CHAPTER 2: PROBABILITY DISTRIBUTIONS

Probability Density Function (PDF)

\[p(x) \text{ is the density function, while } P(x) \text{ is the cumulative distribution. } P(x) \text{ is a non-decreasing function.} \]

\[P(x) = \int_{-\infty}^{x} p(x) \, dx \]

\[p(x) \geq 0 \quad \int_{-\infty}^{\infty} p(x) \, dx = 1 \quad \sum p(x) = 1 \]

Transformed Densities

\[x = g(y) \]

\[p_y(y) = p_x(x) \left| \frac{dx}{dy} \right| = p_x(g(y)) \left| g'(y) \right| \]

Binary Variables (1)

Coin flipping: heads=1, tails=0

\[p(x = 1|\mu) = \mu \]

Bernoulli Distribution

\[\text{Bern}(x|\mu) = \mu^x (1-\mu)^{1-x} \]

\[E[x] = \mu \]

\[\text{var}[x] = \mu(1-\mu) \]
This figure was taken from Solution 1.4 in the web-edition of the solutions manual for PRML, available at http://research.microsoft.com/~cmbishop/PRML. A more thorough explanation of what the figure shows is provided in the text of the solution.

Markus Svensen, 11/14/2007
Binomial Distribution

Repeat N times of an experiment that has 2 possible outcomes.

\[p(m \text{ heads}|N, \mu) \]

Binomial Distribution

\[
\text{Bin}(m|N, \mu) = \binom{N}{m} \mu^m (1 - \mu)^{N-m}
\]

\[
\mathbb{E}[m] = \sum_{m=0}^{N} m \text{Bin}(m|N, \mu) = N\mu
\]

\[
\text{var}[m] = \sum_{m=0}^{N} (m - \mathbb{E}[m])^2 \text{Bin}(m|N, \mu) = N\mu(1 - \mu)
\]

The Multinomial Distribution

Multinomial distribution is a generalization of the binomial distribution. Different from the binomial distribution, where the RV assumes two outcomes, the RV for multi-nominal distribution can assume k (k>2) possible outcomes.

Repeat N times of an experiment that has K possible outcomes.

Let N be the total number of independent trials, \(m_i \), i=1,2,..,k, be the number of times outcome i appears. Then, performing N independent trials, the probability that outcome 1 appears \(m_1 \), outcome 2, appears \(m_2 \), …,outcome k appears \(m_k \) times is

\[
\text{Mult}(m_1, m_2, …, m_K | \mu, N) = \binom{N}{m_1 m_2 … m_K} \prod_{k=1}^{K} \mu_k^{m_k}
\]

\[
\mathbb{E}[m_k] = N\mu_k
\]

\[
\text{var}[m_k] = N\mu_k(1 - \mu_k)
\]

\[
\text{cov}[m_k, m_p] = -N\mu_k \mu_p
\]

The Gaussian Distribution

\[
\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2 \right)
\]

\[
\int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) \, dx = 1
\]
Gaussian Mean and Variance

\[\mu = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx \]

\[\sigma^2 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^2 e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx - \mu^2 \]

Moments of the Multivariate Gaussian (1)

\[\mathbb{E}[x] = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \int_{-\infty}^{\infty} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} x dx \]

\[= \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \int_{-\infty}^{\infty} \exp \left\{ -\frac{1}{2} x^T \Sigma^{-1} x \right\} (x = \mu) dx \]

thanks to anti-symmetry of \(x \)

\[\mathbb{E}[x] = \mu \]

The Multivariate Gaussian

\[N(x; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]

\(\mu \)-mean vector

\(\Sigma \)-covariance matrix

Moments of the Multivariate Gaussian (2)

\[\mathbb{E}[xx^T] = \mu \mu^T + \Sigma \]

\[\text{cov}(x) = \mathbb{E}[(x - \mathbb{E}[(x)]) (x - \mathbb{E}[(x)])^T \]

\[= \mathbb{E}(xx^T) - \mathbb{E}(x)\mathbb{E}(x)^T \]

\[= \Sigma \]
Central Limit Theorem

The distribution of the sum of N i.i.d. random variables becomes increasingly Gaussian as N grows.

