>
<td>Unassigned</td>
<td>001</td>
<td>Unassigned</td>
<td>1111 1110 0</td>
</tr>
<tr>
<td>Provider-based*</td>
<td>010</td>
<td>Link-Local</td>
<td>1111 1110 10</td>
</tr>
<tr>
<td>Unassigned</td>
<td>011</td>
<td>Site-Local</td>
<td>1111 1110 11</td>
</tr>
<tr>
<td>Geographic</td>
<td>100</td>
<td>Multicast</td>
<td>1111 1111</td>
</tr>
</tbody>
</table>

*Has been renamed as “Aggregatable global unicast”
Aggregatable Global Unicast Addresses

- Address allocation: “provider-based” plan
- Format: TLA + NLA + SLA + 64-bit interface ID
- TLA = “Top level aggregator.” (13 bits)
 - Ranges of TLA values allocated to various registries
 - For “backbone” providers or “exchange points”
- NLA = “Next Level Aggregator” (32 bits)
 - Second tier provider and a subscriber
 - More levels of hierarchy possible within NLA
- SLA = “Site level aggregator” = 16 bits for link

Aggr. Global Unicast Addr

- Renumbering after change of provider => change the TLA and NLA. But have same SLA & I/f ID
- Interface ID = 64 bits
 - Will be based on IEEE EUI-64 format
 - An extension of the IEEE 802 (48 bit) format.
 - Possible to derive the IEEE EUI-64 equivalent of current IEEE 802 addresses
 - Along with neighbor discovery procedures, obviates need for ARP.
Local-Use Addresses

- **Link Local**: Not forwarded outside the link,
 FE:80::xxx

<table>
<thead>
<tr>
<th>10 bits</th>
<th>n bits</th>
<th>118-n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111 1110 10</td>
<td>0</td>
<td>Interface ID</td>
</tr>
</tbody>
</table>

- **Site Local**: Not forwarded outside the site,
 FE:C0::xxx

<table>
<thead>
<tr>
<th>10 bits</th>
<th>n bits</th>
<th>m bits</th>
<th>118-n-m bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111 1110 11</td>
<td>0</td>
<td>Subnet ID</td>
<td>Interface ID</td>
</tr>
</tbody>
</table>

- Provides plug and play

Multicast Addresses

- All routers recognize this format ⇒ all routers can route multicast packets. Also IGMP part of ICMPv6 ⇒ required.

- **Flags**: T = 0 ⇒ Permanent (well-known) multicast address, 1 ⇒ Transient

- **Scope**: 1 Node-local, 2 Link-local, 5 Site-local,
 8 Organization-local, E Global ⇒ routers reqd to honor this.

- **Predefined**: 1 ⇒ All nodes, 2 ⇒ Routers,
 1:0 ⇒ DHCP servers
Multicast & Anycast

- Example: 43 ⇒ NTP Servers
 - FF01::43 ⇒ All NTP servers on this node
 - FF02::43 ⇒ All NTP servers on this link
 - FF05::43 ⇒ All NTP servers in this site
 - FF08::43 ⇒ All NTP servers in this org.
 - FF0F::43 ⇒ All NTP servers in the Internet
- Structure of Group ID:
 - First 80 bits = zero (to avoid risk of group collision, because IP multicast mapping uses only 32 bits)

Address Autoconfiguration

- Allows plug and play
- BOOTP and DHCP are used in IPv4
- DHCPng will be used with IPv6
- Two Methods: Stateless and Stateful
- Stateless:
 - A system uses link-local address as source and multicasts to "All routers on this link"
 - Router replies and provides all the needed prefix info
Address Autoconfiguration

- All prefixes have an associated lifetime
- System can use link-local address permanently if no router
- Stateful:
 - Problem with stateless: Anyone can connect
 - Routers ask the new system to go DHCP server (by setting managed configuration bit)
 - System multicasts to "All DHCP servers"
 - DHCP server assigns an address

Neighbor Discovery

- Media addresses allowed to be up to 128 bits long
- Part of ICMPv6 functionality
- Subsumes ARP, Router discovery.
- Source maintains several caches: destination cache, neighbor cache, prefix cache, router cache
- Multicast solicitation for neighbor media address if unavailable in neighbor cache
- Neighbor advertisement message sent to soliciting station.
- Redirects also part of ICMPv6
Real-time support

- Flow label and the “class” octet field
- Flow = sequence of packets from a single source to a particular (unicast/multicast) destinations requiring special handling by intermediate routers
- Applications becoming adaptive
 - Even adaptive voice available for IP telephony
- Hierarchical transmissions:
 - Can cause congestion (Steve McCanne, SIGCOMM’96)
 => “priority” renamed as “class”
 - “Class” field currently being worked upon by differentiated services group

Transition Mechanisms

- Dual-IP Hosts, Routers, Name servers
- Tunneling IPv6 over IPv4
- Nodes can be partially upgraded to IPv6
- It is better (though not required) to upgrade routers before upgrading hosts
Application Issues

- Most application protocols will have to be upgraded: FTP, SMTP, Telnet, Rlogin
- 27 of 51 Full Internet standards, 6 of 20 draft standards, 25 of 130 proposed standards will be revised for IPv6
- No checksum ⇒ checksum at upper layer is mandatory, even in UDP
- non-IETF standards: X-Open, Kerberos, ... will be updated
- Should be able to request and receive new DNS records

Summary

- IPv6 uses 128-bit addresses
- Allows provider-based, site-local, link-local, multicast, anycast addresses
- Fixed header size. Extension headers instead of options for provider selection, security etc
- Allows auto-configuration
- Dual-IP router and host implementations for transition