Informal Quiz #14

Shivkumar Kalyanaraman:
GOOGLE: “Shiv RPI”
shivkuma@ecse.rpi.edu
High Speed Router Design
(Slide set #16):
Informal Quiz
Router Design

T F

☐ ☐ The trie data structure for IP forwarding lookup facilitates binary search in terms of prefix length.

☐ ☐ An overwhelmingly large number of prefixes in the global routing mesh are between 16 and 24 bits long.

☐ ☐ Larger routers require lesser space, power and number of interfaces for the same capacity.

☐ ☐ Processing and memory access become bottlenecks in the data plane of high speed routers.

☐ ☐ Current PC software routers can easily handle multiple Gb/s interfaces at line rates simultaneously.

☐ ☐ Aggregate packet forwarding rates are usually measured using the smallest packet sizes (eg: 64 bytes).

☐ ☐ The goal of network processors is to provide speeds approaching that of ASICs, but with programmability.

☐ ☐ IP options are usually handled in the slow processing path.

☐ ☐ Bridges and L2 switches use a simple hashing procedure for lookup.

☐ ☐ Longest prefix match is equivalent to a two-dimensional search problem.

☐ ☐ At OC-192c rates, the time available for looking up a 64 byte packet is in the order of 100s of nanoseconds.

☐ ☐ A trie is a binary tree.

Shivkumar Kalyanaraman
Router Design

<table>
<thead>
<tr>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-bit prefixes are the most common prefixes in global routing tables</td>
<td>T</td>
</tr>
<tr>
<td>Very few prefixes in global routing tables are larger than 24 bits</td>
<td>T</td>
</tr>
<tr>
<td>First generation IP routers used switched backplanes to interconnect network interface cards</td>
<td>T</td>
</tr>
<tr>
<td>Faster routers use asymmetric multi-processing and parallelism to push specialized computing functions to NICs and by using co-processors (ASICs)</td>
<td>T</td>
</tr>
<tr>
<td>Call blocking in circuit switches leads to failure to connect calls, whereas blocking in packet switches leads to packet buffering</td>
<td>F</td>
</tr>
<tr>
<td>Crossbars can arbitrarily scale in terms of number of cross-points and management of crosspoints</td>
<td>T</td>
</tr>
<tr>
<td>Modern voice switches combine both space-division and time-division switching</td>
<td>T</td>
</tr>
<tr>
<td>Multi-stage cross-bar designs save on crosspoints but may increase blocking probability</td>
<td>T</td>
</tr>
<tr>
<td>Banyan switch fabric is an example of a self-routing recursive fabric</td>
<td>T</td>
</tr>
<tr>
<td>Blocking in Banyan switches can be avoided by choosing the order in which packets appear at the input ports (I.e. using a batcher sorting stage)</td>
<td>T</td>
</tr>
<tr>
<td>Output queueing is usually not used because it requires prohibitive maximum speeds of memory access or processing.</td>
<td>T</td>
</tr>
<tr>
<td>Output queues face the head-of-line blocking problem</td>
<td>T</td>
</tr>
</tbody>
</table>
Router Design

- Virtual output queues are used at the output ports of routers
- The knockout principle distributes the pain of losing packets across inputs, thus facilitating lower speed output queues
- Packet classification is a generalization of the longest-prefix-match problem
- Micro-engines in network processors run their own operating systems
- Micro-engines in network processors are ASICs
- The slow-path processing in network processors is handled by the StrongARM/Xscale processor
- A CAM (content-addressable memory) module returns all elements that match a given key
- T-CAMs are useful for packet classification
- Intel IXA network processors use a variety of register structures (e.g., ring buffers, next-neighbor register) to ease packet processing
- Intel IXA network processors use specialized modules for key functions (e.g., CRC, hashing, random number generation etc)
- Various types of parallelism and pipelining (both at the hardware and software level) is used in network processors
- Power constraints determine the layout of chips and boards in ultra-fast routers
- Power constraints also lead to multi-rack packaging for Tb/s routers
- Multi-rack packaging increases the switch round-trip time and hence buffering requirements
- Power constraints are likely to lead to increasing use of optical switching inside next-generation ultra-fast routers

Shivkumar Kalyanaraman

Rensselaer Polytechnic Institute