Example: N uniform $[0,1]$ random variables.

Beta Distribution

Beta is a continuous distribution defined on the interval of 0 and 1, i.e., $\mu \in [0,1]$ parameterized by two positive parameters a and b.

$$\text{Beta}(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\mu^{a-1}(1-\mu)^{b-1}$$

$$\mathbb{E}[\mu] = \frac{a}{a+b}$$

$$\text{var}[\mu] = \frac{ab}{(a+b)^2(a+b+1)}$$

where $\Gamma(x)=(x-1)!$ is gamma function. Beta is conjugate to the binomial and Bernoulli distributions.

Beta Distribution

The Dirichlet Distribution

The Dirichlet distribution is a continuous multivariate probability distribution parametrized by a vector of positive reals α. It is the multivariate generalization of the beta distribution.

$$\text{Dir}(\mu|\alpha) = \frac{\Gamma(\sum_{k=1}^{K} \alpha_k)}{\Gamma(\alpha_1)\cdots\Gamma(\alpha_K)} \prod_{k=1}^{K} \mu_k^{\alpha_k-1}$$

$$\alpha_0 = \sum_{k=1}^{K} \alpha_k$$

Conjugate prior for the multinomial distribution.
Mixtures of Gaussians (1)

Old Faithful data set

Mixtures of Gaussians (2)

Combine simple models into a complex model:

\[p(x) = \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k) \]

Component Mixing coefficient

\[\forall k : \pi_k \geq 0 \quad \sum_{k=1}^{K} \pi_k = 1 \]

Mixtures of Gaussians (3)

The Exponential Family (1)

\[p(x|\eta) = h(x)g(\eta) \exp \{ \eta^T u(x) \} \]

where \(\eta \) is the natural parameter and

\[g(\eta) \int h(x) \exp \{ \eta^T u(x) \} \ dx = 1 \]

so \(g(\eta) \) can be interpreted as a normalization coefficient.
The Exponential Family (2.1)

The Bernoulli Distribution

\[p(x|\mu) = \text{Bern}(x|\mu) = \mu^x(1-\mu)^{1-x} \]
\[= \exp \{ x \ln \mu + (1-x) \ln (1-\mu) \} \]
\[= (1-\mu) \exp \{ \ln \left(\frac{\mu}{1-\mu} \right) x \} \]

Comparing with the general form we see that
\[\eta = \ln \left(\frac{\mu}{1-\mu} \right) \quad \text{and so} \quad \mu = \sigma(\eta) = \frac{1}{1 + \exp(-\eta)}. \]

Logistic sigmoid

The Exponential Family (2.2)

The Bernoulli distribution can hence be written as

\[p(x|\eta) = \sigma(-\eta) \exp(\eta x) \]

where
\[u(x) = x \]
\[h(x) = 1 \]
\[g(\eta) = 1 - \sigma(\eta) = \sigma(-\eta). \]

The Exponential Family (3.1)

The Multinomial Distribution

\[p(x|\mu) = \prod_{k=1}^{M} \mu_k^{x_k} = \exp \left\{ \sum_{k=1}^{M} x_k \ln \mu_k \right\} = h(x) g(\eta) \exp (\eta^T u(x)) \]

where, \(x = (x_1, \ldots, x_M)^T, \eta = (\eta_1, \ldots, \eta_M)^T \) and

\[\eta_k = \ln \mu_k \]
\[u(x) = x \]
\[h(x) = 1 \]
\[g(\eta) = 1. \]

NOTE: The \(\eta \) parameters are not independent since the corresponding \(\mu \) must satisfy \(\sum_{k=1}^{M} \mu_k = 1. \)

The Exponential Family (3.2)

Let \(\mu_M = 1 - \sum_{k=1}^{M-1} \mu_k \). This leads to

\[\eta_k = \ln \left(\frac{\mu_k}{1 - \sum_{j=1}^{M-1} \mu_j} \right) \quad \text{and} \quad \mu_k = \frac{\exp(\eta_k)}{1 + \sum_{j=1}^{M-1} \exp(\eta_j)}. \]

