Better-than-best-effort: QoS, Int-serv, Diff-serv, RSVP, RTP

Shivkumar Kalyanaraman
Rensselaer Polytechnic Institute
shivkuma@ecse.rpi.edu
http://www.ecse.rpi.edu/Homepages/shivkuma

Overview

- QoS building blocks
- ATM QoS architecture
- Why better-than-best-effort Internet?
- Support for multimedia apps: RTP, H.323, Integrated Services(int-serv), RSVP.
- Scalable differentiated services for ISPs: diff-serv
- Missing pieces: QoS routing, traffic engineering, policy management, pricing models
QoS building blocks

- QoS => set aside resources for premium services
- QoS components:
 - a) What kind of premium services? *(Service/SLA design)*
 - b) How much resources? *(admission control/provisioning)*
 - c) How to ensure network resource utilization, do load balancing, flexibly manage traffic aggregates and paths? *(QoS routing, traffic engineering)*
 - d) How to actually set aside these resources in a distributed manner? *(signaling, provisioning, policy)*
 - e) How to deliver the service when the traffic actually comes in? *(traffic shaping, classification, scheduling)*
 - f) How to monitor quality, account and price these services? *(Network management, Accounting, Billing, Pricing)*

QoS big picture: Control/Data planes

| Control Plane: Signaling + Admission Control + SLA (Contracting) + Provisioning/Traffic Engineering |
| Data Plane: Traffic conditioning (shaping, policing, marking etc) at the edge + Traffic Classification + Claiming Reserved Resources (Per-hop Behavior- PHB), scheduling, buffer management |
Eg. Mechanisms: Queuing/Scheduling

- Use a few bits to indicate which queue (class) a packet goes into (also branded as CoS)
- High $$ users get into high priority queues, which are in turn less populated => lower delay and near-zero likelihood of packet drop

Eg. Mechanisms (contd): priority drop

- Drop In and out-of-profile packets
- Drop only out-of-profile packets
- Enhance buffer management to preferentially drop red packets when a low threshold is crossed
ATM QoS framework

- **Services**: CBR, rt-VBR, nrt-VBR, ABR, UBR
- **QoS Routing and Signaling**:
 - PNNI, ATM signaling with VCs/VPs
- **Traffic management**:
 - QoS parameter design, traffic conditioners, feedback control
 - Standard end system and switch behavior for each of the services
- **Critique**: No support for qualitative, provider-defined services, limited pt-to-mpt support

ATM Traffic Classes

- **CBR, VBR** for voice, video: “higher priority”
- **ABR, GFR, UBR** for data: uses “left over capacity”
- **ABR properties**: low latency, high throughput, fairness among contending sources, and low cell loss.
- **UBR properties**: No guarantees. Happy-go-lucky.
- **GFR properties**:
 - Minimum rate provided through simple signaling and buffer management.
 - Intermediate to ABR and UBR - similar to frame relay.
Internet real-time support model

- Initially assume that the net offers no real-time support and engineer transport protocols (RTP) and middleware which can enable adaptive real-time applications
- On the longer term, build QoS mechanisms: control-plane and data-plane
- Flexibility to leverage the Internet connectionless model, allow for future multicast capability, accommodate ISP’s desire to “provision/engineer” networks, and design their own services

RTP

- RTP is the standard protocol for the transport of real-time data, including audio and video.
- RTP follows the application level framing (ALF) philosophy.
 - RTP specifies common app functions.
 - It is intended to be tailored through modifications and/or additions to the headers (spec’d in companion docs)
- RTP consists of a data and a control part. The latter is called RTCP.
- The data part of RTP is a thin protocol.
RTCP

- RTCP provides support for real-time conferencing of groups of any size within an internet.
 - Eg: source identification and support for gateways like audio and video bridges as well as multicast-to-unicast translators.
 - It offers quality-of-service feedback from receivers to the multicast group & synchronization support for media streams.

RTP (contd)

- RTP services: payload type identification, sequence numbering, timestamping, delivery monitoring, & optional mixing/translation. UDP for multiplexing and checksum services
- RTP does not provide: mechanisms to ensure quality-of-service, guarantee delivery or prevent out-of-order delivery or loss.
 - RTP sequence numbers allow receiver to reconstruct the sender's packet sequence, or to determine the proper location of a packet, eg, in video decoding, without necessarily decoding packets in sequence.
H.323

- H.323 is an ITU standard for multimedia communications over best-effort LANs.
- Part of a larger set of standards (H.32X) for videoconferencing over data networks.
- H.323 includes both stand-alone devices and embedded personal computer technology as well as point-to-point and multipoint conferences.
- H.323 addresses call control, multimedia management, and bandwidth management as well as interfaces between LANs and other networks.

