Review of Networking and Design Concepts

Two ways of constructing a software design:

1) make it so simple that there are obviously no deficiencies, and
2) make it so complicated that there are no obvious deficiencies
--- CAR Hoare

Based in part upon slides of Prof. Raj Jain (OSU), S. Keshav (Cornell), L. Peterson (Princeton), J. Kurose (U Mass)

Information, Computers, Networks

- Information: anything that is represented in \textit{bits}
 - Form (can be represented) vs \textit{substance} (cannot)
- Properties:
 - Infinitely replicable
 - Computers can \textit{manipulate} information
 - Networks create \textit{access} to information
- Potential of networking:
 - move bits \textit{everywhere, cheaply}, and with \textit{desired performance characteristics}
 - \textbf{Break the space barrier for information}

Connectivity...

- \textbf{Building Blocks}
 - links: coax cable, optical fiber...
 - nodes: general-purpose workstations...
- \textbf{Direct connectivity}:
 - \textit{point-to-point}
- \textbf{Indirect Connectivity}
 - \textit{switched} networks
 - \textit{inter-networks}

What is “Connectivity” ?

- \textbf{Direct or indirect access to every other node in the network}
- \textbf{Connectivity} is the \textit{magic} needed to communicate if you do not have a link.
 - \textit{Tradeoff}: Performance characteristics worse!
Connectivity ...

- Internet:
 - Best-effort
 (no performance guarantees)
 - Packet-by-packet

- A pt-pt link:
 - Always-connected
 - Fixed bandwidth
 - Fixed delay
 - Zero-jitter

Point-to-Point Connectivity Issues

- **Physical** layer: coding, modulation etc
- **Link** layer needed if the link is shared bet'n apps; is unreliable; and is used sporadically
- No need for protocol concepts like addressing, names, routers, hubs, forwarding, filtering ...
- What if I want to build a network with N nodes and let N increase?

Connecting N users: **Directly** ...

- **Bus**: broadcast, collisions, media access control
- **Full mesh**: Cost, simplicity

- Address concept needed if we want the receiver alone to consume the packet!
- Required in all topologies...

Scaling: Filtering

- Scaling: system allows the increase of a key parameter within tradeoffs. Eg: let N increase...
 - Inefficiency limits scaling ...
 - Direct connectivity: inefficient & does not scale
- Mesh: inefficient in terms of # of links
- Bus architecture: 1 expensive link, N cheap links
 - Filtering: choose a subset of elements
 - Receivers need to “filter” out their packets
 - Packet “broadcast” on “bus”
- Problem: broadcast is bandwidth inefficient

How to scale: filtering, forwarding ...

- Filtering: choose a subset of elements from a set
 - A generic concept could apply to set of packets, links or nodes
 - Filtering is the key to efficiency

- Forwarding: actually sending packets to a filtered subset of link/node(s)
 - Packet sent to one link/node => efficient
 - Why? Others can be used in parallel
 - Parallel forwarding also leads to efficiency

- Solution: Build nodes which filter/forward and connect indirectly => “switches” & “routers”

Connecting N users: **Indirectly** ...

- **Star**: One-hop path to any node, reliability, forwarding function
 - “Switch” S can filter and forward!
 - Switch may forward multiple pkts in parallel!
 - Forwarding without filtering => “hub”
 - Emulates “bus” + needs filtering at hosts
Connecting N users: Indirectly …
- Ring: Reliability to link failure, near-minimal links
- All nodes need “forwarding” and “filtering”
- Sophistication of forward/filter lesser than switch

Multi-Access LANs
- Hybrid topologies: direct & indirect
- Limited scalability due to limited filtering
- Topology issues: Cost, reliability, manageability, deployability, scalability, complexity
- Medium Access Protocols:
 - ALOHA, CSMA/CD (Ethernet), Token Ring …
 - Key: Use a single protocol in network
- Concepts: address, forwarding (and forwarding table), bridge, switch, hub, token, medium access control (MAC) protocols