Here the \(\eta_k \) parameters are independent. Note that
\[0 \leqslant \mu_k \leqslant 1 \quad \text{and} \quad \sum_{k=1}^{M-1} \mu_k \leqslant 1. \]

Softmax
The Exponential Family (3.3)

The Multinomial distribution can then be written as

\[p(x|\mu) = h(x)g(\eta)\exp(\eta^T u(x)) \]

where

\[\eta = (\eta_1, \ldots, \eta_{M-1}, 0)^T \]
\[u(x) = x \]
\[h(x) = 1 \]
\[g(\eta) = \left(1 + \sum_{k=1}^{M-1} \exp(\eta_k)\right)^{-1} . \]

The Exponential Family (4)

The Gaussian Distribution

\[p(x|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right) \]
\[= \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{1}{2\sigma^2}x^2 + \frac{\mu}{\sigma^2}x - \frac{1}{2\sigma^2}\mu^2\right) \]
\[= h(x)g(\eta)\exp(\eta^T u(x)) \]

where

\[\eta = \left(\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2}\right) \]
\[h(x) = (2\pi)^{-1/2} \]
\[u(x) = \left(\frac{x}{\sigma^2}\right) \]
\[g(\eta) = (-2\eta_1)^{1/2} \exp\left(\frac{-\eta_1}{\eta_2}\right) . \]

Conjugate priors

For any member of the exponential family, there exists a prior

\[p(\eta|\chi, \nu) = f(\chi, \nu)g(\eta)^\nu \exp\left\{\nu^T \chi\right\} . \]

Combining with the likelihood function, we get posterior

\[p(\eta|X, \chi, \nu) \propto g(\eta)^{\nu+N} \exp\left\{\eta^T \left(\sum_{n=1}^{N} u(x_n) + \nu \chi\right)\right\} . \]

The likelihood and the prior are conjugate if the prior and posterior have the same distribution.

Conjugate priors (cont’d)

- Beta prior is conjugate to the binomial and Bernoulli distributions
- Dirichlet prior is conjugate to the multinomial distribution.
- Gaussian prior is conjugate to the Gaussian distribution
Noninformative Priors (1)

With little or no information available a-priori, we might choose uniform prior.

- λ discrete, K-nomial: $p(\lambda) = 1/K$.
- $\lambda \in [a,b]$ real and bounded: $p(\lambda) = 1/(b-a)$.
- λ real and unbounded: improper!

Nonparametric Methods (1)

Parametric distribution models are restricted to specific forms, which may not always be suitable; for example, consider modelling a multimodal distribution with a single, unimodal model.

Nonparametric approaches make few assumptions about the overall shape of the distribution being modelled.

Nonparametric Methods (2)

Histogram methods partition the data space into distinct bins with widths Δ_i and count the number of observations, n_i, in each bin.

$$p_i = \frac{n_i}{N\Delta_i}$$

- Often, the same width is used for all bins, $\Delta_i = \Delta$.
- Δ acts as a smoothing parameter.

Nonparametric Methods (3)

Kernel Density Estimation: is a non-parametric way of estimating the probability density function of a random variable

Let $(x_1, x_2, ..., x_n)$ be an iid sample drawn from some distribution with an unknown density $p(x)$ (Parzen window)

$$k\left(\frac{x-x_i}{h}\right) = \begin{cases} 1 & \left|\frac{x-x_i}{h}\right| < 1/2 \\ 0, & \text{else} \end{cases}$$

It follows that

$$p(x) = \frac{1}{Nh} \sum_{i=1}^{n} k\left(\frac{x-x_i}{h}\right)$$

$k()$ is the kernel function and h is bandwidth, serving as a smoothing parameter. The only parameter is h.
Nonparametric Methods (4)

To avoid discontinuities in \(p(x) \), use a smooth kernel, e.g. a Gaussian:

\[
p(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{(2\pi h^2)^{D/2}} \exp \left(-\frac{\|x - x_i\|^2}{2h^2} \right)
\]

Any kernel such that \(\int k(u) \, du = 1 \)
will work.

