Why IP multicast?

- Need for efficient delivery to multiple destinations across inter/intranets
- Broadcast:
 - Send a copy to every machine on the net
 - Simple, but inefficient
 - All nodes “must” process the packet even if they don’t care
 - Wastes more CPU cycles of slower machines ("broadcast radiation")
 - Network loops lead to “broadcast storms”

- Replicated Unicast:
 - Sender sends a copy to each receiver in turn
 - Receivers need to register or sender must be pre-configured
 - Sender is focal point of all control traffic
 - Latency = time between the first and last receiver getting a copy (can be large if transmission times are large)

Application-layer relays:
- A “relay” node or set of nodes does the replicated unicast function instead of the source
- Multiple relays can handle “groups” of receivers and reduce number of packets per multicast => efficiency
- Manager has to manually configure names of receivers in relays etc => too much administrative burden
- Becoming more popular in content distribution
- Alternative: build replication/multicast engine at the network layer

Overview

- Why IP multicast? Multicast apps ...
- Concepts: groups, scopes, trees
- Multicast addresses, LAN multicast
- Group management: IGMP
- Multicast routing and forwarding: MBONE, PIM etc
- Reliable Multicast Transport Protocols

Multicast = Efficient Data Distribution
Multicast Applications
- News/sports/stock/weather updates
- Distance learning
- Configuration, routing updates, service location
- Pointcast-type “push” apps
- Teleconferencing (audio, video, shared whiteboard, text editor)
- Distributed interactive gaming or simulations
- Email distribution lists
- Content distribution; Software distribution
- Web-cache updates
- Database replication

Multicast Apps Characteristics
- Number of (simultaneous) senders to the group
- The size of the groups
 - Number of members (receivers)
 - Geographic extent or scope
 - Diameter of the group measured in router hops

Multicast Apps Characteristics (Continued)
- The longevity of the group
- Number of aggregate packets/second
- The peak/average used by source
- Level of human interactivity
 - Lecture mode vs interactive
 - Data-only (e.g., database replication) vs multimedia

IP Multicast Architecture
- Service model
- Host-to-router protocol (IGMP)
- Multicast routing protocols (various)

IP Multicast model: RFC 1112
- Message sent to multicast “group” (of receivers)
 - Senders need not be group members
 - A group identified by a single “group address”
 - Use “group address” instead of destination address in IP packet sent to group
- Groups can have any size;
- Group members can be located anywhere on the Internet
- Group membership is not explicitly known
- Receivers can join/leave at will

IP Multicast Concepts (Continued)
- Packets are not duplicated or delivered to destinations outside the group
- Distribution tree constructed for delivery of packets
- Packets forwarded “away” from the source
- No more than one copy of packet appears on any subnet
- Packets delivered only to “interested” receivers
 => multicast delivery tree changes dynamically
- Network has to actively discover paths between senders and receivers
IP Multicast Addresses

- Class D IP addresses
 - 224.0.0.0 – 239.255.255

 | 1 1 1 1 | Group ID |

- Address allocation:
 - Well-known (reserved) multicast addresses, assigned by IANA: 224.0.0.x and 224.0.1.x
 - Transient multicast addresses, assigned and reclaimed dynamically, e.g., by “sdr” program
 - Each multicast address represents a group of arbitrary size, called a “host group”
 - There is no structure within class D address space like subnetting => flat address space

IP Multicast Service — Sending

- Uses normal IP-Send operation, with an IP multicast address specified as the destination
- Must provide sending application a way to:
 - Specify outgoing network interface, if >1 available
 - Specify IP time-to-live (TTL) on outgoing packet
 - Enable/disable loop-back if the sending host is/isn’t a member of the destination group on the outgoing interface

IP Multicast Service — Receiving

- Two new operations
 - Join-IP-Multicast-Group(group-address, interface)
 - Leave-IP-Multicast-Group(group-address, interface)
 - Receive multicast packets for joined groups via normal IP-Receive operation

Link-Layer Transmission/Reception

- Transmission
 - IP multicast packet is transmitted as a link-layer multicast, on those links that support multicast
 - Link-layer destination address is determined by an algorithm specific to the type of link
- Reception
 - Necessary steps are taken to receive desired multicasts on a particular link, such as modifying address reception filters on LAN interfaces
 - Multicast routers must be able to receive all IP multicasts on a link, without knowing in advance which groups will be used

Using Link-Layer Multicast Addresses

- Ethernet and other LANs using 802 addresses:
 - Direct mapping! Simpler than unicast! No ARP etc.
 - 32 class D addrs may map to one MAC addr
 - Special OUI for IETF: 0x01-00-5E.
 - No mapping needed for point-to-point links

Multicast over LANs & Scoping

- Multicasts are flooded across MAC-layer bridges along a spanning tree
 - But flooding may steal sending opportunity for non-member stations which want to transmit
 - Almost like broadcast!

- Scope: How far do transmissions propagate?
 - Implicit scoping: Reserved Mcast addresses => don’t leave subnet.
 - Also called “link-local” addresses
Scope of Multicast Forwarding

- TTL-based scoping:
 - Multicast routers have a configured TTL threshold
 - Mcast datagram dropped if TTL ≤ TTL threshold
 - Useful as a blanket parameter.