Inter-Networks: Networks of Networks
- What is it?
 - “Connect many disparate physical networks and make them function as a coordinated unit …” - Douglas Comer
 - Many => scale
 - Disparate => heterogeneity
- Result: Universal connectivity!
 - The inter-network looks like one large switch, i.e.
 - User interface is sub-network independent

Inter-Networks: Networks of Networks
- Internetworking involves two fundamental problems: heterogeneity and scale
- Concepts:
 - Translation, overlays, address & name resolution, fragmentation: to handle heterogeneity
 - Hierarchical addressing, routing, naming, address allocation, administration: to handle scaling

System Design Ideas
- Resources:
 - Space
 - Time
 - Computation
 - Money
 - Labor
- Design a system to tradeoff cheaper resources against expensive ones (for a gain)
Building blocks: *Multiplexing*
- Multiplexing = sharing
- Trades time and space for money
- **Cost:** waiting time (delay), buffer space & loss
- **Gain:** Money ($$) ⇒ Overall system costs less
- Eg: Time-Division Multiplexing (TDM), Frequency-Division Multiplexing (FDM)

Statistical Multiplexing
- Reduce resource requirements by *exploiting statistical knowledge* of the system.
- Eg: average rate <= service rate <= peak rate
- **Multiplexing Gain** = peak rate/service rate.
- Service rate: *much lower* than peak rate
- Cost: buffering, queuing delays, losses.
- Tradeoff space and time resources for money
- Useful *only if peak rate differ significantly from average rate.*

What’s a tradeoff? Eg: Queuing delay
- R = link bandwidth (bps)
- L = packet length (bits)
- a = average packet arrival rate
- traffic intensity = \(\frac{a}{R} \)
- \(\frac{a}{R} \approx 0 \): average queuing delay small
- \(\frac{a}{R} \rightarrow 1 \): delays become large
- \(\frac{a}{R} > 1 \): more “work” (demand) arriving than can be serviced (capacity), average delay infinite (service degrades unboundedly!)

Example: Circuit-Switching
- **Circuit-switching:**
 - Divide link bandwidth into “pieces”
 - Reserve pieces of the resource (circuit)
 - Resources wasted if unused: expensive.
 - But, simple to assure quality for voice
 - No meta-data (header)
 - Inferred from timing and circuit state

Example: Packet-Switching
- **Packet-switching:**
 - Chop up data to be transmitted into “packets”
 - Packets: data + meta-data (header)
 - “Switch” packets at intermediate nodes
 - Store-and-forward if bandwidth is not immediately available.

Packet Switching (continued)
- Each end-end data stream divided into packets
 - user A, B packets share network resources
 - each packet uses full link bandwidth
 - resources used as needed
- Resource contention:
 - aggregate resource demand can exceed amount available
 - **congestion**: packets queue, wait for link use
 - store and forward: packets move one hop at a time
 - transmit over link
 - wait turn at next link
Packet Switching

- 10 Mbs Ethernet
- 1.5 Mbs
- 45 Mbs

- Cost: self-descriptive header per-packet, buffering and delays for applications.
- Tradeoff space and time for money

Spatial vs Temporal Multiplexing

- Spatial multiplexing: Chop up resource into chunks. Eg: bandwidth, cake …
- Temporal multiplexing: resource is shared over time, i.e. queue up jobs and provide access to resource over time. Eg: FIFO queueing, packet switching
- Packet switching can exploit both spatial & temporal gains.
- Packet switching is more efficient and hence more scalable!

Virtualization

- The multiplexed shared resource with a level of indirection will seem like a unshared virtual resource!
- I.e. Multiplexing + indirection = virtualization
- We can “refer” to the virtual resource as if it were the physical resource.
- Pure magic!
- Eg: virtual memory, virtual circuits…
- Connectivity: a virtualization created by the Internet!
- Indirection requires binding and unbinding…

Degrees of virtualization...