H.323 Architecture
H.323 (contd)

- Terminals, Gateways, Gatekeepers, and Multipoint Control Units (MCUs)

- Terminals: All terminals must support voice; video and data are optional.
- Gateway: an optional element which provides translation functions between H.323 conferencing endpoints (esp for ISDN, PSTN)
- Gatekeeper: most important component which provides call control services
- Multipoint Control Unit (MCU): supports conferences between three or more endpoints. Consists of a Multipoint Controller (MC) and Multipoint Processors (MP).
Integrated Services (int-serv)

- Supplement Internet Architecture with:
 - Services: guaranteed delay, controlled load
 - New signaling protocol: RSVP + admission control
 - Shaping at edge nodes combines with packet classification and scheduling/buffer management at routers to provide local delay and bandwidth guarantees.
 - Specs for parameters (flow-spec), classification (filter-spec)

- **Critique**: non-scalable, no control over routing vagaries, no feedback support

RSVP

- A signaling protocol: creates and maintains distributed reservation state
- Multicast trees setup by routing protocols, not RSVP (unlike ATM signaling)
- Receiver-initiated: scales for multicast
- Soft-state: time out unless refreshed: robust.
- Latest paths discovered through “PATH” messages and used by RESV mesgs.
- Flowspec: specifies resource to be reserved
- Filterspec: specifies how to classify packets
- Reservation styles: "wildcard", "fixed-filter", and "dynamic-filter".
Diff-serv motivations

- #1. Economics of ISPs (access and transit providers) dictates need for service differentiation
 - IP provides just a best effort service
 - TOS is used in a non-standard way, and could be redefined to be more useful
 - Work done in pricing aspects of SLAs did not fit into IP because of a lack of header bits
 - ISPs, not IETF, should define services
 - Some services could be end-to-end, but here IETF would standardize only building blocks

Diff-serv motivations (contd)

- #2. Diffserv is considered to be crucial building block to provide performance assurances in IP-based VPNs.
 - Other pieces: IPSEC (security & tunneling), L2TP (remote-access tunneling), and RSVP (QoS signaling)
- #3. Int-serv/RSPV does not scale
 - Diffserv uses a limited set of “behavior aggregates (BA)”
 - Diffserv creates a separation between edge and core routers.
 - Move per-flow (possibly non-scalable) data path functions (or MF-classification) to edges.
 - Edge handles policy, contracting and billing.
 - Interiors may participate in signaling
Diff-serv motivations (contd)

- **Diff-serv must work with IPv4.**
 - **Costs:** incompatibility…
 - Redefining TOS octet.
 - Compatibility w/ RFC 791 (IP precedence)
 - New implementation of critical forwarding path as a “per-hop behavior”
 - **Opportunities:** leveraging Internet protocol base
 - Vendors: Opportunity for router upgrades
 - Small/medium-sized providers: economic necessity.
 - Large providers: view diff-serv as an intermediate solution to QoS while waiting for MPLS to integrate ATM, FR facilities and get traffic engineering features.

Differentiated Services Model

- **Network edge routers:** traffic conditioning (policing, marking, dropping), SLA negotiation
 - Set values in DS-byte based upon negotiated service and observed traffic. Per-flow state.
- **Interior routers:** traffic classification and forwarding
 - Use DS-byte as index into forwarding table
Diff-serv building blocks

- **Per-hop Behavior (PHB):** Generalization of mechanisms applied to a flow in the forwarding path.
- **PHB Group:** Inter-related PHBs used together to implement a service.
- **Codepoints:** Bit combinations in the DS-byte.
- **Mechanisms:** Low level implementation of building blocks.
- **Traffic conditioners:** Markers, meters, shapers etc.

Relation between diff-serv blocks

Structure in RFC2474 (+ PHB classes).
IP Differentiated Services

- Only building blocks, no fully defined services
- Works with IPv4
- **Services**: leased-line emulation ("premium service"), frame-relay emulation ("assured service"), CoS (Class-of-Service)
- Only data-plane building blocks defined: traffic conditioners, Per-hop Behaviors (PHBs)
- **Critique**: control-plane components undefined (contenders: RSVP, COPS, SNMP, MPLS, L2TP)

Control plane: MPLS

- Provides a framework for routing evolution
 - De-couples forwarding from routing control
 - Explicit routing
 - Constraint-based (QoS) routing, load-balancing
 - Traffic engineering: aggregating traffic flows into trunks, and mapping them onto pre-defined paths
- Provides a framework for integrating IP, ATM, and frame-relay cores
 - Allows re-engineering of the ATM control plane, and the IP forwarding plane
MPLS: building blocks

- **Label**: short, fixed length field
- **Forwarding table structure**:
 - Incoming label + subentry = outgoing label, outgoing interface, next-hop address (will include PHBs for diff-serv)
- **Carrying label in header**:
 - Use VCI/VPI or DLCI in ATM or FR
 - New “shim” header for other link layers
- **Forwarding algorithm**: *Label swapping.*
 - Use label as an index (exact match)
- **Control component**:
 - Responsible for distributing routing & label-binding information: extensions to routing protocols, RSVP, LDP

COPS

- Common Open Policy Service
- Initially designed for adding *policy control* to RSVP
- Now being extended to support *provisioning*
- Uses TCP; stateful exchange; common object model

![Diagram of COPS architecture](image.png)
Missing pieces in diff-serv

- **Provisioning/policy/signaling:** Assumed to be done using RSVP, COPS, SNMP, LDAP or over-engineering!
- **Route pinning/multi-paths:** extensions to OSPF, BGP, QoS routing
- **End-to-end services:** combination of above pieces: eg: frame-relay emulation, virtual leased line etc
- **Tools to prevent traffic based denial of service attacks**

Summary

- **QoS big picture:** ATM and IP building blocks/services
- **Real-time transport/middleware:** RTP, H.323
- **Integrated services:** RSVP, 2 services, scheduling, admission control etc
- **Diff-serv:** edge-routers, core routers; DS byte marking and PHBs
- **Missing pieces:** routing support (MPLS), pricing models, policy management (COPS)