\(h \) acts as a smoother.

Nonparametric Methods (5)

Nonparametric models (not histograms) requires storing and computing with the entire data set.

Parametric models, once fitted, are much more efficient in terms of storage and computation.

Parametric Estimation

Basic building blocks: \(p(x|\theta) \)

Need to determine \(\theta \) given \(\{x_1, \ldots, x_N\} \)

Maximum Likelihood (ML)

\[
\theta^* = \text{arg max}_\theta \ p(x_1, x_2, \ldots, x_N | \theta)
\]

Maximum Posterior Probability (MAP)

\[
\theta^* = \text{arg max}_\theta \ p(\theta | x_1, x_2, \ldots, x_N)
\]

ML Parameter Estimation

Since samples \(x_1, x_2, \ldots, x_n \) are IID, we have

\[
L(\theta) = p(x_1, x_2, \ldots, x_n | \theta) = \prod p(x_i | \theta)
\]

The log likelihood can be obtained as

\[
\log L(\theta) = \sum \log p(x_i | \theta)
\]

\(\theta \) can be obtained by taking the derivative of the Log likelihood with respect to \(\theta \) and setting it to zero

\[
\frac{\partial \log L(\theta)}{\partial \theta} = \sum \frac{\partial \log p(x_i | \theta)}{\partial \theta} = 0
\]
Parameter Estimation (1)

ML for Bernoulli
Given: \(D = \{x_1, \ldots, x_N\} \), \(m \) heads (1), \(N - m \) tails (0)

\[
p(D|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \prod_{n=1}^{N} \mu^{x_n}(1-\mu)^{1-x_n}
\]

\[
\ln p(D|\mu) = \sum_{n=1}^{N} \ln p(x_n|\mu) = \sum_{n=1}^{N} \left[x_n \ln \mu + (1-x_n) \ln(1-\mu) \right]
\]

\[
\mu_{\text{ML}} = \frac{1}{N} \sum_{n=1}^{N} x_n = \frac{m}{N}
\]

Maximum Likelihood for the Gaussian

Given i.i.d. data \(X = (x_1, \ldots, x_N)^T \), the log likelihood function is given by

\[
\ln p(X|\mu, \Sigma) = -\frac{N}{2} \ln(2\pi) - \frac{N}{2} \ln |\Sigma| - \frac{1}{2} \sum_{n=1}^{N} (x_n - \mu)^T \Sigma^{-1} (x_n - \mu)
\]

Sufficient statistics

\[
\sum_{n=1}^{N} x_n, \quad \sum_{n=1}^{N} x_n x_n^T
\]

MAP Parameter Estimation

Set the derivative of the log likelihood function to zero,

\[
\frac{\partial}{\partial \mu} \ln p(X|\mu, \Sigma) = \sum_{n=1}^{N} \Sigma^{-1}(x_n - \mu) = 0
\]

and solve to obtain

\[
\mu_{\text{ML}} = \frac{1}{N} \sum_{n=1}^{N} x_n
\]

Similarly

\[
\Sigma_{\text{ML}} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\text{ML}})(x_n - \mu_{\text{ML}})^T
\]

Since samples \(x_1, x_2, \ldots, x_n \) are IID, we have

\[
p(\theta | x_1, x_2, \ldots, x_N) = \alpha \prod_{i=1}^{N} p(x_i | \theta)
\]

Taking the log yields posterior

\[
\log p(\theta | x_1, x_2, \ldots, x_N) = \log \alpha + \sum_{i=1}^{N} \log p(x_i | \theta)
\]

\(\theta \) can be solved by maximizing the log posterior. \(P(\theta) \) is typically chosen to be the conjugate of the likelihood.
MAP Bernoulli Parameter Estimation

Given: \(D = \{x_1, \ldots, x_N\} \), \(m \) heads \((1) \), \(N - m \) tails \((0) \)
The joint likelihood is
\[
P(D | \mu) = \prod_{n=1}^{N} p(x_n | \mu) = \prod_{n=1}^{N} \mu^x (1-\mu)^{1-x}
\]
The conjugate prior for Bernoulli is Beta distribution
\[
P(\mu | a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}
\]
The posterior is
\[
P(\mu | D) = \alpha P(\mu | a, b) P(D | \mu)
\]
\[
= \alpha \mu^{x} (1-\mu)^{b-1} \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n}.
\]