- Administrative scoping:
 - Use a portion of class D address space (239.0.0.0 thru 239.255.255)
 - Truly local to admin domain; address reuse possible.
 - In IPv6, scoping is an internal attribute of an IPv6 multicast address.

Multicast Scope Control – Small TTLs

- TTL expanding-ring search to reach or find a nearby subset of a group.

Multicast Scope Control – Large TTLs

- Administrative TTL Boundaries to keep multicast traffic within an administrative domain, e.g., for privacy or resource reasons.

The rest of the Internet

An administrative domain

TTL threshold set on interfaces to these links greater than the diameter of the admin. domain

Multicast Scope Control

- Administratively Scoped Addresses (RFC 1112)
 - Uses address range 239.0.0.0 — 239.255.255.255
 - Supports overlapping (not just nested) domains

Internet Group Management Protocol

- IGMP: "signaling" protocol to establish, maintain, remove groups on a subnet.
- Objective: keep router up-to-date with group membership of entire LAN
 - Routers need not know who all the members are, only that members exist
 - Each host keeps track of which mcast groups are subscribed to
 - Socket API informs IGMP process of all joins
How IGMP Works

- On each link, one router is elected the “querier”
- Querier periodically sends a Membership Query message to the all-systems group (224.0.0.1), with TTL = 1
- On receipt, hosts start random timers (between 0 and 10 seconds) for each multicast group to which they belong

How IGMP Works (cont.)

- Normal case: only one report message per group present is sent in response to a query
 - Query interval is typically 60-90 seconds
- When a host first joins a group, it sends immediate reports, instead of waiting for a query
- IGMPv2: Hosts may send a “Leave group” message to “all routers” (224.0.0.2) address
 - Querier responds with a Group-specific Query message: see if any group members are present
 - Lower leave latency

Internet Group Management Protocol

- End system to router protocol is IGMP
- Each host keeps track of which mcast groups are subscribed to
- Socket API informs IGMP process of all joins
- Objective is to keep router up-to-date with group membership of entire LAN
- Routers need not know who all the members are, only that members exist

IP Multicast Architecture

- Service model
- Host-to-router protocol (IGMP)
- Multicast routing protocols (various)
How IGMP Works (cont.)

- When a host's timer for group G expires, it sends a Membership Report to group G with TTL = 1
- Other members of G hear the report and stop their timers
- Routers hear all reports, and time out non-responding groups

How IGMP Works (cont.)

- Note that, in normal case, only one report message per group present is sent in response to a query
- Query interval is typically 60-90 seconds
- When a host first joins a group, it sends one or two immediate reports, instead of waiting for a query

IP Multicast Architecture

Service model
Host-to-router protocol (IGMP)
Multicast routing protocols

Multicast Routing

- Basic objective – build distribution tree for multicast packets
- The “leaves” of the distribution tree are the subnets containing at least one group member (detected by IGMP)
- Multicast service model makes it hard
 - Anonymity
 - Dynamic join/leave

Routing Techniques

- Flood and prune
 - Begin by flooding traffic to entire network
 - Prune branches with no receivers
 - Examples: DVMRP, PIM-DM
 - Unwanted state where there are no receivers
- Link-state multicast protocols
 - Routers advertise groups for which they have receivers to entire network
 - Compute trees on demand
 - Example: MOSPF
 - Unwanted state where there are no senders

Routing Techniques

- Core-based protocols
 - Specify “meeting place” aka “core” or “rendezvous point (RP)”
 - Sources send initial packets to core
 - Receivers join group at core
 - Requires mapping between multicast group address and “meeting place”
 - Examples: CBT, PIM-SM
Routing Techniques (Continued)

- Tree building methods:
 - **Data-driven**: calculate the tree only when the first packet is seen. Eg: DVMRP, MOSPF
 - **Control-driven**: Build tree in background before any data is transmitted. Eg: CBT

- Join-styles:
 - **Explicit-join**: The leaves explicitly join the tree. Eg: CBT, PIM-SM
 - **Implicit-join**: All subnets are assumed to be receivers unless they say otherwise (eg via tree pruning). Eg: DVMRP, MOSPF

Shared vs. Source-based Trees

- **Source-based trees**
 - Separate shortest path tree for each sender
 - (S,G) state at intermediate routers
 - Eg: DVMRP, MOSPF, PIM-DM, PIM-SM

- **Shared trees**
 - Single tree shared by all members
 - Data flows on same tree regardless of sender
 - (*,G) state at intermediate routers
 - Eg: CBT, PIM-SM

Source-based Trees

- **Source-based trees**
 - Shortest path trees – low delay, better load distribution
 - More state at routers (per-source state)
 - Efficient in dense-area multicast

A Shared Tree

- **Shared trees**
 - Higher delay (bounded by factor of 2), traffic concentration
 - Choice of core affects efficiency
 - Per-group state at routers
 - Efficient for sparse-area multicast