- Circuit: Telephone system
 - Path & resources reserved before data is sent
 - Data has no meta-info at all. Only timing!
- Virtual Circuit: ATM networks
 - Multiple virtual circuits mapped to one wire.
- Connection-Oriented: TCP
 - Have an association between end-points
- Connectionless/datagram: IP, postage service
 - Complete address on each packet
 - The address finds next hop at each routing point

Formal Framework: Protocols

Human protocol vs Computer network protocol:

- ticket (purchase) ticket (complain)
- baggage (check) baggage (claim)
- gates (load) gates (unload)
- runway takeoff runway landing
- airplane routing airplane routing

- a series of steps

Analogy: Organization of air travel
Organization of air travel: a different view

- ticket (purchase) to ticket (complain)
- baggage (check) to baggage (claim)
- gates (load) to gates (unload)
- runway takeoff to runway landing
- airplane routing

Layers: each layer implements a service
- via its own internal-layer actions (i.e. technology)
- relying on services provided by layer below

So, why layering?
- Explicit structure allows identification, relationship of complex system’s pieces
- Layered reference model
- Modularization eases maintenance, updating of system
- Change of implementation of layer’s service transparent to rest of system
- E.g., change in gate procedure doesn’t affect rest of system
- Layering considered harmful?

Distributed implementation of layers

- Departing airport
 - ticket (purchase)
 - baggage (check)
 - gates (load)
 - runway takeoff
 - airplane routing

- Arriving airport
 - ticket (complain)
 - baggage (claim)
 - gates (unload)
 - runway landing
 - airplane routing

Intermediate air traffic sites

Reference Models for Layering

<table>
<thead>
<tr>
<th>TCP/IP Model</th>
<th>TCP/IP Protocols</th>
<th>OSI Ref Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>FTP</td>
<td>Application</td>
</tr>
<tr>
<td>Transport</td>
<td>TCP, UDP</td>
<td>Presentation</td>
</tr>
<tr>
<td>Internetwork</td>
<td>IP</td>
<td>Session</td>
</tr>
<tr>
<td>Host to Network</td>
<td>Ethernet, Radio</td>
<td>Transport</td>
</tr>
<tr>
<td></td>
<td>Point-to-Point</td>
<td>Network</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Datalink</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical</td>
</tr>
</tbody>
</table>

Formal Framework: Protocols

- Building blocks of a network architecture
- Each protocol object has two different interfaces
 - Service interface: defines operations on this protocol
 - Peer-to-peer interface: defines messages exchanged with peer

Where did the problems these layers solve spring up from?
Formal Framework: *Interface Design*
- Interface between layers is also called the "architecture"
 - Use abstractions to hide complexity
 - Allows a subroutine abstraction between a layer and its adjacent layers.
- Interface design crucial because *interface outlives the technology* used to implement the interface.

Performance evaluation
- **Performance questions:**
 - **Absolute:** How fast...
 - **Relative:** Is A faster than B and how much faster?
- **Define system as a black box.**
 - Parameters: input; Metrics: output
 - Parameters: only those the system is *sensitive to*
 - Metrics: must *reflect the system design tradeoff*

\[
\begin{align*}
\text{Parameters} & \rightarrow \text{System} & \text{Metrics} \\
\end{align*}
\]

Effect on Design: *Amdahl’s law*
- Performance after improvement = \[
\frac{\text{Performance affected by improvement} / \text{speedup}}{\text{Unaffected performance}}
\]
- **Lesson:** Speedup the common case i.e. the parts that matter most!!
- *Amdahl’s law guides the definition of tradeoffs, parameters, test cases and metrics!*

Perspectives on Performance/Design
- **Network users:** services and performance that their applications need.
- **Network designers:** cost-effective design
- **Network providers:** system that is easy to administer and manage
- Need to balance these three needs

Review: *Multiple Access Protocols*
- **Aloha** at University of Hawaii:
 - Transmit whenever you like
 - Worst case utilization = \(1/(2e)\) = 18%
- **CSMA:** Carrier Sense Multiple Access
 - Listen before you transmit
- **CSMA/CD:** CSMA with Collision Detection
 - Listen while transmitting.
 - Stop if you hear someone else.
- **Ethernet** uses CSMA/CD.
 - Standardized by IEEE 802.3 committee.
10Base5 Ethernet **Cabling Rules**
- Thick coax
- Length of the cable is limited to 2.5 km, no more than 4 repeaters between stations
- No more than 500 m per segment ⇒ “10Base5”