MAP Bernoulli Parameter Estimation (cont’d)

The log posterior is
\[
\text{Log}(P(\mu | D)) = (a-1) \log \mu + (b-1) \log (1-\mu) + \sum_{n=1}^{N} x_n \log \mu + (1-x_n) \log (1-\mu) + \text{const}
\]
Take the log posterior w.r.t \(\mu \) and setting it to zero yields
\[
\frac{\partial \text{Log}(P(\mu | D))}{\partial \mu} = \frac{(a-1)}{\mu} - \frac{(b-1)}{1-\mu} + \sum_{n=1}^{N} x_n - \sum_{n=1}^{N} (1-x_n) = 0
\]
Solving the equation produces
\[
\mu_{\text{MAP}} = \frac{\sum_{n=1}^{N} x_n + a-1}{N + a - 1} \quad \mu_{\text{ML}} = \frac{\sum_{n=1}^{N} x_n}{N}
\]
a \(1 \) and \(b \) \(1 \) prior becomes non-informative or when \(N \) is large
\[\mu_{\text{MAP}} = \mu_{\text{ML}}\]
When \(N=0 \), \(\mu_{\text{MAP}} = \frac{a}{a+b} \), the mean of the prior

MAP Estimation for the Gaussian (1)

Assume \(\sigma^2 \) is known. Given i.i.d. data
\(x = \{x_1, \ldots, x_N\} \), the likelihood function for \(\mu \) is given by
\[
p(x | \mu) = \prod_{n=1}^{N} p(x_n | \mu) = \frac{1}{(2\pi \sigma^2)^{N/2}} \exp \left\{ -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 \right\}.
\]
This has a Gaussian shape as a function of \(\mu \)
(but it is not a distribution over \(\mu \)).

MAP Estimation for the Gaussian (2)

Combined with a Gaussian prior over \(\mu \),
\[
p(\mu) = \mathcal{N}(\mu | \mu_0, \sigma_0^2).
\]
this gives the posterior
\[
p(\mu | x) \propto p(x | \mu) p(\mu).
\]
Completing the square over \(\mu \), we see that
\[
p(\mu | x) = \mathcal{N}(\mu | \mu_N, \sigma_N^2)
\]
MAP Estimation for the Gaussian (3)

... where

$$\mu_N = \frac{\sigma^2}{N\sigma_0^2 + \sigma^2}\mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2}\mu_{ML}, \quad \mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\frac{1}{\sigma_N^2} = \frac{1}{\sigma_0^2} + \frac{N}{\sigma^2}$$

Note:

<table>
<thead>
<tr>
<th></th>
<th>$N = 0$</th>
<th>$N \to \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_N</td>
<td>μ_0</td>
<td>μ_{ML}</td>
</tr>
<tr>
<td>σ_N^2</td>
<td>σ_0^2</td>
<td>0</td>
</tr>
</tbody>
</table>

MAP Estimation for the Gaussian (4)

Example: $p(\mu|x) = N(\mu|\mu_N, \sigma_N^2)$ for $N = 0, 1, 2$ and 10.

Minimum Misclassification Rate

Two types of mistakes:
- False positive (type 1)
- False negative (type 2)

Generative vs Discriminative

Generative approach:
- Model $p(t|x) = p(x|t)p(t)$
- Use Bayes’ theorem $p(t|x) = \frac{p(x|t)p(t)}{p(x)}$

Discriminative approach:
- Model $p(t|x)$ directly
The k-nearest neighbors algorithm (k-NN) is a method for classifying objects based on closest training examples in the feature space.

The best choice of k depends upon the data; larger values of k reduce the effect of noise on the classification, but make boundaries between classes less distinct. A good k can be selected by cross-validation.

• K acts as a smoother
• For \(N \to \infty \), the error rate of the 1-nearest-neighbour classifier is never more than twice the optimal error (obtained from the true conditional class distributions).