Distance-Vector Multicast Routing

- **DVMRP** consists of two major components:
 - A conventional distance-vector routing protocol (like RIP)
 - A protocol for determining how to forward multicast packets, based on the unicast routing table

- **DVMRP** router forwards a packet if
 - The packet **arrived from the link used to reach the source of the packet**
 - Reverse path forwarding check – RPF
 - If downstream links have not pruned the tree
Example Topology

Flood with Truncated Broadcast

Prune

Graft

Steady State

DVMRP limitations

- Like distance-vector protocols, affected by count-to-infinity and transient looping
- Multicast trees more vulnerable than unicast!
- Shares the scaling limitations of RIP. New scaling limitations:
 - (S,G) state in routers: even in pruned parts!
 - Broadcast-and-prune has an initial broadcast.
 - Limited to few senders. Many small groups also undesired. Why?
- No hierarchy: flat routing domain
Multicast Backbone (MBone)
- An overlay network of IP multicast-capable routers using DVMRP
- Tools: sdr (session directory), vic, vat, wb

MBone Tunnels
- A method for sending multicast packets through multicast-ignorant routers
- IP multicast packet is encapsulated in a unicast IP packet (IP-in-IP) addressed to far end of tunnel:
 - IP header, dest = unicast
 - IP header, dest = multicast
 - Transport header and data...
- Tunnel acts like a virtual point-to-point link
 - Intermediate routers see only outer header
 - Tunnel endpoint recognizes IP-in-IP (protocol type = 4) and de-capsulates datagram for processing
- Each end of tunnel is manually configured with unicast address of the other end

Protocol Independent Multicast (PIM)
- Support for both shared and per-source trees
- Dense mode (per-source tree)
 - Similar to DVMRP
- Sparse mode (shared tree)
 - Core = rendezvous point (RP)
- Independent of unicast routing protocol
 - Just uses unicast forwarding table

PIM Protocol Overview
- Basic protocol steps
 - Routers with local members Join toward Rendezvous Point (RP) to join shared tree
 - Routers with local sources encapsulate data in Register messages to RP
 - Routers with local members may initiate data-driven switch to source-specific shortest path trees
- PIM v.2 Specification (RFC2362)

PIM Example: Build Shared Tree
- Shared tree after R1,R2 join
- Join message toward RP

Data Encapsulated in Register
- Unicast encapsulated data packet to RP in Register
- RP de-capsulates, forwards down shared tree
RP Send Join to High Rate Source

Source 1 \((S1, G)\)

Receiver 1

Receiver 2

Receiver 3

Build Source-Specific Distribution Tree

Source 1 \((S1, G)\)

Receiver 1

Receiver 2

Receiver 3

Forward On “Longest-match” Entry

Source 1 Distribution Tree

Source 1 \((S1, G)\)

Receiver 1

Receiver 2

Receiver 3

Prune S1 off Shared Tree

Source 1

Receiver 1

Receiver 2

Receiver 3

Reliable Multicast Transport

- Problems:
 - Retransmission can make reliable multicast as inefficient as replicated unicast
 - Ack-implosion if all destinations ack at once
 - Source does not know # of destinations
 - "Crying baby": a bad link affects entire group
 - Heterogeneity: receivers, links, group sizes
 - Not all multicast applications need strong reliability of the type provided by TCP.
 - Some can tolerate reordering, delay, etc.

Recap: Reliability Models

- Reliability requires redundancy to recover from uncertain loss or other failure modes.

- Two types of redundancy:
 - Spatial redundancy: independent backup copies
 - Forward error correction (FEC) codes
 - Problem: requires huge overhead, since the FEC is also part of the packet(s) it cannot recover from erasure of all packets
 - Temporal redundancy: retransmit if packets lost/error
 - Lazy: trades off response time for reliability
 - Design of status reports and retransmission optimization (see next slide) important
Temporal Redundancy Model

- Packets
 - Sequence Numbers
 - CRC or Checksum
- Status Reports
 - ACKs
 - NAKs
 - SACKs
 - Bitmaps
- Retransmissions
 - Packets
 - FEC information

For reliable multicast, we need to leverage all flexibility possible.

RMT building blocks: RFC 3048

- NACK only: Eg: SRM uses only end-to-end mechanisms.
- Tree-based ACK: aggregators reduce reverse traffic. Eg: RMTP-II
- Asynchronous Layered Coding (ALC): use of forward-error correction (FEC), and no feedback, aka "proactive" FEC
- Router assist: use of NAKs but router support for aggregation. Eg: PGM
 - FEC retransmissions (aka reactive FEC) instead of data retransmissions

Eg: Scalable Reliable Multicast (SRM)

- All members get all the data that has been sent to the multicast group (minimalist reliability)
- Repair requests and responses (retransmissions) are multicast.
- Scope of repair requests and responses can be TTL limited or a separate "local recovery group" can be formed
- Techniques to avoid implosion of repair requests, and reduce control traffic: NAK backoff timers

Summary

- IP multicast issues and applications
- Multicast over LANs and scoping
- IGMP
- Multicast Routing and MBONE
- Reliable multicast transports