10Base5 **Cabling Rules (Continued)**
- No more than 2.5 m between stations
- Transceiver cable limited to 50 m

Inter-connection Devices
- **Repeater**: Layer 1 (PHY) device that restores data and collision signals: a digital amplifier
- **Hub**: Multi-port repeater + fault detection
 - Note: broadcast at layer 1
- **Bridge**: Layer 2 (Data link) device connecting two or more collision domains.
 - MAC multicasts are propagated throughout “extended LAN.”
 - Note: Limited filtering and forwarding at layer 2

Interconnection Devices (Continued)
- **Router**: Network layer device. IP, IPX, AppleTalk. Interconnects broadcast domains.
 - Does not propagate MAC multicasts.
- **Switch**:
 - **Key**: has a switch fabric that allows parallel forwarding paths
 - **Layer 2 switch**: Multi-port bridge w/ fabric
 - **Layer 3 switch**: Router w/ fabric and per-port ASICS

These are functions. Packaging varies.

Interconnection Devices
- **LAN**: Collision Domain
- **Extended LAN**: Broadcast domain

Ethernet (IEEE 802) Address Format
- (Organizationally Unique ID)
- (Global/Local) (Group/Individual)
- 48-bit flat address ⇒ no hierarchy except for administrative purposes
- Assumes that all destinations are (logically) directly connected.
- **Address structure does not explicitly acknowledge indirect connectivity**
Ethernet (IEEE 802) Address Format

- **G/L bit**: administrative
- **G**: Global; unique worldwide; assigned by IEEE
- **L**: Local; Software assigned
- **G/I bit**: multicast
 - **I**: unicast address
 - **G**: multicast address. Eg: “To all bridges on this LAN”

Ethernet & 802.3 Frame Format

- **Ethernet**
 - **IP**: IP
 - **IPX**: IPX
 - **AppleTalk**: AppleTalk

<table>
<thead>
<tr>
<th>Dest. Address</th>
<th>Source Address</th>
<th>Type</th>
<th>Info</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

- **IEEE 802.3**
 - **IP**: IP
 - **IPX**: IPX
 - **AppleTalk**: AppleTalk

<table>
<thead>
<tr>
<th>Dest. Address</th>
<th>Source Address</th>
<th>Length</th>
<th>LLC</th>
<th>Info</th>
<th>Pad</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Review: Serial IP (SLIP)

- Simple: only framing = Flags + byte-stuffing
- Compressed headers (CSLIP) for efficiency on low speed links for interactive traffic.
- Problems:
 - Need other end’s IP address a priori (can’t dynamically assign IP addresses)
 - No “type” field => no multi-protocol encapsulation
 - No checksum => all errors detected/corrected by higher layer.
- RFCs: 1055, 1144

Review: PPP

- **Point-to-point protocol**
- Frame format similar to HDLC
- Multi-protocol encapsulation, CRC, dynamic address allocation possible
 - key fields: flags, protocol, CRC (fig 2.3)
- Asynchronous and synchronous communications possible

Review: PPP (Continued)

- Link and Network Control Protocols (LCP, NCP) for flexible control & peer-peer negotiation
- Can be mapped onto low speed (9.6Kbps) and high speed channels (SONET)
- RFCs: 1548, 1332

Review: MTU

- **Maximum Transmission Unit**
- Key link layer characteristic which affects IP performance.
 - (IP datagram size > MTU) => fragment => inefficient
- Path MTU: smallest MTU on any traversed link on path => TCP/IP can be more efficient knowing this.
- Reducing MTU for a low speed CSLIP line can lead to lesser transmission/propagation times for interactive traffic
Summary: Laundry List of Problems

- **Basics**: Direct/indirect connectivity, topologies
- **Link layer issues**:
 - Framing, Error control, Flow control
- **Multiple access & Ethernet**:
 - Cabling, Pkt format, Switching, bridging vs routing
- **Internetworking problems**: Naming, addressing, Resolution, fragmentation, congestion control, traffic management, Reliability, Network Management